blob: 6784e23bab4e75d90f380d6fc91ad3396302dac3 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math.analysis;
import org.apache.commons.math.FunctionEvaluationException;
import org.apache.commons.math.MaxIterationsExceededException;
import org.apache.commons.math.util.MathUtils;
/**
* Implements the <a href="http://mathworld.wolfram.com/MullersMethod.html">
* Muller's Method</a> for root finding of real univariate functions. For
* reference, see <b>Elementary Numerical Analysis</b>, ISBN 0070124477,
* chapter 3.
* <p>
* Muller's method applies to both real and complex functions, but here we
* restrict ourselves to real functions. Methods solve() and solve2() find
* real zeros, using different ways to bypass complex arithmetics.</p>
*
* @version $Revision$ $Date$
* @since 1.2
*/
public class MullerSolver extends UnivariateRealSolverImpl {
/** serializable version identifier */
private static final long serialVersionUID = 6552227503458976920L;
/**
* Construct a solver for the given function.
*
* @param f function to solve
*/
public MullerSolver(UnivariateRealFunction f) {
super(f, 100, 1E-6);
}
/**
* Find a real root in the given interval with initial value.
* <p>
* Requires bracketing condition.</p>
*
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @param initial the start value to use
* @return the point at which the function value is zero
* @throws MaxIterationsExceededException if the maximum iteration count is exceeded
* or the solver detects convergence problems otherwise
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if any parameters are invalid
*/
public double solve(double min, double max, double initial) throws
MaxIterationsExceededException, FunctionEvaluationException {
// check for zeros before verifying bracketing
if (f.value(min) == 0.0) { return min; }
if (f.value(max) == 0.0) { return max; }
if (f.value(initial) == 0.0) { return initial; }
verifyBracketing(min, max, f);
verifySequence(min, initial, max);
if (isBracketing(min, initial, f)) {
return solve(min, initial);
} else {
return solve(initial, max);
}
}
/**
* Find a real root in the given interval.
* <p>
* Original Muller's method would have function evaluation at complex point.
* Since our f(x) is real, we have to find ways to avoid that. Bracketing
* condition is one way to go: by requiring bracketing in every iteration,
* the newly computed approximation is guaranteed to be real.</p>
* <p>
* Normally Muller's method converges quadratically in the vicinity of a
* zero, however it may be very slow in regions far away from zeros. For
* example, f(x) = exp(x) - 1, min = -50, max = 100. In such case we use
* bisection as a safety backup if it performs very poorly.</p>
* <p>
* The formulas here use divided differences directly.</p>
*
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @return the point at which the function value is zero
* @throws MaxIterationsExceededException if the maximum iteration count is exceeded
* or the solver detects convergence problems otherwise
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if any parameters are invalid
*/
public double solve(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException {
// [x0, x2] is the bracketing interval in each iteration
// x1 is the last approximation and an interpolation point in (x0, x2)
// x is the new root approximation and new x1 for next round
// d01, d12, d012 are divided differences
double x0, x1, x2, x, oldx, y0, y1, y2, y;
double d01, d12, d012, c1, delta, xplus, xminus, tolerance;
x0 = min; y0 = f.value(x0);
x2 = max; y2 = f.value(x2);
x1 = 0.5 * (x0 + x2); y1 = f.value(x1);
// check for zeros before verifying bracketing
if (y0 == 0.0) { return min; }
if (y2 == 0.0) { return max; }
verifyBracketing(min, max, f);
int i = 1;
oldx = Double.POSITIVE_INFINITY;
while (i <= maximalIterationCount) {
// Muller's method employs quadratic interpolation through
// x0, x1, x2 and x is the zero of the interpolating parabola.
// Due to bracketing condition, this parabola must have two
// real roots and we choose one in [x0, x2] to be x.
d01 = (y1 - y0) / (x1 - x0);
d12 = (y2 - y1) / (x2 - x1);
d012 = (d12 - d01) / (x2 - x0);
c1 = d01 + (x1 - x0) * d012;
delta = c1 * c1 - 4 * y1 * d012;
xplus = x1 + (-2.0 * y1) / (c1 + Math.sqrt(delta));
xminus = x1 + (-2.0 * y1) / (c1 - Math.sqrt(delta));
// xplus and xminus are two roots of parabola and at least
// one of them should lie in (x0, x2)
x = isSequence(x0, xplus, x2) ? xplus : xminus;
y = f.value(x);
// check for convergence
tolerance = Math.max(relativeAccuracy * Math.abs(x), absoluteAccuracy);
if (Math.abs(x - oldx) <= tolerance) {
setResult(x, i);
return result;
}
if (Math.abs(y) <= functionValueAccuracy) {
setResult(x, i);
return result;
}
// Bisect if convergence is too slow. Bisection would waste
// our calculation of x, hopefully it won't happen often.
// the real number equality test x == x1 is intentional and
// completes the proximity tests above it
boolean bisect = (x < x1 && (x1 - x0) > 0.95 * (x2 - x0)) ||
(x > x1 && (x2 - x1) > 0.95 * (x2 - x0)) ||
(x == x1);
// prepare the new bracketing interval for next iteration
if (!bisect) {
x0 = x < x1 ? x0 : x1;
y0 = x < x1 ? y0 : y1;
x2 = x > x1 ? x2 : x1;
y2 = x > x1 ? y2 : y1;
x1 = x; y1 = y;
oldx = x;
} else {
double xm = 0.5 * (x0 + x2);
double ym = f.value(xm);
if (MathUtils.sign(y0) + MathUtils.sign(ym) == 0.0) {
x2 = xm; y2 = ym;
} else {
x0 = xm; y0 = ym;
}
x1 = 0.5 * (x0 + x2);
y1 = f.value(x1);
oldx = Double.POSITIVE_INFINITY;
}
i++;
}
throw new MaxIterationsExceededException(maximalIterationCount);
}
/**
* Find a real root in the given interval.
* <p>
* solve2() differs from solve() in the way it avoids complex operations.
* Except for the initial [min, max], solve2() does not require bracketing
* condition, e.g. f(x0), f(x1), f(x2) can have the same sign. If complex
* number arises in the computation, we simply use its modulus as real
* approximation.</p>
* <p>
* Because the interval may not be bracketing, bisection alternative is
* not applicable here. However in practice our treatment usually works
* well, especially near real zeros where the imaginary part of complex
* approximation is often negligible.</p>
* <p>
* The formulas here do not use divided differences directly.</p>
*
* @param min the lower bound for the interval
* @param max the upper bound for the interval
* @return the point at which the function value is zero
* @throws MaxIterationsExceededException if the maximum iteration count is exceeded
* or the solver detects convergence problems otherwise
* @throws FunctionEvaluationException if an error occurs evaluating the
* function
* @throws IllegalArgumentException if any parameters are invalid
*/
public double solve2(double min, double max) throws MaxIterationsExceededException,
FunctionEvaluationException {
// x2 is the last root approximation
// x is the new approximation and new x2 for next round
// x0 < x1 < x2 does not hold here
double x0, x1, x2, x, oldx, y0, y1, y2, y;
double q, A, B, C, delta, denominator, tolerance;
x0 = min; y0 = f.value(x0);
x1 = max; y1 = f.value(x1);
x2 = 0.5 * (x0 + x1); y2 = f.value(x2);
// check for zeros before verifying bracketing
if (y0 == 0.0) { return min; }
if (y1 == 0.0) { return max; }
verifyBracketing(min, max, f);
int i = 1;
oldx = Double.POSITIVE_INFINITY;
while (i <= maximalIterationCount) {
// quadratic interpolation through x0, x1, x2
q = (x2 - x1) / (x1 - x0);
A = q * (y2 - (1 + q) * y1 + q * y0);
B = (2*q + 1) * y2 - (1 + q) * (1 + q) * y1 + q * q * y0;
C = (1 + q) * y2;
delta = B * B - 4 * A * C;
if (delta >= 0.0) {
// choose a denominator larger in magnitude
double dplus = B + Math.sqrt(delta);
double dminus = B - Math.sqrt(delta);
denominator = Math.abs(dplus) > Math.abs(dminus) ? dplus : dminus;
} else {
// take the modulus of (B +/- Math.sqrt(delta))
denominator = Math.sqrt(B * B - delta);
}
if (denominator != 0) {
x = x2 - 2.0 * C * (x2 - x1) / denominator;
// perturb x if it exactly coincides with x1 or x2
// the equality tests here are intentional
while (x == x1 || x == x2) {
x += absoluteAccuracy;
}
} else {
// extremely rare case, get a random number to skip it
x = min + Math.random() * (max - min);
oldx = Double.POSITIVE_INFINITY;
}
y = f.value(x);
// check for convergence
tolerance = Math.max(relativeAccuracy * Math.abs(x), absoluteAccuracy);
if (Math.abs(x - oldx) <= tolerance) {
setResult(x, i);
return result;
}
if (Math.abs(y) <= functionValueAccuracy) {
setResult(x, i);
return result;
}
// prepare the next iteration
x0 = x1; y0 = y1;
x1 = x2; y1 = y2;
x2 = x; y2 = y;
oldx = x;
i++;
}
throw new MaxIterationsExceededException(maximalIterationCount);
}
}