blob: 2df8fb82831d6dac0ecfce46b7a9bf25e2c7a897 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.fitting.leastsquares;
import org.apache.commons.numbers.core.Precision;
import org.apache.commons.geometry.euclidean.threed.Plane;
import org.apache.commons.geometry.euclidean.threed.Planes;
import org.apache.commons.geometry.euclidean.threed.Vector3D;
import org.apache.commons.math4.legacy.exception.ConvergenceException;
import org.apache.commons.math4.legacy.exception.TooManyEvaluationsException;
import org.apache.commons.math4.legacy.fitting.leastsquares.GaussNewtonOptimizer.Decomposition;
import org.apache.commons.math4.legacy.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math4.legacy.optim.SimpleVectorValueChecker;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.junit.Assert;
import org.junit.Test;
import java.io.IOException;
/**
* <p>Some of the unit tests are re-implementations of the MINPACK <a
* href="http://www.netlib.org/minpack/ex/file17">file17</a> and <a
* href="http://www.netlib.org/minpack/ex/file22">file22</a> test files.
* The redistribution policy for MINPACK is available <a
* href="http://www.netlib.org/minpack/disclaimer">here</a>/
*
*/
public class GaussNewtonOptimizerWithSVDTest
extends AbstractLeastSquaresOptimizerAbstractTest {
@Override
public int getMaxIterations() {
return 1000;
}
@Override
public LeastSquaresOptimizer getOptimizer() {
return new GaussNewtonOptimizer(Decomposition.SVD);
}
@Test
public void testMaxEvaluations() throws Exception {
try{
CircleVectorial circle = new CircleVectorial();
circle.addPoint( 30.0, 68.0);
circle.addPoint( 50.0, -6.0);
circle.addPoint(110.0, -20.0);
circle.addPoint( 35.0, 15.0);
circle.addPoint( 45.0, 97.0);
LeastSquaresProblem lsp = builder(circle)
.checkerPair(new SimpleVectorValueChecker(1e-30, 1e-30))
.maxIterations(Integer.MAX_VALUE)
.start(new double[]{98.680, 47.345})
.build();
optimizer.optimize(lsp);
fail(optimizer);
}catch (TooManyEvaluationsException e){
//expected
}
}
@Override
@Test
public void testCircleFittingBadInit() {
/*
* This test converged to the wrong solution with this optimizer.
* It seems that the state becomes so large that the convergence
* checker's relative tolerance test passes.
*/
try {
super.testCircleFittingBadInit();
fail(optimizer);
} catch (AssertionError e) {
//expected
}
}
@Override
@Test
public void testHahn1()
throws IOException {
/*
* TODO This test leads to a singular problem with the Gauss-Newton
* optimizer. This should be inquired.
*/
try{
super.testHahn1();
fail(optimizer);
} catch (ConvergenceException e){
//expected for LU
} catch (TooManyEvaluationsException e){
//expected for QR
}
}
@Test
@Override
public void testGetIterations() {
/* this diverges with SVD */
try {
super.testGetIterations();
fail(optimizer);
} catch (TooManyEvaluationsException e) {
//expected
}
}
@Test
@Override
public void testNonInvertible() throws Exception {
/* SVD can compute a solution to singular problems.
* In this case the target vector, b, is not in the
* span of the jacobian matrix, A. The closes point
* to b on the plane spanned by A is computed.
*/
LinearProblem problem = new LinearProblem(new double[][]{
{1, 2, -3},
{2, 1, 3},
{-3, 0, -9}
}, new double[]{1, 1, 1});
Optimum optimum = optimizer.optimize(problem.getBuilder().build());
Plane span = Planes.fromPoints(Vector3D.ZERO, Vector3D.of(1, 2, -3), Vector3D.of(2, 1, 0),
Precision.doubleEquivalenceOfEpsilon(TOL));
double expected = AccurateMath.abs(span.offset(Vector3D.of(1, 1, 1)));
double actual = optimum.getResiduals().getNorm();
//verify
Assert.assertEquals(expected, actual, TOL);
}
}