| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.commons.math3.linear; |
| |
| import org.apache.commons.math3.exception.MaxCountExceededException; |
| import org.apache.commons.math3.exception.DimensionMismatchException; |
| import org.apache.commons.math3.exception.util.LocalizedFormats; |
| import org.apache.commons.math3.util.Precision; |
| import org.apache.commons.math3.util.FastMath; |
| |
| /** |
| * Calculates the eigen decomposition of a real <strong>symmetric</strong> |
| * matrix. |
| * <p>The eigen decomposition of matrix A is a set of two matrices: |
| * V and D such that A = V × D × V<sup>T</sup>. |
| * A, V and D are all m × m matrices.</p> |
| * <p>This class is similar in spirit to the <code>EigenvalueDecomposition</code> |
| * class from the <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> |
| * library, with the following changes:</p> |
| * <ul> |
| * <li>a {@link #getVT() getVt} method has been added,</li> |
| * <li>two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int) |
| * getImagEigenvalue} methods to pick up a single eigenvalue have been added,</li> |
| * <li>a {@link #getEigenvector(int) getEigenvector} method to pick up a single |
| * eigenvector has been added,</li> |
| * <li>a {@link #getDeterminant() getDeterminant} method has been added.</li> |
| * <li>a {@link #getSolver() getSolver} method has been added.</li> |
| * </ul> |
| * <p> |
| * As of 2.0, this class supports only <strong>symmetric</strong> matrices, and |
| * hence computes only real realEigenvalues. This implies the D matrix returned |
| * by {@link #getD()} is always diagonal and the imaginary values returned |
| * {@link #getImagEigenvalue(int)} and {@link #getImagEigenvalues()} are always |
| * null. |
| * </p> |
| * <p> |
| * When called with a {@link RealMatrix} argument, this implementation only uses |
| * the upper part of the matrix, the part below the diagonal is not accessed at |
| * all. |
| * </p> |
| * <p> |
| * This implementation is based on the paper by A. Drubrulle, R.S. Martin and |
| * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971) |
| * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag, |
| * New-York |
| * </p> |
| * @see <a href="http://mathworld.wolfram.com/EigenDecomposition.html">MathWorld</a> |
| * @see <a href="http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix">Wikipedia</a> |
| * @version $Id$ |
| * @since 2.0 (changed to concrete class in 3.0) |
| */ |
| public class EigenDecomposition{ |
| /** Maximum number of iterations accepted in the implicit QL transformation */ |
| private byte maxIter = 30; |
| /** Main diagonal of the tridiagonal matrix. */ |
| private double[] main; |
| /** Secondary diagonal of the tridiagonal matrix. */ |
| private double[] secondary; |
| /** |
| * Transformer to tridiagonal (may be null if matrix is already |
| * tridiagonal). |
| */ |
| private TriDiagonalTransformer transformer; |
| /** Real part of the realEigenvalues. */ |
| private double[] realEigenvalues; |
| /** Imaginary part of the realEigenvalues. */ |
| private double[] imagEigenvalues; |
| /** Eigenvectors. */ |
| private ArrayRealVector[] eigenvectors; |
| /** Cached value of V. */ |
| private RealMatrix cachedV; |
| /** Cached value of D. */ |
| private RealMatrix cachedD; |
| /** Cached value of Vt. */ |
| private RealMatrix cachedVt; |
| |
| /** |
| * Calculates the eigen decomposition of the given symmetric matrix. |
| * |
| * @param matrix Matrix to decompose. It <em>must</em> be symmetric. |
| * @param splitTolerance Dummy parameter (present for backward |
| * compatibility only). |
| * @throws NonSymmetricMatrixException if the matrix is not symmetric. |
| * @throws MaxCountExceededException if the algorithm fails to converge. |
| */ |
| public EigenDecomposition(final RealMatrix matrix, |
| final double splitTolerance) { |
| if (isSymmetric(matrix, true)) { |
| transformToTridiagonal(matrix); |
| findEigenVectors(transformer.getQ().getData()); |
| } |
| } |
| |
| /** |
| * Calculates the eigen decomposition of the symmetric tridiagonal |
| * matrix. The Householder matrix is assumed to be the identity matrix. |
| * |
| * @param main Main diagonal of the symmetric tridiagonal form. |
| * @param secondary Secondary of the tridiagonal form. |
| * @param splitTolerance Dummy parameter (present for backward |
| * compatibility only). |
| * @throws MaxCountExceededException if the algorithm fails to converge. |
| */ |
| public EigenDecomposition(final double[] main,final double[] secondary, |
| final double splitTolerance) { |
| this.main = main.clone(); |
| this.secondary = secondary.clone(); |
| transformer = null; |
| final int size=main.length; |
| double[][] z = new double[size][size]; |
| for (int i=0;i<size;i++) { |
| z[i][i]=1.0; |
| } |
| findEigenVectors(z); |
| } |
| |
| /** |
| * Check if a matrix is symmetric. |
| * |
| * @param matrix Matrix to check. |
| * @param raiseException If {@code true}, the method will throw an |
| * exception if {@code matrix} is not symmetric. |
| * @return {@code true} if {@code matrix} is symmetric. |
| * @throws NonSymmetricMatrixException if the matrix is not symmetric and |
| * {@code raiseException} is {@code true}. |
| */ |
| private boolean isSymmetric(final RealMatrix matrix, |
| boolean raiseException) { |
| final int rows = matrix.getRowDimension(); |
| final int columns = matrix.getColumnDimension(); |
| final double eps = 10 * rows * columns * Precision.EPSILON; |
| for (int i = 0; i < rows; ++i) { |
| for (int j = i + 1; j < columns; ++j) { |
| final double mij = matrix.getEntry(i, j); |
| final double mji = matrix.getEntry(j, i); |
| if (FastMath.abs(mij - mji) > |
| (FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * eps)) { |
| if (raiseException) { |
| throw new NonSymmetricMatrixException(i, j, eps); |
| } |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Gets the matrix V of the decomposition. |
| * V is an orthogonal matrix, i.e. its transpose is also its inverse. |
| * The columns of V are the eigenvectors of the original matrix. |
| * No assumption is made about the orientation of the system axes formed |
| * by the columns of V (e.g. in a 3-dimension space, V can form a left- |
| * or right-handed system). |
| * |
| * @return the V matrix. |
| */ |
| public RealMatrix getV() { |
| |
| if (cachedV == null) { |
| final int m = eigenvectors.length; |
| cachedV = MatrixUtils.createRealMatrix(m, m); |
| for (int k = 0; k < m; ++k) { |
| cachedV.setColumnVector(k, eigenvectors[k]); |
| } |
| } |
| // return the cached matrix |
| return cachedV; |
| |
| } |
| |
| /** |
| * Gets the block diagonal matrix D of the decomposition. |
| * D is a block diagonal matrix. |
| * Real eigenvalues are on the diagonal while complex values are on |
| * 2x2 blocks { {real +imaginary}, {-imaginary, real} }. |
| * |
| * @return the D matrix. |
| * |
| * @see #getRealEigenvalues() |
| * @see #getImagEigenvalues() |
| */ |
| public RealMatrix getD() { |
| if (cachedD == null) { |
| // cache the matrix for subsequent calls |
| cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues); |
| } |
| return cachedD; |
| } |
| |
| /** |
| * Gets the transpose of the matrix V of the decomposition. |
| * V is an orthogonal matrix, i.e. its transpose is also its inverse. |
| * The columns of V are the eigenvectors of the original matrix. |
| * No assumption is made about the orientation of the system axes formed |
| * by the columns of V (e.g. in a 3-dimension space, V can form a left- |
| * or right-handed system). |
| * |
| * @return the transpose of the V matrix. |
| */ |
| public RealMatrix getVT() { |
| |
| if (cachedVt == null) { |
| final int m = eigenvectors.length; |
| cachedVt = MatrixUtils.createRealMatrix(m, m); |
| for (int k = 0; k < m; ++k) { |
| cachedVt.setRowVector(k, eigenvectors[k]); |
| } |
| |
| } |
| |
| // return the cached matrix |
| return cachedVt; |
| } |
| |
| /** |
| * Gets a copy of the real parts of the eigenvalues of the original matrix. |
| * |
| * @return a copy of the real parts of the eigenvalues of the original matrix. |
| * |
| * @see #getD() |
| * @see #getRealEigenvalue(int) |
| * @see #getImagEigenvalues() |
| */ |
| public double[] getRealEigenvalues() { |
| return realEigenvalues.clone(); |
| } |
| |
| /** |
| * Returns the real part of the i<sup>th</sup> eigenvalue of the original |
| * matrix. |
| * |
| * @param i index of the eigenvalue (counting from 0) |
| * @return real part of the i<sup>th</sup> eigenvalue of the original |
| * matrix. |
| * |
| * @see #getD() |
| * @see #getRealEigenvalues() |
| * @see #getImagEigenvalue(int) |
| */ |
| public double getRealEigenvalue(final int i) { |
| return realEigenvalues[i]; |
| } |
| |
| /** |
| * Gets a copy of the imaginary parts of the eigenvalues of the original |
| * matrix. |
| * |
| * @return a copy of the imaginary parts of the eigenvalues of the original |
| * matrix. |
| * |
| * @see #getD() |
| * @see #getImagEigenvalue(int) |
| * @see #getRealEigenvalues() |
| */ |
| public double[] getImagEigenvalues() { |
| return imagEigenvalues.clone(); |
| } |
| |
| /** |
| * Gets the imaginary part of the i<sup>th</sup> eigenvalue of the original |
| * matrix. |
| * |
| * @param i Index of the eigenvalue (counting from 0). |
| * @return the imaginary part of the i<sup>th</sup> eigenvalue of the original |
| * matrix. |
| * |
| * @see #getD() |
| * @see #getImagEigenvalues() |
| * @see #getRealEigenvalue(int) |
| */ |
| public double getImagEigenvalue(final int i) { |
| return imagEigenvalues[i]; |
| } |
| |
| /** |
| * Gets a copy of the i<sup>th</sup> eigenvector of the original matrix. |
| * |
| * @param i Index of the eigenvector (counting from 0). |
| * @return a copy of the i<sup>th</sup> eigenvector of the original matrix. |
| * @see #getD() |
| */ |
| public RealVector getEigenvector(final int i) { |
| return eigenvectors[i].copy(); |
| } |
| |
| /** |
| * Computes the determinant of the matrix. |
| * |
| * @return the determinant of the matrix. |
| */ |
| public double getDeterminant() { |
| double determinant = 1; |
| for (double lambda : realEigenvalues) { |
| determinant *= lambda; |
| } |
| return determinant; |
| } |
| |
| /** |
| * Gets a solver for finding the A × X = B solution in exact |
| * linear sense. |
| * |
| * @return a solver. |
| */ |
| public DecompositionSolver getSolver() { |
| return new Solver(realEigenvalues, imagEigenvalues, eigenvectors); |
| } |
| |
| /** Specialized solver. */ |
| private static class Solver implements DecompositionSolver { |
| /** Real part of the realEigenvalues. */ |
| private double[] realEigenvalues; |
| /** Imaginary part of the realEigenvalues. */ |
| private double[] imagEigenvalues; |
| /** Eigenvectors. */ |
| private final ArrayRealVector[] eigenvectors; |
| |
| /** |
| * Builds a solver from decomposed matrix. |
| * |
| * @param realEigenvalues Real parts of the eigenvalues. |
| * @param imagEigenvalues Imaginary parts of the eigenvalues. |
| * @param eigenvectors Eigenvectors. |
| */ |
| private Solver(final double[] realEigenvalues, |
| final double[] imagEigenvalues, |
| final ArrayRealVector[] eigenvectors) { |
| this.realEigenvalues = realEigenvalues; |
| this.imagEigenvalues = imagEigenvalues; |
| this.eigenvectors = eigenvectors; |
| } |
| |
| /** |
| * Solves the linear equation A × X = B for symmetric matrices A. |
| * <p> |
| * This method only finds exact linear solutions, i.e. solutions for |
| * which ||A × X - B|| is exactly 0. |
| * </p> |
| * |
| * @param b Right-hand side of the equation A × X = B. |
| * @return a Vector X that minimizes the two norm of A × X - B. |
| * |
| * @throws DimensionMismatchException if the matrices dimensions do not match. |
| * @throws SingularMatrixException if the decomposed matrix is singular. |
| */ |
| public RealVector solve(final RealVector b) { |
| if (!isNonSingular()) { |
| throw new SingularMatrixException(); |
| } |
| |
| final int m = realEigenvalues.length; |
| if (b.getDimension() != m) { |
| throw new DimensionMismatchException(b.getDimension(), m); |
| } |
| |
| final double[] bp = new double[m]; |
| for (int i = 0; i < m; ++i) { |
| final ArrayRealVector v = eigenvectors[i]; |
| final double[] vData = v.getDataRef(); |
| final double s = v.dotProduct(b) / realEigenvalues[i]; |
| for (int j = 0; j < m; ++j) { |
| bp[j] += s * vData[j]; |
| } |
| } |
| |
| return new ArrayRealVector(bp, false); |
| } |
| |
| /** {@inheritDoc} */ |
| public RealMatrix solve(RealMatrix b) { |
| |
| if (!isNonSingular()) { |
| throw new SingularMatrixException(); |
| } |
| |
| final int m = realEigenvalues.length; |
| if (b.getRowDimension() != m) { |
| throw new DimensionMismatchException(b.getRowDimension(), m); |
| } |
| |
| final int nColB = b.getColumnDimension(); |
| final double[][] bp = new double[m][nColB]; |
| final double[] tmpCol = new double[m]; |
| for (int k = 0; k < nColB; ++k) { |
| for (int i = 0; i < m; ++i) { |
| tmpCol[i] = b.getEntry(i, k); |
| bp[i][k] = 0; |
| } |
| for (int i = 0; i < m; ++i) { |
| final ArrayRealVector v = eigenvectors[i]; |
| final double[] vData = v.getDataRef(); |
| double s = 0; |
| for (int j = 0; j < m; ++j) { |
| s += v.getEntry(j) * tmpCol[j]; |
| } |
| s /= realEigenvalues[i]; |
| for (int j = 0; j < m; ++j) { |
| bp[j][k] += s * vData[j]; |
| } |
| } |
| } |
| |
| return new Array2DRowRealMatrix(bp, false); |
| |
| } |
| |
| /** |
| * Checks whether the decomposed matrix is non-singular. |
| * |
| * @return true if the decomposed matrix is non-singular. |
| */ |
| public boolean isNonSingular() { |
| for (int i = 0; i < realEigenvalues.length; ++i) { |
| if (realEigenvalues[i] == 0 && |
| imagEigenvalues[i] == 0) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Get the inverse of the decomposed matrix. |
| * |
| * @return the inverse matrix. |
| * @throws SingularMatrixException if the decomposed matrix is singular. |
| */ |
| public RealMatrix getInverse() { |
| if (!isNonSingular()) { |
| throw new SingularMatrixException(); |
| } |
| |
| final int m = realEigenvalues.length; |
| final double[][] invData = new double[m][m]; |
| |
| for (int i = 0; i < m; ++i) { |
| final double[] invI = invData[i]; |
| for (int j = 0; j < m; ++j) { |
| double invIJ = 0; |
| for (int k = 0; k < m; ++k) { |
| final double[] vK = eigenvectors[k].getDataRef(); |
| invIJ += vK[i] * vK[j] / realEigenvalues[k]; |
| } |
| invI[j] = invIJ; |
| } |
| } |
| return MatrixUtils.createRealMatrix(invData); |
| } |
| } |
| |
| /** |
| * Transforms the matrix to tridiagonal form. |
| * |
| * @param matrix Matrix to transform. |
| */ |
| private void transformToTridiagonal(final RealMatrix matrix) { |
| // transform the matrix to tridiagonal |
| transformer = new TriDiagonalTransformer(matrix); |
| main = transformer.getMainDiagonalRef(); |
| secondary = transformer.getSecondaryDiagonalRef(); |
| } |
| |
| /** |
| * Find eigenvalues and eigenvectors (Dubrulle et al., 1971) |
| * |
| * @param householderMatrix Householder matrix of the transformation |
| * to tridiagonal form. |
| */ |
| private void findEigenVectors(double[][] householderMatrix) { |
| final double[][]z = householderMatrix.clone(); |
| final int n = main.length; |
| realEigenvalues = new double[n]; |
| imagEigenvalues = new double[n]; |
| final double[] e = new double[n]; |
| for (int i = 0; i < n - 1; i++) { |
| realEigenvalues[i] = main[i]; |
| e[i] = secondary[i]; |
| } |
| realEigenvalues[n - 1] = main[n - 1]; |
| e[n - 1] = 0; |
| |
| // Determine the largest main and secondary value in absolute term. |
| double maxAbsoluteValue = 0; |
| for (int i = 0; i < n; i++) { |
| if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) { |
| maxAbsoluteValue = FastMath.abs(realEigenvalues[i]); |
| } |
| if (FastMath.abs(e[i]) > maxAbsoluteValue) { |
| maxAbsoluteValue = FastMath.abs(e[i]); |
| } |
| } |
| // Make null any main and secondary value too small to be significant |
| if (maxAbsoluteValue != 0) { |
| for (int i=0; i < n; i++) { |
| if (FastMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) { |
| realEigenvalues[i] = 0; |
| } |
| if (FastMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) { |
| e[i]=0; |
| } |
| } |
| } |
| |
| for (int j = 0; j < n; j++) { |
| int its = 0; |
| int m; |
| do { |
| for (m = j; m < n - 1; m++) { |
| double delta = FastMath.abs(realEigenvalues[m]) + |
| FastMath.abs(realEigenvalues[m + 1]); |
| if (FastMath.abs(e[m]) + delta == delta) { |
| break; |
| } |
| } |
| if (m != j) { |
| if (its == maxIter) { |
| throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED, |
| maxIter); |
| } |
| its++; |
| double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]); |
| double t = FastMath.sqrt(1 + q * q); |
| if (q < 0.0) { |
| q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t); |
| } else { |
| q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t); |
| } |
| double u = 0.0; |
| double s = 1.0; |
| double c = 1.0; |
| int i; |
| for (i = m - 1; i >= j; i--) { |
| double p = s * e[i]; |
| double h = c * e[i]; |
| if (FastMath.abs(p) >= FastMath.abs(q)) { |
| c = q / p; |
| t = FastMath.sqrt(c * c + 1.0); |
| e[i + 1] = p * t; |
| s = 1.0 / t; |
| c = c * s; |
| } else { |
| s = p / q; |
| t = FastMath.sqrt(s * s + 1.0); |
| e[i + 1] = q * t; |
| c = 1.0 / t; |
| s = s * c; |
| } |
| if (e[i + 1] == 0.0) { |
| realEigenvalues[i + 1] -= u; |
| e[m] = 0.0; |
| break; |
| } |
| q = realEigenvalues[i + 1] - u; |
| t = (realEigenvalues[i] - q) * s + 2.0 * c * h; |
| u = s * t; |
| realEigenvalues[i + 1] = q + u; |
| q = c * t - h; |
| for (int ia = 0; ia < n; ia++) { |
| p = z[ia][i + 1]; |
| z[ia][i + 1] = s * z[ia][i] + c * p; |
| z[ia][i] = c * z[ia][i] - s * p; |
| } |
| } |
| if (t == 0.0 && i >= j) { |
| continue; |
| } |
| realEigenvalues[j] -= u; |
| e[j] = q; |
| e[m] = 0.0; |
| } |
| } while (m != j); |
| } |
| |
| //Sort the eigen values (and vectors) in increase order |
| for (int i = 0; i < n; i++) { |
| int k = i; |
| double p = realEigenvalues[i]; |
| for (int j = i + 1; j < n; j++) { |
| if (realEigenvalues[j] > p) { |
| k = j; |
| p = realEigenvalues[j]; |
| } |
| } |
| if (k != i) { |
| realEigenvalues[k] = realEigenvalues[i]; |
| realEigenvalues[i] = p; |
| for (int j = 0; j < n; j++) { |
| p = z[j][i]; |
| z[j][i] = z[j][k]; |
| z[j][k] = p; |
| } |
| } |
| } |
| |
| // Determine the largest eigen value in absolute term. |
| maxAbsoluteValue = 0; |
| for (int i = 0; i < n; i++) { |
| if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) { |
| maxAbsoluteValue=FastMath.abs(realEigenvalues[i]); |
| } |
| } |
| // Make null any eigen value too small to be significant |
| if (maxAbsoluteValue!=0.0) { |
| for (int i=0; i < n; i++) { |
| if (FastMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) { |
| realEigenvalues[i] = 0; |
| } |
| } |
| } |
| eigenvectors = new ArrayRealVector[n]; |
| final double[] tmp = new double[n]; |
| for (int i = 0; i < n; i++) { |
| for (int j = 0; j < n; j++) { |
| tmp[j] = z[j][i]; |
| } |
| eigenvectors[i] = new ArrayRealVector(tmp); |
| } |
| } |
| } |