blob: a6d9ae7a08e47bd4a5748a94a5f6c64ae5062ca6 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.analysis.integration;
import org.apache.commons.math4.legacy.analysis.QuinticFunction;
import org.apache.commons.math4.legacy.analysis.UnivariateFunction;
import org.apache.commons.math4.legacy.analysis.function.Sin;
import org.apache.commons.math4.legacy.exception.NumberIsTooLargeException;
import org.apache.commons.math4.legacy.exception.NumberIsTooSmallException;
import org.apache.commons.math4.legacy.core.jdkmath.AccurateMath;
import org.junit.Assert;
import org.junit.Test;
/**
* Test case for midpoint integrator.
* <p>
* Test runs show that for a default relative accuracy of 1E-6, it generally
* takes 10 to 15 iterations for the integral to converge.
*
*/
public final class MidPointIntegratorTest {
private static final int NUM_ITER = 30;
/**
* The initial iteration contributes 1 evaluation. Each successive iteration
* contributes 2 points to each previous slice.
*
* The total evaluation count == 1 + 2*3^0 + 2*3^1 + ... 2*3^n
*
* the series 3^0 + 3^1 + ... + 3^n sums to 3^(n-1) / (3-1), so the total
* expected evaluations == 1 + 2*(3^(n-1) - 1)/2 == 3^(n-1).
*
* The n in the series above is offset by 1 from the MidPointIntegrator
* iteration count so the actual result == 3^n.
*
* Without the incremental implementation, the same result would require
* (3^(n + 1) - 1) / 2 evaluations; just under 50% more.
*/
private long expectedEvaluations(int iterations) {
return (long) AccurateMath.pow(3, iterations);
}
/**
* Test of integrator for the sine function.
*/
@Test
public void testLowAccuracy() {
UnivariateFunction f = new QuinticFunction();
UnivariateIntegrator integrator = new MidPointIntegrator(0.01, 1.0e-10, 2, 4);
double min = -10;
double max = -9;
double expected = -3697001.0 / 48.0;
double tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
double result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expectedEvaluations(integrator.getIterations()), integrator.getEvaluations());
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of integrator for the sine function.
*/
@Test
public void testSinFunction() {
UnivariateFunction f = new Sin();
UnivariateIntegrator integrator = new MidPointIntegrator();
double min = 0;
double max = AccurateMath.PI;
double expected = 2;
double tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
double result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expectedEvaluations(integrator.getIterations()), integrator.getEvaluations());
Assert.assertEquals(expected, result, tolerance);
min = -AccurateMath.PI/3;
max = 0;
expected = -0.5;
tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expectedEvaluations(integrator.getIterations()), integrator.getEvaluations());
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of integrator for the quintic function.
*/
@Test
public void testQuinticFunction() {
UnivariateFunction f = new QuinticFunction();
UnivariateIntegrator integrator = new MidPointIntegrator();
double min = 0;
double max = 1;
double expected = -1.0 / 48;
double tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
double result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expectedEvaluations(integrator.getIterations()), integrator.getEvaluations());
Assert.assertEquals(expected, result, tolerance);
min = 0;
max = 0.5;
expected = 11.0 / 768;
tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expected, result, tolerance);
min = -1;
max = 4;
expected = 2048 / 3.0 - 78 + 1.0 / 48;
tolerance = AccurateMath.abs(expected * integrator.getRelativeAccuracy());
result = integrator.integrate(Integer.MAX_VALUE, f, min, max);
Assert.assertTrue(integrator.getEvaluations() < Integer.MAX_VALUE / 3);
Assert.assertTrue(integrator.getIterations() < NUM_ITER);
Assert.assertEquals(expectedEvaluations(integrator.getIterations()), integrator.getEvaluations());
Assert.assertEquals(expected, result, tolerance);
}
/**
* Test of parameters for the integrator.
*/
@Test
public void testParameters() {
UnivariateFunction f = new Sin();
try {
// bad interval
new MidPointIntegrator().integrate(1000, f, 1, -1);
Assert.fail("Expecting NumberIsTooLargeException - bad interval");
} catch (NumberIsTooLargeException ex) {
// expected
}
try {
// bad iteration limits
new MidPointIntegrator(5, 4);
Assert.fail("Expecting NumberIsTooSmallException - bad iteration limits");
} catch (NumberIsTooSmallException ex) {
// expected
}
try {
// bad iteration limits
new MidPointIntegrator(10, 99);
Assert.fail("Expecting NumberIsTooLargeException - bad iteration limits");
} catch (NumberIsTooLargeException ex) {
// expected
}
}
}