blob: a9e3f63f1597522d60bbb185740458c80e1d991a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.transform;
import java.io.Serializable;
import org.apache.commons.math.analysis.*;
import org.apache.commons.math.complex.*;
import org.apache.commons.math.MathException;
/**
* Implements the <a href="http://documents.wolfram.com/v5/Add-onsLinks/
* StandardPackages/LinearAlgebra/FourierTrig.html">Fast Cosine Transform</a>
* for transformation of one-dimensional data sets. For reference, see
* <b>Fast Fourier Transforms</b>, ISBN 0849371635, chapter 3.
* <p>
* FCT is its own inverse, up to a multiplier depending on conventions.
* The equations are listed in the comments of the corresponding methods.</p>
* <p>
* Different from FFT and FST, FCT requires the length of data set to be
* power of 2 plus one. Users should especially pay attention to the
* function transformation on how this affects the sampling.</p>
*
* @version $Revision$ $Date$
* @since 1.2
*/
public class FastCosineTransformer implements Serializable {
/** serializable version identifier */
static final long serialVersionUID = -7673941545134707766L;
/**
* Construct a default transformer.
*/
public FastCosineTransformer() {
super();
}
/**
* Transform the given real data set.
* <p>
* The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
* \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
* </p>
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(double f[]) throws MathException,
IllegalArgumentException {
return fct(f);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is $ F_n = (1/2) [f_0 + (-1)^n f_N] +
* \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
* </p>
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform(
UnivariateRealFunction f, double min, double max, int n)
throws MathException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
return fct(data);
}
/**
* Transform the given real data set.
* <p>
* The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
* \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
* </p>
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(double f[]) throws MathException,
IllegalArgumentException {
double scaling_coefficient = Math.sqrt(2.0 / (f.length-1));
return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);
}
/**
* Transform the given real function, sampled on the given interval.
* <p>
* The formula is $ F_n = \sqrt{1/2N} [f_0 + (-1)^n f_N] +
* \sqrt{2/N} \Sigma_{k=0}^{N-1} f_k \cos(\pi nk/N) $
*
* </p>
*
* @param f the function to be sampled and transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] transform2(
UnivariateRealFunction f, double min, double max, int n)
throws MathException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
double scaling_coefficient = Math.sqrt(2.0 / (n-1));
return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
* (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
* </p>
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(double f[]) throws MathException,
IllegalArgumentException {
double scaling_coefficient = 2.0 / (f.length - 1);
return FastFourierTransformer.scaleArray(fct(f), scaling_coefficient);
}
/**
* Inversely transform the given real function, sampled on the given interval.
* <p>
* The formula is $ f_k = (1/N) [F_0 + (-1)^k F_N] +
* (2/N) \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
* </p>
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform(
UnivariateRealFunction f, double min, double max, int n)
throws MathException, IllegalArgumentException {
double data[] = FastFourierTransformer.sample(f, min, max, n);
double scaling_coefficient = 2.0 / (n - 1);
return FastFourierTransformer.scaleArray(fct(data), scaling_coefficient);
}
/**
* Inversely transform the given real data set.
* <p>
* The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
* \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
* </p>
*
* @param f the real data array to be inversely transformed
* @return the real inversely transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(double f[]) throws MathException,
IllegalArgumentException {
return transform2(f);
}
/**
* Inversely transform the given real function, sampled on the given interval.
* <p>
* The formula is $ f_k = \sqrt{1/2N} [F_0 + (-1)^k F_N] +
* \sqrt{2/N} \Sigma_{n=0}^{N-1} F_n \cos(\pi nk/N) $
* </p>
*
* @param f the function to be sampled and inversely transformed
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param n the number of sample points
* @return the real inversely transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
public double[] inversetransform2(
UnivariateRealFunction f, double min, double max, int n)
throws MathException, IllegalArgumentException {
return transform2(f, min, max, n);
}
/**
* Perform the FCT algorithm (including inverse).
*
* @param f the real data array to be transformed
* @return the real transformed array
* @throws MathException if any math-related errors occur
* @throws IllegalArgumentException if any parameters are invalid
*/
protected double[] fct(double f[]) throws MathException,
IllegalArgumentException {
double A, B, C, F1, x[], F[] = new double[f.length];
int N = f.length - 1;
if (!FastFourierTransformer.isPowerOf2(N)) {
throw new IllegalArgumentException
("Number of samples not power of 2 plus one: " + f.length);
}
if (N == 1) { // trivial case
F[0] = 0.5 * (f[0] + f[1]);
F[1] = 0.5 * (f[0] - f[1]);
return F;
}
// construct a new array and perform FFT on it
x = new double[N];
x[0] = 0.5 * (f[0] + f[N]);
x[N >> 1] = f[N >> 1];
F1 = 0.5 * (f[0] - f[N]); // temporary variable for F[1]
for (int i = 1; i < (N >> 1); i++) {
A = 0.5 * (f[i] + f[N-i]);
B = Math.sin(i * Math.PI / N) * (f[i] - f[N-i]);
C = Math.cos(i * Math.PI / N) * (f[i] - f[N-i]);
x[i] = A - B;
x[N-i] = A + B;
F1 += C;
}
FastFourierTransformer transformer = new FastFourierTransformer();
Complex y[] = transformer.transform(x);
// reconstruct the FCT result for the original array
F[0] = y[0].getReal();
F[1] = F1;
for (int i = 1; i < (N >> 1); i++) {
F[2*i] = y[i].getReal();
F[2*i+1] = F[2*i-1] - y[i].getImaginary();
}
F[N] = y[N >> 1].getReal();
return F;
}
}