blob: 0d7a44377e2f7e0a3201d21a3c9422caddb0deb8 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math4.legacy.ode;
import org.apache.commons.math4.legacy.exception.MaxCountExceededException;
import org.apache.commons.math4.legacy.ode.sampling.StepHandler;
import org.apache.commons.math4.legacy.ode.sampling.StepInterpolator;
import org.apache.commons.math4.core.jdkmath.JdkMath;
/**
* This class is used to handle steps for the test problems
* integrated during the junit tests for the ODE integrators.
*/
public class TestProblemHandler
implements StepHandler {
/** Associated problem. */
private TestProblemAbstract problem;
/** Maximal errors encountered during the integration. */
private double maxValueError;
private double maxTimeError;
/** Error at the end of the integration. */
private double lastError;
/** Time at the end of integration. */
private double lastTime;
/** ODE solver used. */
private ODEIntegrator integrator;
/** Expected start for step. */
private double expectedStepStart;
/**
* Simple constructor.
* @param problem problem for which steps should be handled
* @param integrator ODE solver used
*/
public TestProblemHandler(TestProblemAbstract problem, ODEIntegrator integrator) {
this.problem = problem;
this.integrator = integrator;
maxValueError = 0;
maxTimeError = 0;
lastError = 0;
expectedStepStart = Double.NaN;
}
@Override
public void init(double t0, double[] y0, double t) {
maxValueError = 0;
maxTimeError = 0;
lastError = 0;
expectedStepStart = Double.NaN;
}
@Override
public void handleStep(StepInterpolator interpolator, boolean isLast) throws MaxCountExceededException {
double start = integrator.getCurrentStepStart();
if (JdkMath.abs((start - problem.getInitialTime()) / integrator.getCurrentSignedStepsize()) > 0.001) {
// multistep integrators do not handle the first steps themselves
// so we have to make sure the integrator we look at has really started its work
if (!Double.isNaN(expectedStepStart)) {
// the step should either start at the end of the integrator step
// or at an event if the step is split into several substeps
double stepError = JdkMath.max(maxTimeError, JdkMath.abs(start - expectedStepStart));
for (double eventTime : problem.getTheoreticalEventsTimes()) {
stepError = JdkMath.min(stepError, JdkMath.abs(start - eventTime));
}
maxTimeError = JdkMath.max(maxTimeError, stepError);
}
expectedStepStart = start + integrator.getCurrentSignedStepsize();
}
double pT = interpolator.getPreviousTime();
double cT = interpolator.getCurrentTime();
double[] errorScale = problem.getErrorScale();
// store the error at the last step
if (isLast) {
double[] interpolatedY = interpolator.getInterpolatedState();
double[] theoreticalY = problem.computeTheoreticalState(cT);
for (int i = 0; i < interpolatedY.length; ++i) {
double error = JdkMath.abs(interpolatedY[i] - theoreticalY[i]);
lastError = JdkMath.max(error, lastError);
}
lastTime = cT;
}
// walk through the step
for (int k = 0; k <= 20; ++k) {
double time = pT + (k * (cT - pT)) / 20;
interpolator.setInterpolatedTime(time);
double[] interpolatedY = interpolator.getInterpolatedState();
double[] theoreticalY = problem.computeTheoreticalState(interpolator.getInterpolatedTime());
// update the errors
for (int i = 0; i < interpolatedY.length; ++i) {
double error = errorScale[i] * JdkMath.abs(interpolatedY[i] - theoreticalY[i]);
maxValueError = JdkMath.max(error, maxValueError);
}
}
}
/**
* Get the maximal value error encountered during integration.
* @return maximal value error
*/
public double getMaximalValueError() {
return maxValueError;
}
/**
* Get the maximal time error encountered during integration.
* @return maximal time error
*/
public double getMaximalTimeError() {
return maxTimeError;
}
public int getCalls() {
return problem.getCalls();
}
/**
* Get the error at the end of the integration.
* @return error at the end of the integration
*/
public double getLastError() {
return lastError;
}
/**
* Get the time at the end of the integration.
* @return time at the end of the integration.
*/
public double getLastTime() {
return lastTime;
}
}