blob: afdba99c1c035e39f72559b31153394affdb2d38 [file] [log] [blame]
package terraform
import (
"bytes"
"context"
"fmt"
"log"
"strings"
"sync"
"github.com/hashicorp/hcl"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/config"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/lang"
"github.com/hashicorp/terraform/plans"
"github.com/hashicorp/terraform/providers"
"github.com/hashicorp/terraform/provisioners"
"github.com/hashicorp/terraform/states"
"github.com/hashicorp/terraform/states/statefile"
"github.com/hashicorp/terraform/tfdiags"
)
// InputMode defines what sort of input will be asked for when Input
// is called on Context.
type InputMode byte
const (
// InputModeVar asks for all variables
InputModeVar InputMode = 1 << iota
// InputModeVarUnset asks for variables which are not set yet.
// InputModeVar must be set for this to have an effect.
InputModeVarUnset
// InputModeProvider asks for provider variables
InputModeProvider
// InputModeStd is the standard operating mode and asks for both variables
// and providers.
InputModeStd = InputModeVar | InputModeProvider
)
var (
// contextFailOnShadowError will cause Context operations to return
// errors when shadow operations fail. This is only used for testing.
contextFailOnShadowError = false
// contextTestDeepCopyOnPlan will perform a Diff DeepCopy on every
// Plan operation, effectively testing the Diff DeepCopy whenever
// a Plan occurs. This is enabled for tests.
contextTestDeepCopyOnPlan = false
)
// ContextOpts are the user-configurable options to create a context with
// NewContext.
type ContextOpts struct {
Config *configs.Config
Changes *plans.Changes
State *states.State
Targets []addrs.Targetable
Variables InputValues
Meta *ContextMeta
Destroy bool
Hooks []Hook
Parallelism int
ProviderResolver providers.Resolver
Provisioners map[string]ProvisionerFactory
// If non-nil, will apply as additional constraints on the provider
// plugins that will be requested from the provider resolver.
ProviderSHA256s map[string][]byte
SkipProviderVerify bool
UIInput UIInput
}
// ContextMeta is metadata about the running context. This is information
// that this package or structure cannot determine on its own but exposes
// into Terraform in various ways. This must be provided by the Context
// initializer.
type ContextMeta struct {
Env string // Env is the state environment
}
// Context represents all the context that Terraform needs in order to
// perform operations on infrastructure. This structure is built using
// NewContext.
type Context struct {
config *configs.Config
changes *plans.Changes
state *states.State
targets []addrs.Targetable
variables InputValues
meta *ContextMeta
destroy bool
hooks []Hook
components contextComponentFactory
schemas *Schemas
sh *stopHook
uiInput UIInput
l sync.Mutex // Lock acquired during any task
parallelSem Semaphore
providerInputConfig map[string]map[string]cty.Value
providerSHA256s map[string][]byte
runLock sync.Mutex
runCond *sync.Cond
runContext context.Context
runContextCancel context.CancelFunc
shadowErr error
}
// (additional methods on Context can be found in context_*.go files.)
// NewContext creates a new Context structure.
//
// Once a Context is created, the caller must not access or mutate any of
// the objects referenced (directly or indirectly) by the ContextOpts fields.
//
// If the returned diagnostics contains errors then the resulting context is
// invalid and must not be used.
func NewContext(opts *ContextOpts) (*Context, tfdiags.Diagnostics) {
log.Printf("[TRACE] terraform.NewContext: starting")
diags := CheckCoreVersionRequirements(opts.Config)
// If version constraints are not met then we'll bail early since otherwise
// we're likely to just see a bunch of other errors related to
// incompatibilities, which could be overwhelming for the user.
if diags.HasErrors() {
return nil, diags
}
// Copy all the hooks and add our stop hook. We don't append directly
// to the Config so that we're not modifying that in-place.
sh := new(stopHook)
hooks := make([]Hook, len(opts.Hooks)+1)
copy(hooks, opts.Hooks)
hooks[len(opts.Hooks)] = sh
state := opts.State
if state == nil {
state = states.NewState()
}
// Determine parallelism, default to 10. We do this both to limit
// CPU pressure but also to have an extra guard against rate throttling
// from providers.
par := opts.Parallelism
if par == 0 {
par = 10
}
// Set up the variables in the following sequence:
// 0 - Take default values from the configuration
// 1 - Take values from TF_VAR_x environment variables
// 2 - Take values specified in -var flags, overriding values
// set by environment variables if necessary. This includes
// values taken from -var-file in addition.
var variables InputValues
if opts.Config != nil {
// Default variables from the configuration seed our map.
variables = DefaultVariableValues(opts.Config.Module.Variables)
}
// Variables provided by the caller (from CLI, environment, etc) can
// override the defaults.
variables = variables.Override(opts.Variables)
// Bind available provider plugins to the constraints in config
var providerFactories map[string]providers.Factory
if opts.ProviderResolver != nil {
deps := ConfigTreeDependencies(opts.Config, state)
reqd := deps.AllPluginRequirements()
if opts.ProviderSHA256s != nil && !opts.SkipProviderVerify {
reqd.LockExecutables(opts.ProviderSHA256s)
}
log.Printf("[TRACE] terraform.NewContext: resolving provider version selections")
var providerDiags tfdiags.Diagnostics
providerFactories, providerDiags = resourceProviderFactories(opts.ProviderResolver, reqd)
diags = diags.Append(providerDiags)
if diags.HasErrors() {
return nil, diags
}
} else {
providerFactories = make(map[string]providers.Factory)
}
components := &basicComponentFactory{
providers: providerFactories,
provisioners: opts.Provisioners,
}
log.Printf("[TRACE] terraform.NewContext: loading provider schemas")
schemas, err := LoadSchemas(opts.Config, opts.State, components)
if err != nil {
diags = diags.Append(err)
return nil, diags
}
changes := opts.Changes
if changes == nil {
changes = plans.NewChanges()
}
config := opts.Config
if config == nil {
config = configs.NewEmptyConfig()
}
log.Printf("[TRACE] terraform.NewContext: complete")
return &Context{
components: components,
schemas: schemas,
destroy: opts.Destroy,
changes: changes,
hooks: hooks,
meta: opts.Meta,
config: config,
state: state,
targets: opts.Targets,
uiInput: opts.UIInput,
variables: variables,
parallelSem: NewSemaphore(par),
providerInputConfig: make(map[string]map[string]cty.Value),
providerSHA256s: opts.ProviderSHA256s,
sh: sh,
}, nil
}
func (c *Context) Schemas() *Schemas {
return c.schemas
}
type ContextGraphOpts struct {
// If true, validates the graph structure (checks for cycles).
Validate bool
// Legacy graphs only: won't prune the graph
Verbose bool
}
// Graph returns the graph used for the given operation type.
//
// The most extensive or complex graph type is GraphTypePlan.
func (c *Context) Graph(typ GraphType, opts *ContextGraphOpts) (*Graph, tfdiags.Diagnostics) {
if opts == nil {
opts = &ContextGraphOpts{Validate: true}
}
log.Printf("[INFO] terraform: building graph: %s", typ)
switch typ {
case GraphTypeApply:
return (&ApplyGraphBuilder{
Config: c.config,
Changes: c.changes,
State: c.state,
Components: c.components,
Schemas: c.schemas,
Targets: c.targets,
Destroy: c.destroy,
Validate: opts.Validate,
}).Build(addrs.RootModuleInstance)
case GraphTypeValidate:
// The validate graph is just a slightly modified plan graph
fallthrough
case GraphTypePlan:
// Create the plan graph builder
p := &PlanGraphBuilder{
Config: c.config,
State: c.state,
Components: c.components,
Schemas: c.schemas,
Targets: c.targets,
Validate: opts.Validate,
}
// Some special cases for other graph types shared with plan currently
var b GraphBuilder = p
switch typ {
case GraphTypeValidate:
b = ValidateGraphBuilder(p)
}
return b.Build(addrs.RootModuleInstance)
case GraphTypePlanDestroy:
return (&DestroyPlanGraphBuilder{
Config: c.config,
State: c.state,
Components: c.components,
Schemas: c.schemas,
Targets: c.targets,
Validate: opts.Validate,
}).Build(addrs.RootModuleInstance)
case GraphTypeRefresh:
return (&RefreshGraphBuilder{
Config: c.config,
State: c.state,
Components: c.components,
Schemas: c.schemas,
Targets: c.targets,
Validate: opts.Validate,
}).Build(addrs.RootModuleInstance)
case GraphTypeEval:
return (&EvalGraphBuilder{
Config: c.config,
State: c.state,
Components: c.components,
Schemas: c.schemas,
}).Build(addrs.RootModuleInstance)
default:
// Should never happen, because the above is exhaustive for all graph types.
panic(fmt.Errorf("unsupported graph type %s", typ))
}
}
// ShadowError returns any errors caught during a shadow operation.
//
// A shadow operation is an operation run in parallel to a real operation
// that performs the same tasks using new logic on copied state. The results
// are compared to ensure that the new logic works the same as the old logic.
// The shadow never affects the real operation or return values.
//
// The result of the shadow operation are only available through this function
// call after a real operation is complete.
//
// For API consumers of Context, you can safely ignore this function
// completely if you have no interest in helping report experimental feature
// errors to Terraform maintainers. Otherwise, please call this function
// after every operation and report this to the user.
//
// IMPORTANT: Shadow errors are _never_ critical: they _never_ affect
// the real state or result of a real operation. They are purely informational
// to assist in future Terraform versions being more stable. Please message
// this effectively to the end user.
//
// This must be called only when no other operation is running (refresh,
// plan, etc.). The result can be used in parallel to any other operation
// running.
func (c *Context) ShadowError() error {
return c.shadowErr
}
// State returns a copy of the current state associated with this context.
//
// This cannot safely be called in parallel with any other Context function.
func (c *Context) State() *states.State {
return c.state.DeepCopy()
}
// Eval produces a scope in which expressions can be evaluated for
// the given module path.
//
// This method must first evaluate any ephemeral values (input variables, local
// values, and output values) in the configuration. These ephemeral values are
// not included in the persisted state, so they must be re-computed using other
// values in the state before they can be properly evaluated. The updated
// values are retained in the main state associated with the receiving context.
//
// This function takes no action against remote APIs but it does need access
// to all provider and provisioner instances in order to obtain their schemas
// for type checking.
//
// The result is an evaluation scope that can be used to resolve references
// against the root module. If the returned diagnostics contains errors then
// the returned scope may be nil. If it is not nil then it may still be used
// to attempt expression evaluation or other analysis, but some expressions
// may not behave as expected.
func (c *Context) Eval(path addrs.ModuleInstance) (*lang.Scope, tfdiags.Diagnostics) {
// This is intended for external callers such as the "terraform console"
// command. Internally, we create an evaluator in c.walk before walking
// the graph, and create scopes in ContextGraphWalker.
var diags tfdiags.Diagnostics
defer c.acquireRun("eval")()
// Start with a copy of state so that we don't affect any instances
// that other methods may have already returned.
c.state = c.state.DeepCopy()
var walker *ContextGraphWalker
graph, graphDiags := c.Graph(GraphTypeEval, nil)
diags = diags.Append(graphDiags)
if !diags.HasErrors() {
var walkDiags tfdiags.Diagnostics
walker, walkDiags = c.walk(graph, walkEval)
diags = diags.Append(walker.NonFatalDiagnostics)
diags = diags.Append(walkDiags)
}
if walker == nil {
// If we skipped walking the graph (due to errors) then we'll just
// use a placeholder graph walker here, which'll refer to the
// unmodified state.
walker = c.graphWalker(walkEval)
}
// This is a bit weird since we don't normally evaluate outside of
// the context of a walk, but we'll "re-enter" our desired path here
// just to get hold of an EvalContext for it. GraphContextBuiltin
// caches its contexts, so we should get hold of the context that was
// previously used for evaluation here, unless we skipped walking.
evalCtx := walker.EnterPath(path)
return evalCtx.EvaluationScope(nil, EvalDataForNoInstanceKey), diags
}
// Interpolater is no longer used. Use Evaluator instead.
//
// The interpolator returned from this function will return an error on any use.
func (c *Context) Interpolater() *Interpolater {
// FIXME: Remove this once all callers are updated to no longer use it.
return &Interpolater{}
}
// Apply applies the changes represented by this context and returns
// the resulting state.
//
// Even in the case an error is returned, the state may be returned and will
// potentially be partially updated. In addition to returning the resulting
// state, this context is updated with the latest state.
//
// If the state is required after an error, the caller should call
// Context.State, rather than rely on the return value.
//
// TODO: Apply and Refresh should either always return a state, or rely on the
// State() method. Currently the helper/resource testing framework relies
// on the absence of a returned state to determine if Destroy can be
// called, so that will need to be refactored before this can be changed.
func (c *Context) Apply() (*states.State, tfdiags.Diagnostics) {
defer c.acquireRun("apply")()
// Copy our own state
c.state = c.state.DeepCopy()
// Build the graph.
graph, diags := c.Graph(GraphTypeApply, nil)
if diags.HasErrors() {
return nil, diags
}
// Determine the operation
operation := walkApply
if c.destroy {
operation = walkDestroy
}
// Walk the graph
walker, walkDiags := c.walk(graph, operation)
diags = diags.Append(walker.NonFatalDiagnostics)
diags = diags.Append(walkDiags)
if c.destroy && !diags.HasErrors() {
// If we know we were trying to destroy objects anyway, and we
// completed without any errors, then we'll also prune out any
// leftover empty resource husks (left after all of the instances
// of a resource with "count" or "for_each" are destroyed) to
// help ensure we end up with an _actually_ empty state, assuming
// we weren't destroying with -target here.
//
// (This doesn't actually take into account -target, but that should
// be okay because it doesn't throw away anything we can't recompute
// on a subsequent "terraform plan" run, if the resources are still
// present in the configuration. However, this _will_ cause "count = 0"
// resources to read as unknown during the next refresh walk, which
// may cause some additional churn if used in a data resource or
// provider block, until we remove refreshing as a separate walk and
// just do it as part of the plan walk.)
c.state.PruneResourceHusks()
}
return c.state, diags
}
// Plan generates an execution plan for the given context.
//
// The execution plan encapsulates the context and can be stored
// in order to reinstantiate a context later for Apply.
//
// Plan also updates the diff of this context to be the diff generated
// by the plan, so Apply can be called after.
func (c *Context) Plan() (*plans.Plan, tfdiags.Diagnostics) {
defer c.acquireRun("plan")()
c.changes = plans.NewChanges()
var diags tfdiags.Diagnostics
varVals := make(map[string]plans.DynamicValue, len(c.variables))
for k, iv := range c.variables {
// We use cty.DynamicPseudoType here so that we'll save both the
// value _and_ its dynamic type in the plan, so we can recover
// exactly the same value later.
dv, err := plans.NewDynamicValue(iv.Value, cty.DynamicPseudoType)
if err != nil {
diags = diags.Append(tfdiags.Sourceless(
tfdiags.Error,
"Failed to prepare variable value for plan",
fmt.Sprintf("The value for variable %q could not be serialized to store in the plan: %s.", k, err),
))
continue
}
varVals[k] = dv
}
p := &plans.Plan{
VariableValues: varVals,
TargetAddrs: c.targets,
ProviderSHA256s: c.providerSHA256s,
}
var operation walkOperation
if c.destroy {
operation = walkPlanDestroy
} else {
// Set our state to be something temporary. We do this so that
// the plan can update a fake state so that variables work, then
// we replace it back with our old state.
old := c.state
if old == nil {
c.state = states.NewState()
} else {
c.state = old.DeepCopy()
}
defer func() {
c.state = old
}()
operation = walkPlan
}
// Build the graph.
graphType := GraphTypePlan
if c.destroy {
graphType = GraphTypePlanDestroy
}
graph, graphDiags := c.Graph(graphType, nil)
diags = diags.Append(graphDiags)
if graphDiags.HasErrors() {
return nil, diags
}
// Do the walk
walker, walkDiags := c.walk(graph, operation)
diags = diags.Append(walker.NonFatalDiagnostics)
diags = diags.Append(walkDiags)
if walkDiags.HasErrors() {
return nil, diags
}
p.Changes = c.changes
return p, diags
}
// Refresh goes through all the resources in the state and refreshes them
// to their latest state. This will update the state that this context
// works with, along with returning it.
//
// Even in the case an error is returned, the state may be returned and
// will potentially be partially updated.
func (c *Context) Refresh() (*states.State, tfdiags.Diagnostics) {
defer c.acquireRun("refresh")()
// Copy our own state
c.state = c.state.DeepCopy()
// Refresh builds a partial changeset as part of its work because it must
// create placeholder stubs for any resource instances that'll be created
// in subsequent plan so that provider configurations and data resources
// can interpolate from them. This plan is always thrown away after
// the operation completes, restoring any existing changeset.
oldChanges := c.changes
defer func() { c.changes = oldChanges }()
c.changes = plans.NewChanges()
// Build the graph.
graph, diags := c.Graph(GraphTypeRefresh, nil)
if diags.HasErrors() {
return nil, diags
}
// Do the walk
_, walkDiags := c.walk(graph, walkRefresh)
diags = diags.Append(walkDiags)
if walkDiags.HasErrors() {
return nil, diags
}
// During our walk we will have created planned object placeholders in
// state for resource instances that are in configuration but not yet
// created. These were created only to allow expression evaluation to
// work properly in provider and data blocks during the walk and must
// now be discarded, since a subsequent plan walk is responsible for
// creating these "for real".
// TODO: Consolidate refresh and plan into a single walk, so that the
// refresh walk doesn't need to emulate various aspects of the plan
// walk in order to properly evaluate provider and data blocks.
c.state.SyncWrapper().RemovePlannedResourceInstanceObjects()
return c.state, diags
}
// Stop stops the running task.
//
// Stop will block until the task completes.
func (c *Context) Stop() {
log.Printf("[WARN] terraform: Stop called, initiating interrupt sequence")
c.l.Lock()
defer c.l.Unlock()
// If we're running, then stop
if c.runContextCancel != nil {
log.Printf("[WARN] terraform: run context exists, stopping")
// Tell the hook we want to stop
c.sh.Stop()
// Stop the context
c.runContextCancel()
c.runContextCancel = nil
}
// Grab the condition var before we exit
if cond := c.runCond; cond != nil {
log.Printf("[INFO] terraform: waiting for graceful stop to complete")
cond.Wait()
}
log.Printf("[WARN] terraform: stop complete")
}
// Validate performs semantic validation of the configuration, and returning
// any warnings or errors.
//
// Syntax and structural checks are performed by the configuration loader,
// and so are not repeated here.
func (c *Context) Validate() tfdiags.Diagnostics {
defer c.acquireRun("validate")()
var diags tfdiags.Diagnostics
// Validate input variables. We do this only for the values supplied
// by the root module, since child module calls are validated when we
// visit their graph nodes.
if c.config != nil {
varDiags := checkInputVariables(c.config.Module.Variables, c.variables)
diags = diags.Append(varDiags)
}
// If we have errors at this point then we probably won't be able to
// construct a graph without producing redundant errors, so we'll halt early.
if diags.HasErrors() {
return diags
}
// Build the graph so we can walk it and run Validate on nodes.
// We also validate the graph generated here, but this graph doesn't
// necessarily match the graph that Plan will generate, so we'll validate the
// graph again later after Planning.
graph, graphDiags := c.Graph(GraphTypeValidate, nil)
diags = diags.Append(graphDiags)
if graphDiags.HasErrors() {
return diags
}
// Walk
walker, walkDiags := c.walk(graph, walkValidate)
diags = diags.Append(walker.NonFatalDiagnostics)
diags = diags.Append(walkDiags)
if walkDiags.HasErrors() {
return diags
}
return diags
}
// Config returns the configuration tree associated with this context.
func (c *Context) Config() *configs.Config {
return c.config
}
// Variables will return the mapping of variables that were defined
// for this Context. If Input was called, this mapping may be different
// than what was given.
func (c *Context) Variables() InputValues {
return c.variables
}
// SetVariable sets a variable after a context has already been built.
func (c *Context) SetVariable(k string, v cty.Value) {
c.variables[k] = &InputValue{
Value: v,
SourceType: ValueFromCaller,
}
}
func (c *Context) acquireRun(phase string) func() {
// With the run lock held, grab the context lock to make changes
// to the run context.
c.l.Lock()
defer c.l.Unlock()
// Wait until we're no longer running
for c.runCond != nil {
c.runCond.Wait()
}
// Build our lock
c.runCond = sync.NewCond(&c.l)
// Create a new run context
c.runContext, c.runContextCancel = context.WithCancel(context.Background())
// Reset the stop hook so we're not stopped
c.sh.Reset()
// Reset the shadow errors
c.shadowErr = nil
return c.releaseRun
}
func (c *Context) releaseRun() {
// Grab the context lock so that we can make modifications to fields
c.l.Lock()
defer c.l.Unlock()
// End our run. We check if runContext is non-nil because it can be
// set to nil if it was cancelled via Stop()
if c.runContextCancel != nil {
c.runContextCancel()
}
// Unlock all waiting our condition
cond := c.runCond
c.runCond = nil
cond.Broadcast()
// Unset the context
c.runContext = nil
}
func (c *Context) walk(graph *Graph, operation walkOperation) (*ContextGraphWalker, tfdiags.Diagnostics) {
log.Printf("[DEBUG] Starting graph walk: %s", operation.String())
walker := c.graphWalker(operation)
// Watch for a stop so we can call the provider Stop() API.
watchStop, watchWait := c.watchStop(walker)
// Walk the real graph, this will block until it completes
diags := graph.Walk(walker)
// Close the channel so the watcher stops, and wait for it to return.
close(watchStop)
<-watchWait
return walker, diags
}
func (c *Context) graphWalker(operation walkOperation) *ContextGraphWalker {
return &ContextGraphWalker{
Context: c,
State: c.state.SyncWrapper(),
Changes: c.changes.SyncWrapper(),
Operation: operation,
StopContext: c.runContext,
RootVariableValues: c.variables,
}
}
// watchStop immediately returns a `stop` and a `wait` chan after dispatching
// the watchStop goroutine. This will watch the runContext for cancellation and
// stop the providers accordingly. When the watch is no longer needed, the
// `stop` chan should be closed before waiting on the `wait` chan.
// The `wait` chan is important, because without synchronizing with the end of
// the watchStop goroutine, the runContext may also be closed during the select
// incorrectly causing providers to be stopped. Even if the graph walk is done
// at that point, stopping a provider permanently cancels its StopContext which
// can cause later actions to fail.
func (c *Context) watchStop(walker *ContextGraphWalker) (chan struct{}, <-chan struct{}) {
stop := make(chan struct{})
wait := make(chan struct{})
// get the runContext cancellation channel now, because releaseRun will
// write to the runContext field.
done := c.runContext.Done()
go func() {
defer close(wait)
// Wait for a stop or completion
select {
case <-done:
// done means the context was canceled, so we need to try and stop
// providers.
case <-stop:
// our own stop channel was closed.
return
}
// If we're here, we're stopped, trigger the call.
log.Printf("[TRACE] Context: requesting providers and provisioners to gracefully stop")
{
// Copy the providers so that a misbehaved blocking Stop doesn't
// completely hang Terraform.
walker.providerLock.Lock()
ps := make([]providers.Interface, 0, len(walker.providerCache))
for _, p := range walker.providerCache {
ps = append(ps, p)
}
defer walker.providerLock.Unlock()
for _, p := range ps {
// We ignore the error for now since there isn't any reasonable
// action to take if there is an error here, since the stop is still
// advisory: Terraform will exit once the graph node completes.
p.Stop()
}
}
{
// Call stop on all the provisioners
walker.provisionerLock.Lock()
ps := make([]provisioners.Interface, 0, len(walker.provisionerCache))
for _, p := range walker.provisionerCache {
ps = append(ps, p)
}
defer walker.provisionerLock.Unlock()
for _, p := range ps {
// We ignore the error for now since there isn't any reasonable
// action to take if there is an error here, since the stop is still
// advisory: Terraform will exit once the graph node completes.
p.Stop()
}
}
}()
return stop, wait
}
// parseVariableAsHCL parses the value of a single variable as would have been specified
// on the command line via -var or in an environment variable named TF_VAR_x, where x is
// the name of the variable. In order to get around the restriction of HCL requiring a
// top level object, we prepend a sentinel key, decode the user-specified value as its
// value and pull the value back out of the resulting map.
func parseVariableAsHCL(name string, input string, targetType config.VariableType) (interface{}, error) {
// expecting a string so don't decode anything, just strip quotes
if targetType == config.VariableTypeString {
return strings.Trim(input, `"`), nil
}
// return empty types
if strings.TrimSpace(input) == "" {
switch targetType {
case config.VariableTypeList:
return []interface{}{}, nil
case config.VariableTypeMap:
return make(map[string]interface{}), nil
}
}
const sentinelValue = "SENTINEL_TERRAFORM_VAR_OVERRIDE_KEY"
inputWithSentinal := fmt.Sprintf("%s = %s", sentinelValue, input)
var decoded map[string]interface{}
err := hcl.Decode(&decoded, inputWithSentinal)
if err != nil {
return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL: %s", name, input, err)
}
if len(decoded) != 1 {
return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. Only one value may be specified.", name, input)
}
parsedValue, ok := decoded[sentinelValue]
if !ok {
return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input)
}
switch targetType {
case config.VariableTypeList:
return parsedValue, nil
case config.VariableTypeMap:
if list, ok := parsedValue.([]map[string]interface{}); ok {
return list[0], nil
}
return nil, fmt.Errorf("Cannot parse value for variable %s (%q) as valid HCL. One value must be specified.", name, input)
default:
panic(fmt.Errorf("unknown type %s", targetType.Printable()))
}
}
// ShimLegacyState is a helper that takes the legacy state type and
// converts it to the new state type.
//
// This is implemented as a state file upgrade, so it will not preserve
// parts of the state structure that are not included in a serialized state,
// such as the resolved results of any local values, outputs in non-root
// modules, etc.
func ShimLegacyState(legacy *State) (*states.State, error) {
if legacy == nil {
return nil, nil
}
var buf bytes.Buffer
err := WriteState(legacy, &buf)
if err != nil {
return nil, err
}
f, err := statefile.Read(&buf)
if err != nil {
return nil, err
}
return f.State, err
}
// MustShimLegacyState is a wrapper around ShimLegacyState that panics if
// the conversion does not succeed. This is primarily intended for tests where
// the given legacy state is an object constructed within the test.
func MustShimLegacyState(legacy *State) *states.State {
ret, err := ShimLegacyState(legacy)
if err != nil {
panic(err)
}
return ret
}