| /* |
| * Licensed to the Apache Software Foundation (ASF) under one or more |
| * contributor license agreements. See the NOTICE file distributed with |
| * this work for additional information regarding copyright ownership. |
| * The ASF licenses this file to You under the Apache License, Version 2.0 |
| * (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| package org.apache.commons.math3.util; |
| |
| import java.util.List; |
| import java.util.ArrayList; |
| import java.util.Comparator; |
| import java.util.Collections; |
| |
| import org.apache.commons.math3.exception.DimensionMismatchException; |
| import org.apache.commons.math3.exception.MathInternalError; |
| import org.apache.commons.math3.exception.NonMonotonicSequenceException; |
| import org.apache.commons.math3.exception.NullArgumentException; |
| import org.apache.commons.math3.exception.MathIllegalArgumentException; |
| import org.apache.commons.math3.exception.util.LocalizedFormats; |
| import org.apache.commons.math3.exception.MathArithmeticException; |
| |
| /** |
| * Arrays utilities. |
| * |
| * @since 3.0 |
| * @version $Id$ |
| */ |
| public class MathArrays { |
| /** Factor used for splitting double numbers: n = 2^27 + 1 (i.e. {@value}). */ |
| private static final int SPLIT_FACTOR = 0x8000001; |
| |
| /** |
| * Private constructor. |
| */ |
| private MathArrays() {} |
| |
| /** |
| * Calculates the L<sub>1</sub> (sum of abs) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>1</sub> distance between the two points |
| */ |
| public static double distance1(double[] p1, double[] p2) { |
| double sum = 0; |
| for (int i = 0; i < p1.length; i++) { |
| sum += FastMath.abs(p1[i] - p2[i]); |
| } |
| return sum; |
| } |
| |
| /** |
| * Calculates the L<sub>1</sub> (sum of abs) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>1</sub> distance between the two points |
| */ |
| public static int distance1(int[] p1, int[] p2) { |
| int sum = 0; |
| for (int i = 0; i < p1.length; i++) { |
| sum += FastMath.abs(p1[i] - p2[i]); |
| } |
| return sum; |
| } |
| |
| /** |
| * Calculates the L<sub>2</sub> (Euclidean) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>2</sub> distance between the two points |
| */ |
| public static double distance(double[] p1, double[] p2) { |
| double sum = 0; |
| for (int i = 0; i < p1.length; i++) { |
| final double dp = p1[i] - p2[i]; |
| sum += dp * dp; |
| } |
| return FastMath.sqrt(sum); |
| } |
| |
| /** |
| * Calculates the L<sub>2</sub> (Euclidean) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>2</sub> distance between the two points |
| */ |
| public static double distance(int[] p1, int[] p2) { |
| double sum = 0; |
| for (int i = 0; i < p1.length; i++) { |
| final double dp = p1[i] - p2[i]; |
| sum += dp * dp; |
| } |
| return FastMath.sqrt(sum); |
| } |
| |
| /** |
| * Calculates the L<sub>∞</sub> (max of abs) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>∞</sub> distance between the two points |
| */ |
| public static double distanceInf(double[] p1, double[] p2) { |
| double max = 0; |
| for (int i = 0; i < p1.length; i++) { |
| max = FastMath.max(max, FastMath.abs(p1[i] - p2[i])); |
| } |
| return max; |
| } |
| |
| /** |
| * Calculates the L<sub>∞</sub> (max of abs) distance between two points. |
| * |
| * @param p1 the first point |
| * @param p2 the second point |
| * @return the L<sub>∞</sub> distance between the two points |
| */ |
| public static int distanceInf(int[] p1, int[] p2) { |
| int max = 0; |
| for (int i = 0; i < p1.length; i++) { |
| max = FastMath.max(max, FastMath.abs(p1[i] - p2[i])); |
| } |
| return max; |
| } |
| |
| /** |
| * Specification of ordering direction. |
| */ |
| public static enum OrderDirection { |
| /** Constant for increasing direction. */ |
| INCREASING, |
| /** Constant for decreasing direction. */ |
| DECREASING |
| } |
| |
| /** |
| * Check that an array is monotonically increasing or decreasing. |
| * |
| * @param val Values. |
| * @param dir Ordering direction. |
| * @param strict Whether the order should be strict. |
| * @return {@code true} if sorted, {@code false} otherwise. |
| */ |
| public static boolean isMonotonic(Comparable[] val, |
| OrderDirection dir, |
| boolean strict) { |
| Comparable previous = val[0]; |
| final int max = val.length; |
| for (int i = 1; i < max; i++) { |
| final int comp; |
| switch (dir) { |
| case INCREASING: |
| comp = previous.compareTo(val[i]); |
| if (strict) { |
| if (comp >= 0) { |
| return false; |
| } |
| } else { |
| if (comp > 0) { |
| return false; |
| } |
| } |
| break; |
| case DECREASING: |
| comp = val[i].compareTo(previous); |
| if (strict) { |
| if (comp >= 0) { |
| return false; |
| } |
| } else { |
| if (comp > 0) { |
| return false; |
| } |
| } |
| break; |
| default: |
| // Should never happen. |
| throw new MathInternalError(); |
| } |
| |
| previous = val[i]; |
| } |
| return true; |
| } |
| |
| /** |
| * Check that an array is monotonically increasing or decreasing. |
| * |
| * @param val Values. |
| * @param dir Ordering direction. |
| * @param strict Whether the order should be strict. |
| * @return {@code true} if sorted, {@code false} otherwise. |
| */ |
| public static boolean isMonotonic(double[] val, |
| OrderDirection dir, |
| boolean strict) { |
| return checkOrder(val, dir, strict, false); |
| } |
| |
| /** |
| * Check that the given array is sorted. |
| * |
| * @param val Values. |
| * @param dir Ordering direction. |
| * @param strict Whether the order should be strict. |
| * @param abort Whether to throw an exception if the check fails. |
| * @return {@code true} if the array is sorted. |
| * @throws NonMonotonicSequenceException if the array is not sorted |
| * and {@code abort} is {@code true}. |
| */ |
| public static boolean checkOrder(double[] val, OrderDirection dir, |
| boolean strict, boolean abort) { |
| double previous = val[0]; |
| final int max = val.length; |
| |
| int index; |
| ITEM: |
| for (index = 1; index < max; index++) { |
| switch (dir) { |
| case INCREASING: |
| if (strict) { |
| if (val[index] <= previous) { |
| break ITEM; |
| } |
| } else { |
| if (val[index] < previous) { |
| break ITEM; |
| } |
| } |
| break; |
| case DECREASING: |
| if (strict) { |
| if (val[index] >= previous) { |
| break ITEM; |
| } |
| } else { |
| if (val[index] > previous) { |
| break ITEM; |
| } |
| } |
| break; |
| default: |
| // Should never happen. |
| throw new MathInternalError(); |
| } |
| |
| previous = val[index]; |
| } |
| |
| if (index == max) { |
| // Loop completed. |
| return true; |
| } |
| |
| // Loop early exit means wrong ordering. |
| if (abort) { |
| throw new NonMonotonicSequenceException(val[index], previous, index, dir, strict); |
| } else { |
| return false; |
| } |
| } |
| |
| /** |
| * Check that the given array is sorted. |
| * |
| * @param val Values. |
| * @param dir Ordering direction. |
| * @param strict Whether the order should be strict. |
| * @throws NonMonotonicSequenceException if the array is not sorted. |
| * @since 2.2 |
| */ |
| public static void checkOrder(double[] val, OrderDirection dir, |
| boolean strict) { |
| checkOrder(val, dir, strict, true); |
| } |
| |
| /** |
| * Check that the given array is sorted in strictly increasing order. |
| * |
| * @param val Values. |
| * @throws NonMonotonicSequenceException if the array is not sorted. |
| * @since 2.2 |
| */ |
| public static void checkOrder(double[] val) { |
| checkOrder(val, OrderDirection.INCREASING, true); |
| } |
| |
| /** |
| * Returns the Cartesian norm (2-norm), handling both overflow and underflow. |
| * Translation of the minpack enorm subroutine. |
| * |
| * The redistribution policy for MINPACK is available |
| * <a href="http://www.netlib.org/minpack/disclaimer">here</a>, for |
| * convenience, it is reproduced below.</p> |
| * |
| * <table border="0" width="80%" cellpadding="10" align="center" bgcolor="#E0E0E0"> |
| * <tr><td> |
| * Minpack Copyright Notice (1999) University of Chicago. |
| * All rights reserved |
| * </td></tr> |
| * <tr><td> |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * <ol> |
| * <li>Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer.</li> |
| * <li>Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution.</li> |
| * <li>The end-user documentation included with the redistribution, if any, |
| * must include the following acknowledgment: |
| * {@code This product includes software developed by the University of |
| * Chicago, as Operator of Argonne National Laboratory.} |
| * Alternately, this acknowledgment may appear in the software itself, |
| * if and wherever such third-party acknowledgments normally appear.</li> |
| * <li><strong>WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS" |
| * WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE |
| * UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND |
| * THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES |
| * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE |
| * OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY |
| * OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR |
| * USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF |
| * THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4) |
| * DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION |
| * UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL |
| * BE CORRECTED.</strong></li> |
| * <li><strong>LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT |
| * HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF |
| * ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT, |
| * INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF |
| * ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF |
| * PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER |
| * SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT |
| * (INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE, |
| * EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE |
| * POSSIBILITY OF SUCH LOSS OR DAMAGES.</strong></li> |
| * <ol></td></tr> |
| * </table> |
| * |
| * @param v Vector of doubles. |
| * @return the 2-norm of the vector. |
| * @since 2.2 |
| */ |
| public static double safeNorm(double[] v) { |
| double rdwarf = 3.834e-20; |
| double rgiant = 1.304e+19; |
| double s1 = 0; |
| double s2 = 0; |
| double s3 = 0; |
| double x1max = 0; |
| double x3max = 0; |
| double floatn = v.length; |
| double agiant = rgiant / floatn; |
| for (int i = 0; i < v.length; i++) { |
| double xabs = Math.abs(v[i]); |
| if (xabs < rdwarf || xabs > agiant) { |
| if (xabs > rdwarf) { |
| if (xabs > x1max) { |
| double r = x1max / xabs; |
| s1= 1 + s1 * r * r; |
| x1max = xabs; |
| } else { |
| double r = xabs / x1max; |
| s1 += r * r; |
| } |
| } else { |
| if (xabs > x3max) { |
| double r = x3max / xabs; |
| s3= 1 + s3 * r * r; |
| x3max = xabs; |
| } else { |
| if (xabs != 0) { |
| double r = xabs / x3max; |
| s3 += r * r; |
| } |
| } |
| } |
| } else { |
| s2 += xabs * xabs; |
| } |
| } |
| double norm; |
| if (s1 != 0) { |
| norm = x1max * Math.sqrt(s1 + (s2 / x1max) / x1max); |
| } else { |
| if (s2 == 0) { |
| norm = x3max * Math.sqrt(s3); |
| } else { |
| if (s2 >= x3max) { |
| norm = Math.sqrt(s2 * (1 + (x3max / s2) * (x3max * s3))); |
| } else { |
| norm = Math.sqrt(x3max * ((s2 / x3max) + (x3max * s3))); |
| } |
| } |
| } |
| return norm; |
| } |
| |
| /** |
| * Sort an array in ascending order in place and perform the same reordering |
| * of entries on other arrays. For example, if |
| * {@code x = [3, 1, 2], y = [1, 2, 3]} and {@code z = [0, 5, 7]}, then |
| * {@code sortInPlace(x, y, z)} will update {@code x} to {@code [1, 2, 3]}, |
| * {@code y} to {@code [2, 3, 1]} and {@code z} to {@code [5, 7, 0]}. |
| * |
| * @param x Array to be sorted and used as a pattern for permutation |
| * of the other arrays. |
| * @param yList Set of arrays whose permutations of entries will follow |
| * those performed on {@code x}. |
| * @throws DimensionMismatchException if any {@code y} is not the same |
| * size as {@code x}. |
| * @throws NullArgumentException if {@code x} or any {@code y} is null. |
| * @since 3.0 |
| */ |
| public static void sortInPlace(double[] x, |
| double[] ... yList) { |
| sortInPlace(x, OrderDirection.INCREASING, yList); |
| } |
| |
| /** |
| * Sort an array in place and perform the same reordering of entries on |
| * other arrays. This method works the same as the other |
| * {@link #sortInPlace(double[], double[][]) sortInPlace} method, but |
| * allows the order of the sort to be provided in the {@code dir} |
| * parameter. |
| * |
| * @param x Array to be sorted and used as a pattern for permutation |
| * of the other arrays. |
| * @param dir Order direction. |
| * @param yList Set of arrays whose permutations of entries will follow |
| * those performed on {@code x}. |
| * @throws DimensionMismatchException if any {@code y} is not the same |
| * size as {@code x}. |
| * @throws NullArgumentException if {@code x} or any {@code y} is null |
| * @since 3.0 |
| */ |
| public static void sortInPlace(double[] x, |
| final OrderDirection dir, |
| double[] ... yList) { |
| if (x == null) { |
| throw new NullArgumentException(); |
| } |
| |
| final int len = x.length; |
| final List<Pair<Double, double[]>> list |
| = new ArrayList<Pair<Double, double[]>>(len); |
| |
| final int yListLen = yList.length; |
| for (int i = 0; i < len; i++) { |
| final double[] yValues = new double[yListLen]; |
| for (int j = 0; j < yListLen; j++) { |
| double[] y = yList[j]; |
| if (y == null) { |
| throw new NullArgumentException(); |
| } |
| if (y.length != len) { |
| throw new DimensionMismatchException(y.length, len); |
| } |
| yValues[j] = y[i]; |
| } |
| list.add(new Pair<Double, double[]>(x[i], yValues)); |
| } |
| |
| final Comparator<Pair<Double, double[]>> comp |
| = new Comparator<Pair<Double, double[]>>() { |
| public int compare(Pair<Double, double[]> o1, |
| Pair<Double, double[]> o2) { |
| int val; |
| switch (dir) { |
| case INCREASING: |
| val = o1.getKey().compareTo(o2.getKey()); |
| break; |
| case DECREASING: |
| val = o2.getKey().compareTo(o1.getKey()); |
| break; |
| default: |
| // Should never happen. |
| throw new MathInternalError(); |
| } |
| return val; |
| } |
| }; |
| |
| Collections.sort(list, comp); |
| |
| for (int i = 0; i < len; i++) { |
| final Pair<Double, double[]> e = list.get(i); |
| x[i] = e.getKey(); |
| final double[] yValues = e.getValue(); |
| for (int j = 0; j < yListLen; j++) { |
| yList[j][i] = yValues[j]; |
| } |
| } |
| } |
| |
| /** |
| * Creates a copy of the {@code source} array. |
| * |
| * @param source Array to be copied. |
| * @return the copied array. |
| */ |
| public static int[] copyOf(int[] source) { |
| return copyOf(source, source.length); |
| } |
| |
| /** |
| * Creates a copy of the {@code source} array. |
| * |
| * @param source Array to be copied. |
| * @return the copied array. |
| */ |
| public static double[] copyOf(double[] source) { |
| return copyOf(source, source.length); |
| } |
| |
| /** |
| * Creates a copy of the {@code source} array. |
| * |
| * @param source Array to be copied. |
| * @param len Number of entries to copy. If smaller then the source |
| * length, the copy will be truncated, if larger it will padded with |
| * zeroes. |
| * @return the copied array. |
| */ |
| public static int[] copyOf(int[] source, int len) { |
| final int[] output = new int[len]; |
| System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length)); |
| return output; |
| } |
| |
| /** |
| * Creates a copy of the {@code source} array. |
| * |
| * @param source Array to be copied. |
| * @param len Number of entries to copy. If smaller then the source |
| * length, the copy will be truncated, if larger it will padded with |
| * zeroes. |
| * @return the copied array. |
| */ |
| public static double[] copyOf(double[] source, int len) { |
| final double[] output = new double[len]; |
| System.arraycopy(source, 0, output, 0, FastMath.min(len, source.length)); |
| return output; |
| } |
| |
| /** |
| * Compute a linear combination accurately. |
| * This method computes the sum of the products |
| * <code>a<sub>i</sub> b<sub>i</sub></code> to high accuracy. |
| * It does so by using specific multiplication and addition algorithms to |
| * preserve accuracy and reduce cancellation effects. |
| * <br/> |
| * It is based on the 2005 paper |
| * <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547"> |
| * Accurate Sum and Dot Product</a> by Takeshi Ogita, Siegfried M. Rump, |
| * and Shin'ichi Oishi published in SIAM J. Sci. Comput. |
| * |
| * @param a Factors. |
| * @param b Factors. |
| * @return <code>Σ<sub>i</sub> a<sub>i</sub> b<sub>i</sub></code>. |
| */ |
| public static double linearCombination(final double[] a, final double[] b) { |
| final int len = a.length; |
| if (len != b.length) { |
| throw new DimensionMismatchException(len, b.length); |
| } |
| |
| final double[] prodHigh = new double[len]; |
| double prodLowSum = 0; |
| |
| for (int i = 0; i < len; i++) { |
| final double ai = a[i]; |
| final double ca = SPLIT_FACTOR * ai; |
| final double aHigh = ca - (ca - ai); |
| final double aLow = ai - aHigh; |
| |
| final double bi = b[i]; |
| final double cb = SPLIT_FACTOR * bi; |
| final double bHigh = cb - (cb - bi); |
| final double bLow = bi - bHigh; |
| prodHigh[i] = ai * bi; |
| final double prodLow = aLow * bLow - (((prodHigh[i] - |
| aHigh * bHigh) - |
| aLow * bHigh) - |
| aHigh * bLow); |
| prodLowSum += prodLow; |
| } |
| |
| |
| final double prodHighCur = prodHigh[0]; |
| double prodHighNext = prodHigh[1]; |
| double sHighPrev = prodHighCur + prodHighNext; |
| double sPrime = sHighPrev - prodHighNext; |
| double sLowSum = (prodHighNext - (sHighPrev - sPrime)) + (prodHighCur - sPrime); |
| |
| final int lenMinusOne = len - 1; |
| for (int i = 1; i < lenMinusOne; i++) { |
| prodHighNext = prodHigh[i + 1]; |
| final double sHighCur = sHighPrev + prodHighNext; |
| sPrime = sHighCur - prodHighNext; |
| sLowSum += (prodHighNext - (sHighCur - sPrime)) + (sHighPrev - sPrime); |
| sHighPrev = sHighCur; |
| } |
| |
| double result = sHighPrev + (prodLowSum + sLowSum); |
| |
| if (Double.isNaN(result)) { |
| // either we have split infinite numbers or some coefficients were NaNs, |
| // just rely on the naive implementation and let IEEE754 handle this |
| result = 0; |
| for (int i = 0; i < len; ++i) { |
| result += a[i] * b[i]; |
| } |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Compute a linear combination accurately. |
| * <p> |
| * This method computes a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> to high accuracy. It does |
| * so by using specific multiplication and addition algorithms to |
| * preserve accuracy and reduce cancellation effects. It is based |
| * on the 2005 paper <a |
| * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547"> |
| * Accurate Sum and Dot Product</a> by Takeshi Ogita, |
| * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput. |
| * </p> |
| * @param a1 first factor of the first term |
| * @param b1 second factor of the first term |
| * @param a2 first factor of the second term |
| * @param b2 second factor of the second term |
| * @return a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> |
| * @see #linearCombination(double, double, double, double, double, double) |
| * @see #linearCombination(double, double, double, double, double, double, double, double) |
| */ |
| public static double linearCombination(final double a1, final double b1, |
| final double a2, final double b2) { |
| |
| // the code below is split in many additions/subtractions that may |
| // appear redundant. However, they should NOT be simplified, as they |
| // use IEEE754 floating point arithmetic rounding properties. |
| // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1" |
| // The variable naming conventions are that xyzHigh contains the most significant |
| // bits of xyz and xyzLow contains its least significant bits. So theoretically |
| // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot |
| // be represented in only one double precision number so we preserve two numbers |
| // to hold it as long as we can, combining the high and low order bits together |
| // only at the end, after cancellation may have occurred on high order bits |
| |
| // split a1 and b1 as two 26 bits numbers |
| final double ca1 = SPLIT_FACTOR * a1; |
| final double a1High = ca1 - (ca1 - a1); |
| final double a1Low = a1 - a1High; |
| final double cb1 = SPLIT_FACTOR * b1; |
| final double b1High = cb1 - (cb1 - b1); |
| final double b1Low = b1 - b1High; |
| |
| // accurate multiplication a1 * b1 |
| final double prod1High = a1 * b1; |
| final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low); |
| |
| // split a2 and b2 as two 26 bits numbers |
| final double ca2 = SPLIT_FACTOR * a2; |
| final double a2High = ca2 - (ca2 - a2); |
| final double a2Low = a2 - a2High; |
| final double cb2 = SPLIT_FACTOR * b2; |
| final double b2High = cb2 - (cb2 - b2); |
| final double b2Low = b2 - b2High; |
| |
| // accurate multiplication a2 * b2 |
| final double prod2High = a2 * b2; |
| final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low); |
| |
| // accurate addition a1 * b1 + a2 * b2 |
| final double s12High = prod1High + prod2High; |
| final double s12Prime = s12High - prod2High; |
| final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime); |
| |
| // final rounding, s12 may have suffered many cancellations, we try |
| // to recover some bits from the extra words we have saved up to now |
| double result = s12High + (prod1Low + prod2Low + s12Low); |
| |
| if (Double.isNaN(result)) { |
| // either we have split infinite numbers or some coefficients were NaNs, |
| // just rely on the naive implementation and let IEEE754 handle this |
| result = a1 * b1 + a2 * b2; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Compute a linear combination accurately. |
| * <p> |
| * This method computes a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> + a<sub>3</sub>×b<sub>3</sub> |
| * to high accuracy. It does so by using specific multiplication and |
| * addition algorithms to preserve accuracy and reduce cancellation effects. |
| * It is based on the 2005 paper <a |
| * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547"> |
| * Accurate Sum and Dot Product</a> by Takeshi Ogita, |
| * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput. |
| * </p> |
| * @param a1 first factor of the first term |
| * @param b1 second factor of the first term |
| * @param a2 first factor of the second term |
| * @param b2 second factor of the second term |
| * @param a3 first factor of the third term |
| * @param b3 second factor of the third term |
| * @return a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> + a<sub>3</sub>×b<sub>3</sub> |
| * @see #linearCombination(double, double, double, double) |
| * @see #linearCombination(double, double, double, double, double, double, double, double) |
| */ |
| public static double linearCombination(final double a1, final double b1, |
| final double a2, final double b2, |
| final double a3, final double b3) { |
| |
| // the code below is split in many additions/subtractions that may |
| // appear redundant. However, they should NOT be simplified, as they |
| // do use IEEE754 floating point arithmetic rounding properties. |
| // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1" |
| // The variables naming conventions are that xyzHigh contains the most significant |
| // bits of xyz and xyzLow contains its least significant bits. So theoretically |
| // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot |
| // be represented in only one double precision number so we preserve two numbers |
| // to hold it as long as we can, combining the high and low order bits together |
| // only at the end, after cancellation may have occurred on high order bits |
| |
| // split a1 and b1 as two 26 bits numbers |
| final double ca1 = SPLIT_FACTOR * a1; |
| final double a1High = ca1 - (ca1 - a1); |
| final double a1Low = a1 - a1High; |
| final double cb1 = SPLIT_FACTOR * b1; |
| final double b1High = cb1 - (cb1 - b1); |
| final double b1Low = b1 - b1High; |
| |
| // accurate multiplication a1 * b1 |
| final double prod1High = a1 * b1; |
| final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low); |
| |
| // split a2 and b2 as two 26 bits numbers |
| final double ca2 = SPLIT_FACTOR * a2; |
| final double a2High = ca2 - (ca2 - a2); |
| final double a2Low = a2 - a2High; |
| final double cb2 = SPLIT_FACTOR * b2; |
| final double b2High = cb2 - (cb2 - b2); |
| final double b2Low = b2 - b2High; |
| |
| // accurate multiplication a2 * b2 |
| final double prod2High = a2 * b2; |
| final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low); |
| |
| // split a3 and b3 as two 26 bits numbers |
| final double ca3 = SPLIT_FACTOR * a3; |
| final double a3High = ca3 - (ca3 - a3); |
| final double a3Low = a3 - a3High; |
| final double cb3 = SPLIT_FACTOR * b3; |
| final double b3High = cb3 - (cb3 - b3); |
| final double b3Low = b3 - b3High; |
| |
| // accurate multiplication a3 * b3 |
| final double prod3High = a3 * b3; |
| final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low); |
| |
| // accurate addition a1 * b1 + a2 * b2 |
| final double s12High = prod1High + prod2High; |
| final double s12Prime = s12High - prod2High; |
| final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime); |
| |
| // accurate addition a1 * b1 + a2 * b2 + a3 * b3 |
| final double s123High = s12High + prod3High; |
| final double s123Prime = s123High - prod3High; |
| final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime); |
| |
| // final rounding, s123 may have suffered many cancellations, we try |
| // to recover some bits from the extra words we have saved up to now |
| double result = s123High + (prod1Low + prod2Low + prod3Low + s12Low + s123Low); |
| |
| if (Double.isNaN(result)) { |
| // either we have split infinite numbers or some coefficients were NaNs, |
| // just rely on the naive implementation and let IEEE754 handle this |
| result = a1 * b1 + a2 * b2 + a3 * b3; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Compute a linear combination accurately. |
| * <p> |
| * This method computes a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> + a<sub>3</sub>×b<sub>3</sub> + |
| * a<sub>4</sub>×b<sub>4</sub> |
| * to high accuracy. It does so by using specific multiplication and |
| * addition algorithms to preserve accuracy and reduce cancellation effects. |
| * It is based on the 2005 paper <a |
| * href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1547"> |
| * Accurate Sum and Dot Product</a> by Takeshi Ogita, |
| * Siegfried M. Rump, and Shin'ichi Oishi published in SIAM J. Sci. Comput. |
| * </p> |
| * @param a1 first factor of the first term |
| * @param b1 second factor of the first term |
| * @param a2 first factor of the second term |
| * @param b2 second factor of the second term |
| * @param a3 first factor of the third term |
| * @param b3 second factor of the third term |
| * @param a4 first factor of the third term |
| * @param b4 second factor of the third term |
| * @return a<sub>1</sub>×b<sub>1</sub> + |
| * a<sub>2</sub>×b<sub>2</sub> + a<sub>3</sub>×b<sub>3</sub> + |
| * a<sub>4</sub>×b<sub>4</sub> |
| * @see #linearCombination(double, double, double, double) |
| * @see #linearCombination(double, double, double, double, double, double) |
| */ |
| public static double linearCombination(final double a1, final double b1, |
| final double a2, final double b2, |
| final double a3, final double b3, |
| final double a4, final double b4) { |
| |
| // the code below is split in many additions/subtractions that may |
| // appear redundant. However, they should NOT be simplified, as they |
| // do use IEEE754 floating point arithmetic rounding properties. |
| // as an example, the expression "ca1 - (ca1 - a1)" is NOT the same as "a1" |
| // The variables naming conventions are that xyzHigh contains the most significant |
| // bits of xyz and xyzLow contains its least significant bits. So theoretically |
| // xyz is the sum xyzHigh + xyzLow, but in many cases below, this sum cannot |
| // be represented in only one double precision number so we preserve two numbers |
| // to hold it as long as we can, combining the high and low order bits together |
| // only at the end, after cancellation may have occurred on high order bits |
| |
| // split a1 and b1 as two 26 bits numbers |
| final double ca1 = SPLIT_FACTOR * a1; |
| final double a1High = ca1 - (ca1 - a1); |
| final double a1Low = a1 - a1High; |
| final double cb1 = SPLIT_FACTOR * b1; |
| final double b1High = cb1 - (cb1 - b1); |
| final double b1Low = b1 - b1High; |
| |
| // accurate multiplication a1 * b1 |
| final double prod1High = a1 * b1; |
| final double prod1Low = a1Low * b1Low - (((prod1High - a1High * b1High) - a1Low * b1High) - a1High * b1Low); |
| |
| // split a2 and b2 as two 26 bits numbers |
| final double ca2 = SPLIT_FACTOR * a2; |
| final double a2High = ca2 - (ca2 - a2); |
| final double a2Low = a2 - a2High; |
| final double cb2 = SPLIT_FACTOR * b2; |
| final double b2High = cb2 - (cb2 - b2); |
| final double b2Low = b2 - b2High; |
| |
| // accurate multiplication a2 * b2 |
| final double prod2High = a2 * b2; |
| final double prod2Low = a2Low * b2Low - (((prod2High - a2High * b2High) - a2Low * b2High) - a2High * b2Low); |
| |
| // split a3 and b3 as two 26 bits numbers |
| final double ca3 = SPLIT_FACTOR * a3; |
| final double a3High = ca3 - (ca3 - a3); |
| final double a3Low = a3 - a3High; |
| final double cb3 = SPLIT_FACTOR * b3; |
| final double b3High = cb3 - (cb3 - b3); |
| final double b3Low = b3 - b3High; |
| |
| // accurate multiplication a3 * b3 |
| final double prod3High = a3 * b3; |
| final double prod3Low = a3Low * b3Low - (((prod3High - a3High * b3High) - a3Low * b3High) - a3High * b3Low); |
| |
| // split a4 and b4 as two 26 bits numbers |
| final double ca4 = SPLIT_FACTOR * a4; |
| final double a4High = ca4 - (ca4 - a4); |
| final double a4Low = a4 - a4High; |
| final double cb4 = SPLIT_FACTOR * b4; |
| final double b4High = cb4 - (cb4 - b4); |
| final double b4Low = b4 - b4High; |
| |
| // accurate multiplication a4 * b4 |
| final double prod4High = a4 * b4; |
| final double prod4Low = a4Low * b4Low - (((prod4High - a4High * b4High) - a4Low * b4High) - a4High * b4Low); |
| |
| // accurate addition a1 * b1 + a2 * b2 |
| final double s12High = prod1High + prod2High; |
| final double s12Prime = s12High - prod2High; |
| final double s12Low = (prod2High - (s12High - s12Prime)) + (prod1High - s12Prime); |
| |
| // accurate addition a1 * b1 + a2 * b2 + a3 * b3 |
| final double s123High = s12High + prod3High; |
| final double s123Prime = s123High - prod3High; |
| final double s123Low = (prod3High - (s123High - s123Prime)) + (s12High - s123Prime); |
| |
| // accurate addition a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4 |
| final double s1234High = s123High + prod4High; |
| final double s1234Prime = s1234High - prod4High; |
| final double s1234Low = (prod4High - (s1234High - s1234Prime)) + (s123High - s1234Prime); |
| |
| // final rounding, s1234 may have suffered many cancellations, we try |
| // to recover some bits from the extra words we have saved up to now |
| double result = s1234High + (prod1Low + prod2Low + prod3Low + prod4Low + s12Low + s123Low + s1234Low); |
| |
| if (Double.isNaN(result)) { |
| // either we have split infinite numbers or some coefficients were NaNs, |
| // just rely on the naive implementation and let IEEE754 handle this |
| result = a1 * b1 + a2 * b2 + a3 * b3 + a4 * b4; |
| } |
| |
| return result; |
| } |
| |
| /** |
| * Returns true iff both arguments are null or have same dimensions and all |
| * their elements are equal as defined by |
| * {@link Precision#equals(float,float)}. |
| * |
| * @param x first array |
| * @param y second array |
| * @return true if the values are both null or have same dimension |
| * and equal elements. |
| */ |
| public static boolean equals(float[] x, float[] y) { |
| if ((x == null) || (y == null)) { |
| return !((x == null) ^ (y == null)); |
| } |
| if (x.length != y.length) { |
| return false; |
| } |
| for (int i = 0; i < x.length; ++i) { |
| if (!Precision.equals(x[i], y[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Returns true iff both arguments are null or have same dimensions and all |
| * their elements are equal as defined by |
| * {@link Precision#equalsIncludingNaN(double,double) this method}. |
| * |
| * @param x first array |
| * @param y second array |
| * @return true if the values are both null or have same dimension and |
| * equal elements |
| * @since 2.2 |
| */ |
| public static boolean equalsIncludingNaN(float[] x, float[] y) { |
| if ((x == null) || (y == null)) { |
| return !((x == null) ^ (y == null)); |
| } |
| if (x.length != y.length) { |
| return false; |
| } |
| for (int i = 0; i < x.length; ++i) { |
| if (!Precision.equalsIncludingNaN(x[i], y[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Returns {@code true} iff both arguments are {@code null} or have same |
| * dimensions and all their elements are equal as defined by |
| * {@link Precision#equals(double,double)}. |
| * |
| * @param x First array. |
| * @param y Second array. |
| * @return {@code true} if the values are both {@code null} or have same |
| * dimension and equal elements. |
| */ |
| public static boolean equals(double[] x, double[] y) { |
| if ((x == null) || (y == null)) { |
| return !((x == null) ^ (y == null)); |
| } |
| if (x.length != y.length) { |
| return false; |
| } |
| for (int i = 0; i < x.length; ++i) { |
| if (!Precision.equals(x[i], y[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Returns {@code true} iff both arguments are {@code null} or have same |
| * dimensions and all their elements are equal as defined by |
| * {@link Precision#equalsIncludingNaN(double,double) this method}. |
| * |
| * @param x First array. |
| * @param y Second array. |
| * @return {@code true} if the values are both {@code null} or have same |
| * dimension and equal elements. |
| * @since 2.2 |
| */ |
| public static boolean equalsIncludingNaN(double[] x, double[] y) { |
| if ((x == null) || (y == null)) { |
| return !((x == null) ^ (y == null)); |
| } |
| if (x.length != y.length) { |
| return false; |
| } |
| for (int i = 0; i < x.length; ++i) { |
| if (!Precision.equalsIncludingNaN(x[i], y[i])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /** |
| * Normalizes an array to make it sum to a specified value. |
| * Returns the result of the transformation <pre> |
| * x |-> x * normalizedSum / sum |
| * </pre> |
| * applied to each non-NaN element x of the input array, where sum is the |
| * sum of the non-NaN entries in the input array.</p> |
| * |
| * <p>Throws IllegalArgumentException if {@code normalizedSum} is infinite |
| * or NaN and ArithmeticException if the input array contains any infinite elements |
| * or sums to 0.</p> |
| * |
| * <p>Ignores (i.e., copies unchanged to the output array) NaNs in the input array.</p> |
| * |
| * @param values Input array to be normalized |
| * @param normalizedSum Target sum for the normalized array |
| * @return the normalized array. |
| * @throws MathArithmeticException if the input array contains infinite |
| * elements or sums to zero. |
| * @throws MathIllegalArgumentException if the target sum is infinite or {@code NaN}. |
| * @since 2.1 |
| */ |
| public static double[] normalizeArray(double[] values, double normalizedSum) { |
| if (Double.isInfinite(normalizedSum)) { |
| throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_INFINITE); |
| } |
| if (Double.isNaN(normalizedSum)) { |
| throw new MathIllegalArgumentException(LocalizedFormats.NORMALIZE_NAN); |
| } |
| double sum = 0d; |
| final int len = values.length; |
| double[] out = new double[len]; |
| for (int i = 0; i < len; i++) { |
| if (Double.isInfinite(values[i])) { |
| throw new MathIllegalArgumentException(LocalizedFormats.INFINITE_ARRAY_ELEMENT, values[i], i); |
| } |
| if (!Double.isNaN(values[i])) { |
| sum += values[i]; |
| } |
| } |
| if (sum == 0) { |
| throw new MathArithmeticException(LocalizedFormats.ARRAY_SUMS_TO_ZERO); |
| } |
| for (int i = 0; i < len; i++) { |
| if (Double.isNaN(values[i])) { |
| out[i] = Double.NaN; |
| } else { |
| out[i] = values[i] * normalizedSum / sum; |
| } |
| } |
| return out; |
| } |
| } |