blob: 0fa20028fd1cb529410f2034d1b04001f086c38a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.ml.neuralnet.twod.util;
import java.util.Collection;
import org.apache.commons.math4.ml.neuralnet.Neuron;
import org.apache.commons.math4.ml.neuralnet.Network;
import org.apache.commons.math4.ml.neuralnet.twod.NeuronSquareMesh2D;
import org.apache.commons.math4.ml.distance.DistanceMeasure;
/**
* <a href="http://en.wikipedia.org/wiki/U-Matrix">U-Matrix</a>
* visualization of high-dimensional data projection.
* @since 3.6
*/
public class UnifiedDistanceMatrix implements MapVisualization {
/** Whether to show distance between each pair of neighbouring units. */
private final boolean individualDistances;
/** Distance. */
private final DistanceMeasure distance;
/**
* Simple constructor.
*
* @param individualDistances If {@code true}, the 8 individual
* inter-units distances will be {@link #computeImage(NeuronSquareMesh2D)
* computed}. They will be stored in additional pixels around each of
* the original units of the 2D-map. The additional pixels that lie
* along a "diagonal" are shared by <em>two</em> pairs of units: their
* value will be set to the average distance between the units belonging
* to each of the pairs. The value zero will be stored in the pixel
* corresponding to the location of a unit of the 2D-map.
* <br>
* If {@code false}, only the average distance between a unit and all its
* neighbours will be computed (and stored in the pixel corresponding to
* that unit of the 2D-map). In that case, the number of neighbours taken
* into account depends on the network's
* {@link org.apache.commons.math4.ml.neuralnet.SquareNeighbourhood
* neighbourhood type}.
* @param distance Distance.
*/
public UnifiedDistanceMatrix(boolean individualDistances,
DistanceMeasure distance) {
this.individualDistances = individualDistances;
this.distance = distance;
}
/** {@inheritDoc} */
@Override
public double[][] computeImage(NeuronSquareMesh2D map) {
if (individualDistances) {
return individualDistances(map);
} else {
return averageDistances(map);
}
}
/**
* Computes the distances between a unit of the map and its
* neighbours.
* The image will contain more pixels than the number of neurons
* in the given {@code map} because each neuron has 8 neighbours.
* The value zero will be stored in the pixels corresponding to
* the location of a map unit.
*
* @param map Map.
* @return an image representing the individual distances.
*/
private double[][] individualDistances(NeuronSquareMesh2D map) {
final int numRows = map.getNumberOfRows();
final int numCols = map.getNumberOfColumns();
final double[][] uMatrix = new double[numRows * 2 + 1][numCols * 2 + 1];
// 1.
// Fill right and bottom slots of each unit's location with the
// distance between the current unit and each of the two neighbours,
// respectively.
for (int i = 0; i < numRows; i++) {
// Current unit's row index in result image.
final int iR = 2 * i + 1;
for (int j = 0; j < numCols; j++) {
// Current unit's column index in result image.
final int jR = 2 * j + 1;
final double[] current = map.getNeuron(i, j).getFeatures();
Neuron neighbour;
// Right neighbour.
neighbour = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.CENTER);
if (neighbour != null) {
uMatrix[iR][jR + 1] = distance.compute(current,
neighbour.getFeatures());
}
// Bottom-center neighbour.
neighbour = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.CENTER,
NeuronSquareMesh2D.VerticalDirection.DOWN);
if (neighbour != null) {
uMatrix[iR + 1][jR] = distance.compute(current,
neighbour.getFeatures());
}
}
}
// 2.
// Fill the bottom-right slot of each unit's location with the average
// of the distances between
// * the current unit and its bottom-right neighbour, and
// * the bottom-center neighbour and the right neighbour.
for (int i = 0; i < numRows; i++) {
// Current unit's row index in result image.
final int iR = 2 * i + 1;
for (int j = 0; j < numCols; j++) {
// Current unit's column index in result image.
final int jR = 2 * j + 1;
final Neuron current = map.getNeuron(i, j);
final Neuron right = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.CENTER);
final Neuron bottom = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.CENTER,
NeuronSquareMesh2D.VerticalDirection.DOWN);
final Neuron bottomRight = map.getNeuron(i, j,
NeuronSquareMesh2D.HorizontalDirection.RIGHT,
NeuronSquareMesh2D.VerticalDirection.DOWN);
final double current2BottomRight = bottomRight == null ?
0 :
distance.compute(current.getFeatures(),
bottomRight.getFeatures());
final double right2Bottom = (right == null ||
bottom == null) ?
0 :
distance.compute(right.getFeatures(),
bottom.getFeatures());
// Bottom-right slot.
uMatrix[iR + 1][jR + 1] = 0.5 * (current2BottomRight + right2Bottom);
}
}
// 3. Copy last row into first row.
final int lastRow = uMatrix.length - 1;
uMatrix[0] = uMatrix[lastRow];
// 4.
// Copy last column into first column.
final int lastCol = uMatrix[0].length - 1;
for (int r = 0; r < lastRow; r++) {
uMatrix[r][0] = uMatrix[r][lastCol];
}
return uMatrix;
}
/**
* Computes the distances between a unit of the map and its neighbours.
*
* @param map Map.
* @return an image representing the average distances.
*/
private double[][] averageDistances(NeuronSquareMesh2D map) {
final int numRows = map.getNumberOfRows();
final int numCols = map.getNumberOfColumns();
final double[][] uMatrix = new double[numRows][numCols];
final Network net = map.getNetwork();
for (int i = 0; i < numRows; i++) {
for (int j = 0; j < numCols; j++) {
final Neuron neuron = map.getNeuron(i, j);
final Collection<Neuron> neighbours = net.getNeighbours(neuron);
final double[] features = neuron.getFeatures();
double d = 0;
int count = 0;
for (Neuron n : neighbours) {
++count;
d += distance.compute(features, n.getFeatures());
}
uMatrix[i][j] = d / count;
}
}
return uMatrix;
}
}