blob: 72841a0e3d80c31e0e25f8a95b1db49ef7641297 [file] [log] [blame]
<?xml version="1.0"?>
<!--
Copyright 2001-2004 The Apache Software Foundation.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<document>
<properties>
<title>JCL Technology Guide</title>
<author email="commons-dev@jakarta.apache.org">Commons Documentation Team</author>
</properties>
<body>
<section name='Overview'>
<subsection name='Contents'>
<ul>
<li>
Overview
<ul>
<li>
Contents
</li>
<li>
<a href='#Introduction'>Introduction</a>
</li>
</ul>
</li>
<li>
<a href='#A Short Introduction to Class Loading and Class Loaders'>
A Short Introduction to Class Loading and Class Loaders
</a>
<ul>
<li>
<a href='#Preamble'>
Preamble
</a>
</li>
<li>
<a href='#Resolution Of Symbolic References'>
Resolution Of Symbolic References
</a>
</li>
<li>
<a href='#Loading'>
Loading
</a>
</li>
<li>
<a href='#Linking'>
Linking
</a>
</li>
<li>
<a href='#Loading Classes'>
Loading Classes
</a>
</li>
<li>
<a href='#Bootstrap Classloader'>
Bootstrap Classloader
</a>
</li>
<li>
<a href='#Runtime Package'>
Runtime Package
</a>
</li>
<li>
<a href='#Loader Used To Resolve A Symbolic Reference'>
Loader Used To Resolve A Symbolic Reference
</a>
</li>
<li>
<a href='#Bibliography'>
Bibliography
</a>
</li>
</ul>
</li>
<li>
<a href='#A Short Guide To Hierarchical Class Loading'>
A Short Guide To Hierarchical Class Loading
</a>
<ul>
<li>
<a href='#Delegating Class Loaders'>
Delegating Class Loaders
</a>
</li>
<li>
<a href='#Parent-First And Child-First Class Loaders'>
Parent-First And Child-First Class Loaders
</a>
</li>
<li>
<a href='#Class ClassLoader'>
Class ClassLoader
</a>
</li>
<li>
<a href='#Context ClassLoader'>
Context ClassLoader
</a>
</li>
<li>
<a href='#The Context Classloader in Container Applications'>
The Context Classloader in Container Applications
</a>
</li>
<li>
<a href='#Issues with Context ClassLoaders'>
Issues with Context ClassLoaders
</a>
</li>
<li>
<a href='#Reflection And The Context ClassLoader'>
Reflection And The Context ClassLoader
</a>
</li>
<li>
<a href='#More Information'>
More Information
</a>
</li>
</ul>
</li>
<li>
<a href='#A Short Theory Guide To JCL'>
A Short Theory Guide To JCL
</a>
<ul>
<li>
<a href='#Isolation And The Context Class Loader'>
Isolation And The Context Class Loader
</a>
</li>
<li>
<a href='#Log And LogFactory'>
Log And LogFactory
</a>
</li>
<li>
<a href='#Log Implementations'>
Log Implementations
</a>
</li>
<li>
<a href='#Using Reflection To Load Log Implementations'>
Using Reflection To Load Log Implementations
</a>
</li>
</ul>
</li>
</ul>
</subsection>
<subsection name='Introduction'>
<p>
This guide is aimed at describing the technologies that JCL developers and expert users
(and users who need to become experts)
should be familiar with. The aim is to give an understanding whilst being precise but brief.
Details which are not relevent for JCL have been suppressed.
References have been included.
</p>
<p>
These topics are a little difficult and it's easy for even experience developers to make
mistakea. We need you to help us get it right! Please submit corrections, comments, additional references
and requests for clarification
by either:
</p>
<ul>
<li>
posting to the <a href='http://jakarta.apache.org/site/mail.html'>jakarta commons-dev mailing list</a> or
</li>
<li>
creating an issue in <a href='http://issues.apache.org/bugzilla'>Bugzilla</a>.
</li>
</ul>
<p>
TIA
</p>
</subsection>
</section>
<section name='A Short Introduction to Class Loading and Class Loaders'>
<subsection name='Preamble'>
<p>
This is intended to present a guide to the process by which Java bytecode uses bytecode in other classes
from the perspective of the language and virtual machine specifications. The focus will be on deciding
which bytecode will be used (rather than the mechanics of the usage). It focusses on facts and terminology.
</p>
<p>
The process is recursive: it is therefore difficult to pick a starting point.
Sun's documentation starts from the persective of the startup of a new application.
This guide starts from the perspective of an executing application.
</p>
<p>
During this discussion, please assume that each time that <em>class</em> is mentioned,
the comments applied equally well to interfaces.
</p>
<p>
This document is targeted at Java 1.2 and above.
</p>
</subsection>
<subsection name='Resolution Of Symbolic References'>
<p>
(<a href='http://java.sun.com/docs/books/jls/second_edition/html/execution.doc.html#44524'>LangSpec 12.3.3</a>)
The bytecode representation of a class contains symbolic names for other classes referenced.
</p>
<p>
<em>
In practical development terms: If a class is imported (either explicitly in the list of imports at the top of
the source file or implicitly through a fully qualified name in the source code) it is referenced symbolically.
</em>
</p>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#73492'>VMSpec 5.4.3</a>)
Resolution of a symbolic reference occurs dymanically at runtime and is carried out by
the Java Vitual Machine. Resolution of a symbolic reference requires loading and linking of the new class.
</p>
<p>
<em>
Note: references are not statically resolved at compile time.
</em>
</p>
</subsection>
<subsection name='Loading'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/Concepts.doc.html#19175'>VMSpec 2.17.2</a>)
Loading is the name given process by which a binary form of a class is obtained
by the Java Virutal Machine.
Java classes are always loaded and linked dynamically by the Java Virtual Machine
(rather than statically by the compiler).
</p>
<p>
<em>
In practical development terms:
This means that the developer has no certain knowledge about the actual
bytecode that will be used to execute any external call (one made outside the class). This is determined only
at execution time and is effected by the way that the code is deployed.
</em>
</p>
</subsection>
<subsection name='Linking'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/Concepts.doc.html#22574'>VMSpec 2.17.3</a>)
Linking is the name used for combining the
binary form of a class into the Java Virtual Machine. This must happen before the class can be used.
</p>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/Concepts.doc.html#22574'>VMSpec 2.17.3</a>)
Linking is composed of verification, preparation and resolution (of symbolic references).
Flexibility is allowed over the timing of resolution. (Within limit) this may happen at any time after
preparation and before that reference is used.
</p>
<p>
<em>
In practical development terms: This means that different JVMs may realize that a reference cannot be
resolved at different times during execution. Consequently, the actual behaviour cannot be precisely predicted
without intimate knowledge of the JVM (on which the bytecode will be executed).
This makes it hard to give universal guildance to users.
</em>
</p>
</subsection>
<subsection name='Loading Classes'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/Concepts.doc.html#19175'>VMSpec 2.17.2</a>)
The loading process is performed by a <code>ClassLoader</code>.
</p>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#72007'>VMSpec 5.3</a>)
A classloader may create a class either by delegation or by defining it directly.
The classloader that initiates loading of a class is known as the initiating loader.
The classloader that defines the class is known as the defining loader.
</p>
<p>
<em>
In practical terms: understanding and appreciating this distinction is crucial when debugging issues
concerning classloaders.
</em>
</p>
</subsection>
<subsection name='Bootstrap Classloader'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#72007'>VMSPEC 5.3</a>)
The bootstrap is the base <code>ClassLoader</code> supplied by the Java Virtual Machine.
All others are user (also known as application) <code>ClassLoader</code>'s.
</p>
<p>
<em>
In practical development terms: The System classloader returned by <code>Classloader.getSystemClassLoader()</code>
will be either the bootstrap classloader or a direct descendent of the bootstrap classloader.
Only when debugging issues concerning the system classloader should there be any need to consider the detailed
differences between the bootstrap classloader and the system classloader.
</em>
</p>
</subsection>
<subsection name='Runtime Package'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#72007'>VMSpec 5.3</a>)
At runtime, a class (or interface) is determined by it's fully qualified name
and by the classloader that defines it. This is known as the class's runtime package.
</p>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#75929'>VMSpec 5.4.4</a>)
Only classes in the same runtime package are mutually accessible.
</p>
<p>
<em>
In practical development terms: two classes with the same symbolic name can only be used interchangably
if they are defined by the same classloader. A classic symptom indicative of a classloader issue is that
two classes with the same fully qualified name are found to be incompatible during a method call.
This may happen when a member is expecting an interface which is (seemingly) implemented by a class
but the class is in a different runtime package after being defined by a different classloader. This is a
fundemental java language security feature.
</em>
</p>
</subsection>
<subsection name='Loader Used To Resolve A Symbolic Reference'>
<p>
(<a href='http://java.sun.com/docs/books/vmspec/2nd-edition/html/ConstantPool.doc.html#72007'>VMSpec 5.3</a>)
The classloader which defines the class (whose reference is being resolved) is the one
used to initiate loading of the class referred to.
</p>
<p>
<em>
In practial development terms: This is very important to bear in mind when trying to solve classloader issues.
A classic misunderstanding is this: suppose class A defined by classloader C has a symbolic reference to
class B and further that when C initiates loading of B, this is delegated to classloader D which defines B.
Class B can now only resolve symbols that can be loaded by D, rather than all those which can be loaded by C.
This is a classic recipe for classloader problems.
</em>
</p>
</subsection>
<subsection name='Bibliography'>
<ul>
<li>
<a href='http://java.sun.com/docs/books/vmspec/'>VMSpec</a> <em>The Java Virtual Machine Specification, Second Edition</em>
</li>
<li>
<a href='http://java.sun.com/docs/books/jls/'>LangSpec</a> <em>The Java Language Specification Second Edition</em>
</li>
</ul>
</subsection>
</section>
<section name='A Short Guide To Hierarchical Class Loading'>
<subsection name='Delegating Class Loaders'>
<p>
When asked to load a class, a class loader may either define the class itself or delegate.
The base <code>ClassLoader</code> class insists that every implementation has a parent class loader.
This delegation model therefore naturally forms a tree structure rooted in the bootstrap classloader.
</p>
<p>
Containers (i.e. applications such as servlet engines or application servers
that manage and provide support services for a number of "contained" applications
that run inside of them) often use complex trees to allow isolation of different applications
running within the container. This is particularly true of J2EE containers.
</p>
</subsection>
<subsection name='Parent-First And Child-First Class Loaders'>
<p>
When a classloader is asked to load a class, a question presents itself: should it immediately
delegate the loading to it's parent (and thus only define those classes not defined by it's parent)
or should it try to define it first itself (and only delegate to it's parent those classes it does
not itself define). Classloaders which universally adopt the first approach are termed parent-first
and the second child-first.
</p>
<p>
<strong>Note:</strong> the term child-first (though commonly used) is misleading.
A better term (and one which may be encountered on the mailing list) is parent-last.
This more accurately describes the actual process of classloader performed
by such a classloader.
</p>
<p>
Parent-first loading has been the standard mechanism in the JDK
class loader, at least since Java 1.2 introduced hierarchical classloaders.
The primary reason for this is safety -- parent-first
makes it impossible for malicious code to trick the JVM into
replacing a core class (say, <code>java.security.SecurityManager</code>) with a
class of the same name loaded from a child classloader.
</p>
<p>
Child-first classloading has the advantage of helping to improve isolation
between containers and the applications inside them. If an application
uses a library jar that is also used by the container, but the version of
the jar used by the two is different, child-first classloading allows the
contained application to load its version of the jar without affecting the
container.
</p>
<p>
The ability for a servlet container to offer child-first classloading
is made available, as an option, by language in the servlet spec (Section
9.7.2) that allows a container to offer child-first loading with
certain restrictions, such as not allowing replacement of java.* or
javax.* classes, or the container's implementation classes.
</p>
<p>
Though child-first and parent-first are not the only strategies possible,
they are by far the most common.
All other strategies are rare.
However, it is not uncommon to be faced with a mixture of parent-first and child-first
classloaders within the same hierarchy.
</p>
</subsection>
<subsection name='Class ClassLoader'>
<p>
The class loader used to define a class is available programmatically by calling
the <code>getClassLoader</code> method
on the class in question. This is often known as the class classloader.
</p>
</subsection>
<subsection name='Context ClassLoader'>
<p>
Java 1.2 introduces a mechanism which allows code to access classloaders
which are not the class classloader or one of its parents.
A thread may have a class loader associated with it by it's creator for use
by code running in the thread when loading resources and classes.
This classloader is accessed by the <code>getContextClassLoader</code>
method on <code>Thread</code>. It is therefore often known as the context classloader.
</p>
<p>
Note that the quality and appropriateness of the context classloader depends on the
care with which the thread's owner manages it.
</p>
</subsection>
<subsection name='The Context Classloader in Container Applications'>
<p>
The Javadoc for
<a href="http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Thread.html#setContextClassLoader(java.lang.ClassLoader)">
<code>Thread.setContextClassLoader</code></a> emphasizes the setting of the
context classloader as an aspect of thread creation. However, in many
applications the context classloader is not fixed at thread creation but
rather is changed throughout the life of thread as thread execution moves
from one context to another. This usage of the context classloader is
particularly important in container applications.
</p>
<p>
For example, in a hypothetical servlet container, a pool of threads
is created to handle HTTP requests. When created these threads have their
context classloader set to a classloader that loads container classes.
After the thread is assigned to handle a request, container code parses
the request and then determines which of the deployed web applications
should handle it. Only when the container is about to call code associated
with a particular web application (i.e. is about to cross an "application
boundary") is the context classloader set to the classloader used to load
the web app's classes. When the web application finishes handling the
request and the call returns, the context classloader is set back to the
container classloader.
</p>
<p>
In a properly managed container, changes in the context classloader are
made when code execution crosses an application boundary. When contained
application <code>A</code> is handling a request, the context classloader
should be the one used to load <code>A</code>'s resources. When application
<code>B</code> is handling a request, the context classloader should be
<code>B</code>'s.
</p>
<p>
While a contained application is handling a request, it is not
unusual for it to call system or library code loaded by the container.
For example, a contained application may wish to call a utility function
provided by a shared library. This kind of call is considered to be
within the "application boundary", so the context classloader remains
the contained application's classloader. If the system or library code
needs to load classes or other resources only visible to the contained
application's classloader, it can use the context classloader to access
these resources.
</p>
<p>
If the context classloader is properly managed, system and library code
that can be accessed by multiple applications can not only use it to load
application-specific resources, but also can use it to detect which
application is making a call and thereby provided services tailored to the
caller.
</p>
</subsection>
<subsection name='Issues with Context ClassLoaders'>
<p>
In practice, context classloaders vary in quality and issues sometimes arise
when using them.
The owner of the thread is responsible for setting the classloader.
If the context classloader is not set then it will default to the system
classloader.
Any container doing so will cause difficulties for any code using the context classloader.
</p>
<p>
The owner is also at liberty to set the classloader as they wish.
Containers may set the context classloader so that it is neither a child nor a parent
of the classloader that defines the class using that loader.
Again, this will cause difficulties.
</p>
<p>
Introduced in <a href='http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf'>Java J2EE 1.3</a>
is a requirement for vendors to appropriately set the context classloader.
Section 6.2.4.8 (1.4 text):
</p>
<source>
This specification requires that J2EE containers provide a per thread
context class loader for the use of system or library classes in
dynamicly loading classes provided by the application. The EJB
specification requires that all EJB client containers provide a per
thread context class loader for dynamicly loading system value classes.
The per thread context class loader is accessed using the Thread method
getContextClassLoader.
The classes used by an application will typically be loaded by a
hierarchy of class loaders. There may be a top level application class
loader, an extension class loader, and so on, down to a system class
loader. The top level application class loader delegates to the lower
class loaders as needed. Classes loaded by lower class loaders, such as
portable EJB system value classes, need to be able to discover the top
level application class loader used to dynamicly load application
classes.
We require that containers provide a per thread context class loader
that can be used to load top level application classes as described
above.
</source>
<p>
This specification leaves quite a lot of freedom for vendors.
(As well as using unconventional terminology and containing the odd typo.)
It is a difficult passage (to say the least).
</p>
</subsection>
<subsection name='Reflection And The Context ClassLoader'>
<p>
Reflection cannot bypass restrictions imposed by the java language security model, but, by avoiding symbolic
references, reflection can be used to load classes which could not otherwise be loaded. Another <code>ClassLoader</code>
can be used to load a class and then reflection used to create an instance.
</p>
<p>
Recall that the runtime packaging is used to determine accessibility.
Reflection cannot be used to avoid basic java security.
Therefore, the runtime packaging becomes an issue when attempting to cast classes
created by reflection using other class loaders.
When using this strategy, various modes of failure are possible
when common class references are defined by the different class loaders.
</p>
<p>
Reflection is often used with the context classloader. In theory, this allows a class defined in
a parent classloader to load any class that is loadable by the application.
In practice, this only works well when the context classloader is set carefully.
</p>
</subsection>
<subsection name='More Information'>
<ul>
<li>
Articles On Class Loaders And Class Loading
<ul>
<li>
<a
href='http://www.onjava.com/pub/a/onjava/2001/07/25/ejb.html'>
Article on J2EE class loading
</a>
</li>
<li>
<a
href='http://www.onjava.com/pub/a/onjava/2003/11/12/classloader.html'>
Article on class loading
</a>
</li>
<li>
<a
href='http://www.javaworld.com/javaworld/javaqa/2003-06/01-qa-0606-load.html'>
Article on context class loaders
</a>
</li>
</ul>
</li>
<li>Specific Containers
<ul>
<li>
<a
href='http://jakarta.apache.org/tomcat/tomcat-4.1-doc/class-loader-howto.html'>
Tomcat 4.1 ClassLoader Guide
</a>
</li>
<li>
<a
href='http://jakarta.apache.org/tomcat/tomcat-5.0-doc/class-loader-howto.html'>
Tomcat 5.0 ClassLoader Guide
</a>
</li>
<li>
<a
href='http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.express.doc/info/exp/ae/trun_classload_web.html'>
Classloading In WebSphere
</a>
</li>
</ul>
</li>
</ul>
</subsection>
</section>
<section name='A Short Theory Guide To JCL'>
<subsection name='Isolation And The Context Class Loader'>
<p>
JCL takes the view that different context class loader indicate boundaries between applications
running in a container environment. Isolation requires that JCL honours these boundaries
and therefore allows different isolated applications to configure their logging systems
independently.
</p>
</subsection>
<subsection name='Log And LogFactory'>
<p>
Performance dictates that symbolic references to these classes are present in the calling application code
(reflection would simply be too slow). Therefore, these classes must be loadable by the classloader
that loads the application code.
</p>
</subsection>
<subsection name='Log Implementations'>
<p>
Performance dictates that symbolic references to the logging systems are present in the implementation
classes (again, reflection would simply be too slow). So, for an implementation to be able to function,
it is neccessary for the logging system to be loadable by the classloader that defines the implementing class.
</p>
</subsection>
<subsection name='Using Reflection To Load Log Implementations'>
<p>
However, there is actually no reason why <code>LogFactory</code> requires symbolic references to particular <code>Log</code>
implementations. Reflection can be used to load these from an appropriate classloader
without unacceptable performance degradation.
This is the strategy adopted by JCL.
</p>
<p>
JCL uses the context classloader to use the <code>Log</code> implementation.
</p>
</subsection>
</section>
</body>
</document>