| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| #------------------------------------------------------------------------------ |
| # R source file to validate Pascal distribution tests in |
| # org.apache.commons.math.distribution.PascalDistributionTest |
| # |
| # To run the test, install R, put this file and testFunctions |
| # into the same directory, launch R from this directory and then enter |
| # source("<name-of-this-file>") |
| # |
| # R functions used |
| # dnbinom(x, size, prob, mu, log = FALSE) <- density |
| # pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE) <- distribution |
| # qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE) <- quantiles |
| #------------------------------------------------------------------------------ |
| tol <- 1E-9 # error tolerance for tests |
| #------------------------------------------------------------------------------ |
| # Function definitions |
| |
| source("testFunctions") # utility test functions |
| |
| # function to verify density computations |
| |
| verifyDensity <- function(points, expected, size, p, tol) { |
| rDensityValues <- rep(0, length(points)) |
| i <- 0 |
| for (point in points) { |
| i <- i + 1 |
| rDensityValues[i] <- dnbinom(point, size, p) |
| } |
| output <- c("Density test size = ", size, ", p = ", p) |
| if (assertEquals(expected,rDensityValues,tol,"Density Values")) { |
| displayPadded(output, SUCCEEDED, WIDTH) |
| } else { |
| displayPadded(output, FAILED, WIDTH) |
| } |
| } |
| |
| # function to verify distribution computations |
| |
| verifyDistribution <- function(points, expected, size, p, tol) { |
| rDistValues <- rep(0, length(points)) |
| i <- 0 |
| for (point in points) { |
| i <- i + 1 |
| rDistValues[i] <- pnbinom(point, size, p) |
| } |
| output <- c("Distribution test size = ", size, ", p = ", p) |
| if (assertEquals(expected,rDistValues,tol,"Distribution Values")) { |
| displayPadded(output, SUCCEEDED, WIDTH) |
| } else { |
| displayPadded(output, FAILED, WIDTH) |
| } |
| } |
| |
| #-------------------------------------------------------------------------- |
| cat("Negative Binomial test cases\n") |
| |
| size <- 10.0 |
| probability <- 0.70 |
| |
| densityPoints <- c(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) |
| densityValues <- c(0, 0.0282475249, 0.0847425747, 0.139825248255, 0.167790297906, 0.163595540458, |
| 0.137420253985, 0.103065190489, 0.070673273478, 0.0450542118422, 0.0270325271053, |
| 0.0154085404500, 0.0084046584273) |
| distributionValues <- c(0, 0.0282475249, 0.1129900996, 0.252815347855, 0.420605645761, 0.584201186219, |
| 0.721621440204, 0.824686630693, 0.895359904171, 0.940414116013, 0.967446643119, |
| 0.982855183569, 0.991259841996) |
| inverseCumPoints <- c( 0, 0.001, 0.010, 0.025, 0.050, 0.100, 0.999, |
| 0.990, 0.975, 0.950, 0.900) |
| inverseCumValues <- c(-1, -1, -1, -1, 0, 0, 13, 10, 9, 8, 7) |
| |
| verifyDensity(densityPoints,densityValues,size,probability,tol) |
| verifyDistribution(densityPoints, distributionValues, size, probability, tol) |
| |
| i <- 0 |
| rInverseCumValues <- rep(0,length(inverseCumPoints)) |
| for (point in inverseCumPoints) { |
| i <- i + 1 |
| rInverseCumValues[i] <- qnbinom(point, size, probability) |
| } |
| |
| output <- c("Inverse Distribution test n = ", size, ", p = ", probability) |
| # R defines quantiles from the right, need to subtract one |
| if (assertEquals(inverseCumValues, rInverseCumValues-1, tol, |
| "Inverse Dist Values")) { |
| displayPadded(output, SUCCEEDED, 80) |
| } else { |
| displayPadded(output, FAILED, 80) |
| } |
| |
| # Degenerate cases |
| |
| size <- 5 |
| probability <- 0.0 |
| |
| densityPoints <- c(-1, 0, 1, 10, 11) |
| # Note: commons math returns 0's below |
| densityValues <- c(NaN, NaN, NaN, NaN, NaN) |
| distributionPoints <- c(-1, 0, 1, 5, 10) |
| # Note: commons math returns 0's below |
| distributionValues <- c(NaN, NaN, NaN, NaN, NaN) |
| |
| output <- c("Density test n = ", size, ", p = ", probability) |
| verifyDensity(densityPoints,densityValues,size,probability,tol) |
| output <- c("Distribution test n = ", size, ", p = ", probability) |
| verifyDistribution(distributionPoints,distributionValues,size,probability,tol) |
| |
| size <- 5 |
| probability <- 1.0 |
| |
| densityPoints <- c(-1, 0, 1, 2, 5, 10) |
| densityValues <- c(0, 1, 0, 0, 0, 0) |
| distributionPoints <- c(-1, 0, 1, 2, 5, 10) |
| distributionValues <- c(0, 1, 1, 1, 1, 1) |
| |
| output <- c("Density test n = ", size, ", p = ", probability) |
| verifyDensity(densityPoints,densityValues,size,probability,tol) |
| output <- c("Distribution test n = ", size, ", p = ", probability) |
| verifyDistribution(distributionPoints,distributionValues,size,probability,tol) |
| |
| displayDashes(WIDTH) |