blob: 7a15a2972ab84d64e4f14af457f9df50affd744b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.integration;
import java.util.Random;
import org.apache.commons.math3.analysis.QuinticFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.function.Sin;
import org.apache.commons.math3.analysis.function.Gaussian;
import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Test;
public class IterativeLegendreGaussIntegratorTest {
@Test
public void testSinFunction() {
UnivariateFunction f = new Sin();
BaseAbstractUnivariateIntegrator integrator
= new IterativeLegendreGaussIntegrator(5, 1.0e-14, 1.0e-10, 2, 15);
double min, max, expected, result, tolerance;
min = 0; max = FastMath.PI; expected = 2;
tolerance = FastMath.max(integrator.getAbsoluteAccuracy(),
FastMath.abs(expected * integrator.getRelativeAccuracy()));
result = integrator.integrate(10000, f, min, max);
Assert.assertEquals(expected, result, tolerance);
min = -FastMath.PI/3; max = 0; expected = -0.5;
tolerance = FastMath.max(integrator.getAbsoluteAccuracy(),
FastMath.abs(expected * integrator.getRelativeAccuracy()));
result = integrator.integrate(10000, f, min, max);
Assert.assertEquals(expected, result, tolerance);
}
@Test
public void testQuinticFunction() {
UnivariateFunction f = new QuinticFunction();
UnivariateIntegrator integrator =
new IterativeLegendreGaussIntegrator(3,
BaseAbstractUnivariateIntegrator.DEFAULT_RELATIVE_ACCURACY,
BaseAbstractUnivariateIntegrator.DEFAULT_ABSOLUTE_ACCURACY,
BaseAbstractUnivariateIntegrator.DEFAULT_MIN_ITERATIONS_COUNT,
64);
double min, max, expected, result;
min = 0; max = 1; expected = -1.0/48;
result = integrator.integrate(10000, f, min, max);
Assert.assertEquals(expected, result, 1.0e-16);
min = 0; max = 0.5; expected = 11.0/768;
result = integrator.integrate(10000, f, min, max);
Assert.assertEquals(expected, result, 1.0e-16);
min = -1; max = 4; expected = 2048/3.0 - 78 + 1.0/48;
result = integrator.integrate(10000, f, min, max);
Assert.assertEquals(expected, result, 1.0e-16);
}
@Test
public void testExactIntegration() {
Random random = new Random(86343623467878363l);
for (int n = 2; n < 6; ++n) {
IterativeLegendreGaussIntegrator integrator =
new IterativeLegendreGaussIntegrator(n,
BaseAbstractUnivariateIntegrator.DEFAULT_RELATIVE_ACCURACY,
BaseAbstractUnivariateIntegrator.DEFAULT_ABSOLUTE_ACCURACY,
BaseAbstractUnivariateIntegrator.DEFAULT_MIN_ITERATIONS_COUNT,
64);
// an n points Gauss-Legendre integrator integrates 2n-1 degree polynoms exactly
for (int degree = 0; degree <= 2 * n - 1; ++degree) {
for (int i = 0; i < 10; ++i) {
double[] coeff = new double[degree + 1];
for (int k = 0; k < coeff.length; ++k) {
coeff[k] = 2 * random.nextDouble() - 1;
}
PolynomialFunction p = new PolynomialFunction(coeff);
double result = integrator.integrate(10000, p, -5.0, 15.0);
double reference = exactIntegration(p, -5.0, 15.0);
Assert.assertEquals(n + " " + degree + " " + i, reference, result, 1.0e-12 * (1.0 + FastMath.abs(reference)));
}
}
}
}
// Cf. MATH-995
@Test
public void testNormalDistributionWithLargeSigma() {
final double sigma = 1000;
final double mean = 0;
final double factor = 1 / (sigma * FastMath.sqrt(2 * FastMath.PI));
final UnivariateFunction normal = new Gaussian(factor, mean, sigma);
final double tol = 1e-2;
final IterativeLegendreGaussIntegrator integrator =
new IterativeLegendreGaussIntegrator(5, tol, tol);
final double a = -5000;
final double b = 5000;
final double s = integrator.integrate(50, normal, a, b);
Assert.assertEquals(1, s, 1e-5);
}
@Test
public void testIssue464() {
final double value = 0.2;
UnivariateFunction f = new UnivariateFunction() {
public double value(double x) {
return (x >= 0 && x <= 5) ? value : 0.0;
}
};
IterativeLegendreGaussIntegrator gauss
= new IterativeLegendreGaussIntegrator(5, 3, 100);
// due to the discontinuity, integration implies *many* calls
double maxX = 0.32462367623786328;
Assert.assertEquals(maxX * value, gauss.integrate(Integer.MAX_VALUE, f, -10, maxX), 1.0e-7);
Assert.assertTrue(gauss.getEvaluations() > 37000000);
Assert.assertTrue(gauss.getIterations() < 30);
// setting up limits prevents such large number of calls
try {
gauss.integrate(1000, f, -10, maxX);
Assert.fail("expected TooManyEvaluationsException");
} catch (TooManyEvaluationsException tmee) {
// expected
Assert.assertEquals(1000, tmee.getMax());
}
// integrating on the two sides should be simpler
double sum1 = gauss.integrate(1000, f, -10, 0);
int eval1 = gauss.getEvaluations();
double sum2 = gauss.integrate(1000, f, 0, maxX);
int eval2 = gauss.getEvaluations();
Assert.assertEquals(maxX * value, sum1 + sum2, 1.0e-7);
Assert.assertTrue(eval1 + eval2 < 200);
}
private double exactIntegration(PolynomialFunction p, double a, double b) {
final double[] coeffs = p.getCoefficients();
double yb = coeffs[coeffs.length - 1] / coeffs.length;
double ya = yb;
for (int i = coeffs.length - 2; i >= 0; --i) {
yb = yb * b + coeffs[i] / (i + 1);
ya = ya * a + coeffs[i] / (i + 1);
}
return yb * b - ya * a;
}
}