| /* |
| * executing Python code |
| * |
| * src/pl/plpython/plpy_exec.c |
| */ |
| |
| #include "postgres.h" |
| |
| #include "access/htup_details.h" |
| #include "access/xact.h" |
| #include "catalog/pg_type.h" |
| #include "commands/trigger.h" |
| #include "executor/spi.h" |
| #include "funcapi.h" |
| #include "plpy_elog.h" |
| #include "plpy_exec.h" |
| #include "plpy_main.h" |
| #include "plpy_procedure.h" |
| #include "plpy_subxactobject.h" |
| #include "plpython.h" |
| #include "utils/builtins.h" |
| #include "utils/lsyscache.h" |
| #include "utils/rel.h" |
| #include "utils/typcache.h" |
| |
| /* saved state for a set-returning function */ |
| typedef struct PLySRFState |
| { |
| PyObject *iter; /* Python iterator producing results */ |
| PLySavedArgs *savedargs; /* function argument values */ |
| MemoryContextCallback callback; /* for releasing refcounts when done */ |
| } PLySRFState; |
| |
| static PyObject *PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc); |
| static PLySavedArgs *PLy_function_save_args(PLyProcedure *proc); |
| static void PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs); |
| static void PLy_function_drop_args(PLySavedArgs *savedargs); |
| static void PLy_global_args_push(PLyProcedure *proc); |
| static void PLy_global_args_pop(PLyProcedure *proc); |
| static void plpython_srf_cleanup_callback(void *arg); |
| static void plpython_return_error_callback(void *arg); |
| |
| static PyObject *PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, |
| HeapTuple *rv); |
| static HeapTuple PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, |
| TriggerData *tdata, HeapTuple otup); |
| static void plpython_trigger_error_callback(void *arg); |
| |
| static PyObject *PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs); |
| static void PLy_abort_open_subtransactions(int save_subxact_level); |
| |
| |
| /* function subhandler */ |
| Datum |
| PLy_exec_function(FunctionCallInfo fcinfo, PLyProcedure *proc) |
| { |
| bool is_setof = proc->is_setof; |
| Datum rv; |
| PyObject *volatile plargs = NULL; |
| PyObject *volatile plrv = NULL; |
| FuncCallContext *volatile funcctx = NULL; |
| PLySRFState *volatile srfstate = NULL; |
| ErrorContextCallback plerrcontext; |
| |
| /* |
| * If the function is called recursively, we must push outer-level |
| * arguments into the stack. This must be immediately before the PG_TRY |
| * to ensure that the corresponding pop happens. |
| */ |
| PLy_global_args_push(proc); |
| |
| PG_TRY(); |
| { |
| if (is_setof) |
| { |
| /* First Call setup */ |
| if (SRF_IS_FIRSTCALL()) |
| { |
| funcctx = SRF_FIRSTCALL_INIT(); |
| srfstate = (PLySRFState *) |
| MemoryContextAllocZero(funcctx->multi_call_memory_ctx, |
| sizeof(PLySRFState)); |
| /* Immediately register cleanup callback */ |
| srfstate->callback.func = plpython_srf_cleanup_callback; |
| srfstate->callback.arg = (void *) srfstate; |
| MemoryContextRegisterResetCallback(funcctx->multi_call_memory_ctx, |
| &srfstate->callback); |
| funcctx->user_fctx = (void *) srfstate; |
| } |
| /* Every call setup */ |
| funcctx = SRF_PERCALL_SETUP(); |
| Assert(funcctx != NULL); |
| srfstate = (PLySRFState *) funcctx->user_fctx; |
| Assert(srfstate != NULL); |
| } |
| |
| if (srfstate == NULL || srfstate->iter == NULL) |
| { |
| /* |
| * Non-SETOF function or first time for SETOF function: build |
| * args, then actually execute the function. |
| */ |
| plargs = PLy_function_build_args(fcinfo, proc); |
| plrv = PLy_procedure_call(proc, "args", plargs); |
| Assert(plrv != NULL); |
| } |
| else |
| { |
| /* |
| * Second or later call for a SETOF function: restore arguments in |
| * globals dict to what they were when we left off. We must do |
| * this in case multiple evaluations of the same SETOF function |
| * are interleaved. It's a bit annoying, since the iterator may |
| * not look at the arguments at all, but we have no way to know |
| * that. Fortunately this isn't terribly expensive. |
| */ |
| if (srfstate->savedargs) |
| PLy_function_restore_args(proc, srfstate->savedargs); |
| srfstate->savedargs = NULL; /* deleted by restore_args */ |
| } |
| |
| /* |
| * If it returns a set, call the iterator to get the next return item. |
| * We stay in the SPI context while doing this, because PyIter_Next() |
| * calls back into Python code which might contain SPI calls. |
| */ |
| if (is_setof) |
| { |
| if (srfstate->iter == NULL) |
| { |
| /* first time -- do checks and setup */ |
| ReturnSetInfo *rsi = (ReturnSetInfo *) fcinfo->resultinfo; |
| |
| if (!rsi || !IsA(rsi, ReturnSetInfo) || |
| (rsi->allowedModes & SFRM_ValuePerCall) == 0) |
| { |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("unsupported set function return mode"), |
| errdetail("PL/Python set-returning functions only support returning one value per call."))); |
| } |
| rsi->returnMode = SFRM_ValuePerCall; |
| |
| /* Make iterator out of returned object */ |
| srfstate->iter = PyObject_GetIter(plrv); |
| |
| Py_DECREF(plrv); |
| plrv = NULL; |
| |
| if (srfstate->iter == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("returned object cannot be iterated"), |
| errdetail("PL/Python set-returning functions must return an iterable object."))); |
| } |
| |
| /* Fetch next from iterator */ |
| plrv = PyIter_Next(srfstate->iter); |
| if (plrv == NULL) |
| { |
| /* Iterator is exhausted or error happened */ |
| bool has_error = (PyErr_Occurred() != NULL); |
| |
| Py_DECREF(srfstate->iter); |
| srfstate->iter = NULL; |
| |
| if (has_error) |
| PLy_elog(ERROR, "function \"%s\" error fetching next item from iterator", proc->proname); |
| |
| /* Pass a null through the data-returning steps below */ |
| Py_INCREF(Py_None); |
| plrv = Py_None; |
| } |
| else |
| { |
| /* |
| * This won't be last call, so save argument values. We do |
| * this again each time in case the iterator is changing those |
| * values. |
| */ |
| srfstate->savedargs = PLy_function_save_args(proc); |
| } |
| } |
| |
| /* |
| * Disconnect from SPI manager and then create the return values datum |
| * (if the input function does a palloc for it this must not be |
| * allocated in the SPI memory context because SPI_finish would free |
| * it). |
| */ |
| if (SPI_finish() != SPI_OK_FINISH) |
| elog(ERROR, "SPI_finish failed"); |
| |
| plerrcontext.callback = plpython_return_error_callback; |
| plerrcontext.previous = error_context_stack; |
| error_context_stack = &plerrcontext; |
| |
| /* |
| * For a procedure or function declared to return void, the Python |
| * return value must be None. For void-returning functions, we also |
| * treat a None return value as a special "void datum" rather than |
| * NULL (as is the case for non-void-returning functions). |
| */ |
| if (proc->result.typoid == VOIDOID) |
| { |
| if (plrv != Py_None) |
| { |
| if (proc->is_procedure) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("PL/Python procedure did not return None"))); |
| else |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("PL/Python function with return type \"void\" did not return None"))); |
| } |
| |
| fcinfo->isnull = false; |
| rv = (Datum) 0; |
| } |
| else if (plrv == Py_None && |
| srfstate && srfstate->iter == NULL) |
| { |
| /* |
| * In a SETOF function, the iteration-ending null isn't a real |
| * value; don't pass it through the input function, which might |
| * complain. |
| */ |
| fcinfo->isnull = true; |
| rv = (Datum) 0; |
| } |
| else |
| { |
| /* |
| * Normal conversion of result. However, if the result is of type |
| * RECORD, we have to set up for that each time through, since it |
| * might be different from last time. |
| */ |
| if (proc->result.typoid == RECORDOID) |
| { |
| TupleDesc desc; |
| |
| if (get_call_result_type(fcinfo, NULL, &desc) != TYPEFUNC_COMPOSITE) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("function returning record called in context " |
| "that cannot accept type record"))); |
| PLy_output_setup_record(&proc->result, desc, proc); |
| } |
| |
| rv = PLy_output_convert(&proc->result, plrv, |
| &fcinfo->isnull); |
| } |
| } |
| PG_CATCH(); |
| { |
| /* Pop old arguments from the stack if they were pushed above */ |
| PLy_global_args_pop(proc); |
| |
| Py_XDECREF(plargs); |
| Py_XDECREF(plrv); |
| |
| /* |
| * If there was an error within a SRF, the iterator might not have |
| * been exhausted yet. Clear it so the next invocation of the |
| * function will start the iteration again. (This code is probably |
| * unnecessary now; plpython_srf_cleanup_callback should take care of |
| * cleanup. But it doesn't hurt anything to do it here.) |
| */ |
| if (srfstate) |
| { |
| Py_XDECREF(srfstate->iter); |
| srfstate->iter = NULL; |
| /* And drop any saved args; we won't need them */ |
| if (srfstate->savedargs) |
| PLy_function_drop_args(srfstate->savedargs); |
| srfstate->savedargs = NULL; |
| } |
| |
| PG_RE_THROW(); |
| } |
| PG_END_TRY(); |
| |
| error_context_stack = plerrcontext.previous; |
| |
| /* Pop old arguments from the stack if they were pushed above */ |
| PLy_global_args_pop(proc); |
| |
| Py_XDECREF(plargs); |
| Py_DECREF(plrv); |
| |
| if (srfstate) |
| { |
| /* We're in a SRF, exit appropriately */ |
| if (srfstate->iter == NULL) |
| { |
| /* Iterator exhausted, so we're done */ |
| SRF_RETURN_DONE(funcctx); |
| } |
| else if (fcinfo->isnull) |
| SRF_RETURN_NEXT_NULL(funcctx); |
| else |
| SRF_RETURN_NEXT(funcctx, rv); |
| } |
| |
| /* Plain function, just return the Datum value (possibly null) */ |
| return rv; |
| } |
| |
| /* trigger subhandler |
| * |
| * the python function is expected to return Py_None if the tuple is |
| * acceptable and unmodified. Otherwise it should return a PyString |
| * object who's value is SKIP, or MODIFY. SKIP means don't perform |
| * this action. MODIFY means the tuple has been modified, so update |
| * tuple and perform action. SKIP and MODIFY assume the trigger fires |
| * BEFORE the event and is ROW level. postgres expects the function |
| * to take no arguments and return an argument of type trigger. |
| */ |
| HeapTuple |
| PLy_exec_trigger(FunctionCallInfo fcinfo, PLyProcedure *proc) |
| { |
| HeapTuple rv = NULL; |
| PyObject *volatile plargs = NULL; |
| PyObject *volatile plrv = NULL; |
| TriggerData *tdata; |
| TupleDesc rel_descr; |
| |
| Assert(CALLED_AS_TRIGGER(fcinfo)); |
| tdata = (TriggerData *) fcinfo->context; |
| |
| /* |
| * Input/output conversion for trigger tuples. We use the result and |
| * result_in fields to store the tuple conversion info. We do this over |
| * again on each call to cover the possibility that the relation's tupdesc |
| * changed since the trigger was last called. The PLy_xxx_setup_func |
| * calls should only happen once, but PLy_input_setup_tuple and |
| * PLy_output_setup_tuple are responsible for not doing repetitive work. |
| */ |
| rel_descr = RelationGetDescr(tdata->tg_relation); |
| if (proc->result.typoid != rel_descr->tdtypeid) |
| PLy_output_setup_func(&proc->result, proc->mcxt, |
| rel_descr->tdtypeid, |
| rel_descr->tdtypmod, |
| proc); |
| if (proc->result_in.typoid != rel_descr->tdtypeid) |
| PLy_input_setup_func(&proc->result_in, proc->mcxt, |
| rel_descr->tdtypeid, |
| rel_descr->tdtypmod, |
| proc); |
| PLy_output_setup_tuple(&proc->result, rel_descr, proc); |
| PLy_input_setup_tuple(&proc->result_in, rel_descr, proc); |
| |
| /* |
| * If the trigger is called recursively, we must push outer-level |
| * arguments into the stack. This must be immediately before the PG_TRY |
| * to ensure that the corresponding pop happens. |
| */ |
| PLy_global_args_push(proc); |
| |
| PG_TRY(); |
| { |
| int rc PG_USED_FOR_ASSERTS_ONLY; |
| |
| rc = SPI_register_trigger_data(tdata); |
| Assert(rc >= 0); |
| |
| plargs = PLy_trigger_build_args(fcinfo, proc, &rv); |
| plrv = PLy_procedure_call(proc, "TD", plargs); |
| |
| Assert(plrv != NULL); |
| |
| /* |
| * Disconnect from SPI manager |
| */ |
| if (SPI_finish() != SPI_OK_FINISH) |
| elog(ERROR, "SPI_finish failed"); |
| |
| /* |
| * return of None means we're happy with the tuple |
| */ |
| if (plrv != Py_None) |
| { |
| char *srv; |
| |
| if (PyString_Check(plrv)) |
| srv = PyString_AsString(plrv); |
| else if (PyUnicode_Check(plrv)) |
| srv = PLyUnicode_AsString(plrv); |
| else |
| { |
| ereport(ERROR, |
| (errcode(ERRCODE_DATA_EXCEPTION), |
| errmsg("unexpected return value from trigger procedure"), |
| errdetail("Expected None or a string."))); |
| srv = NULL; /* keep compiler quiet */ |
| } |
| |
| if (pg_strcasecmp(srv, "SKIP") == 0) |
| rv = NULL; |
| else if (pg_strcasecmp(srv, "MODIFY") == 0) |
| { |
| TriggerData *tdata = (TriggerData *) fcinfo->context; |
| |
| if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event) || |
| TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) |
| rv = PLy_modify_tuple(proc, plargs, tdata, rv); |
| else |
| ereport(WARNING, |
| (errmsg("PL/Python trigger function returned \"MODIFY\" in a DELETE trigger -- ignored"))); |
| } |
| else if (pg_strcasecmp(srv, "OK") != 0) |
| { |
| /* |
| * accept "OK" as an alternative to None; otherwise, raise an |
| * error |
| */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATA_EXCEPTION), |
| errmsg("unexpected return value from trigger procedure"), |
| errdetail("Expected None, \"OK\", \"SKIP\", or \"MODIFY\"."))); |
| } |
| } |
| } |
| PG_FINALLY(); |
| { |
| PLy_global_args_pop(proc); |
| Py_XDECREF(plargs); |
| Py_XDECREF(plrv); |
| } |
| PG_END_TRY(); |
| |
| return rv; |
| } |
| |
| /* helper functions for Python code execution */ |
| |
| static PyObject * |
| PLy_function_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc) |
| { |
| PyObject *volatile arg = NULL; |
| PyObject *args; |
| int i; |
| |
| /* |
| * Make any Py*_New() calls before the PG_TRY block so that we can quickly |
| * return NULL on failure. We can't return within the PG_TRY block, else |
| * we'd miss unwinding the exception stack. |
| */ |
| args = PyList_New(proc->nargs); |
| if (!args) |
| return NULL; |
| |
| PG_TRY(); |
| { |
| for (i = 0; i < proc->nargs; i++) |
| { |
| PLyDatumToOb *arginfo = &proc->args[i]; |
| |
| if (fcinfo->args[i].isnull) |
| arg = NULL; |
| else |
| arg = PLy_input_convert(arginfo, fcinfo->args[i].value); |
| |
| if (arg == NULL) |
| { |
| Py_INCREF(Py_None); |
| arg = Py_None; |
| } |
| |
| if (PyList_SetItem(args, i, arg) == -1) |
| PLy_elog(ERROR, "PyList_SetItem() failed, while setting up arguments"); |
| |
| if (proc->argnames && proc->argnames[i] && |
| PyDict_SetItemString(proc->globals, proc->argnames[i], arg) == -1) |
| PLy_elog(ERROR, "PyDict_SetItemString() failed, while setting up arguments"); |
| arg = NULL; |
| } |
| } |
| PG_CATCH(); |
| { |
| Py_XDECREF(arg); |
| Py_XDECREF(args); |
| |
| PG_RE_THROW(); |
| } |
| PG_END_TRY(); |
| |
| return args; |
| } |
| |
| /* |
| * Construct a PLySavedArgs struct representing the current values of the |
| * procedure's arguments in its globals dict. This can be used to restore |
| * those values when exiting a recursive call level or returning control to a |
| * set-returning function. |
| * |
| * This would not be necessary except for an ancient decision to make args |
| * available via the proc's globals :-( ... but we're stuck with that now. |
| */ |
| static PLySavedArgs * |
| PLy_function_save_args(PLyProcedure *proc) |
| { |
| PLySavedArgs *result; |
| |
| /* saved args are always allocated in procedure's context */ |
| result = (PLySavedArgs *) |
| MemoryContextAllocZero(proc->mcxt, |
| offsetof(PLySavedArgs, namedargs) + |
| proc->nargs * sizeof(PyObject *)); |
| result->nargs = proc->nargs; |
| |
| /* Fetch the "args" list */ |
| result->args = PyDict_GetItemString(proc->globals, "args"); |
| Py_XINCREF(result->args); |
| |
| /* If it's a trigger, also save "TD" */ |
| if (proc->is_trigger) |
| { |
| result->td = PyDict_GetItemString(proc->globals, "TD"); |
| Py_XINCREF(result->td); |
| } |
| |
| /* Fetch all the named arguments */ |
| if (proc->argnames) |
| { |
| int i; |
| |
| for (i = 0; i < result->nargs; i++) |
| { |
| if (proc->argnames[i]) |
| { |
| result->namedargs[i] = PyDict_GetItemString(proc->globals, |
| proc->argnames[i]); |
| Py_XINCREF(result->namedargs[i]); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Restore procedure's arguments from a PLySavedArgs struct, |
| * then free the struct. |
| */ |
| static void |
| PLy_function_restore_args(PLyProcedure *proc, PLySavedArgs *savedargs) |
| { |
| /* Restore named arguments into their slots in the globals dict */ |
| if (proc->argnames) |
| { |
| int i; |
| |
| for (i = 0; i < savedargs->nargs; i++) |
| { |
| if (proc->argnames[i] && savedargs->namedargs[i]) |
| { |
| PyDict_SetItemString(proc->globals, proc->argnames[i], |
| savedargs->namedargs[i]); |
| Py_DECREF(savedargs->namedargs[i]); |
| } |
| } |
| } |
| |
| /* Restore the "args" object, too */ |
| if (savedargs->args) |
| { |
| PyDict_SetItemString(proc->globals, "args", savedargs->args); |
| Py_DECREF(savedargs->args); |
| } |
| |
| /* Restore the "TD" object, too */ |
| if (savedargs->td) |
| { |
| PyDict_SetItemString(proc->globals, "TD", savedargs->td); |
| Py_DECREF(savedargs->td); |
| } |
| |
| /* And free the PLySavedArgs struct */ |
| pfree(savedargs); |
| } |
| |
| /* |
| * Free a PLySavedArgs struct without restoring the values. |
| */ |
| static void |
| PLy_function_drop_args(PLySavedArgs *savedargs) |
| { |
| int i; |
| |
| /* Drop references for named args */ |
| for (i = 0; i < savedargs->nargs; i++) |
| { |
| Py_XDECREF(savedargs->namedargs[i]); |
| } |
| |
| /* Drop refs to the "args" and "TD" objects, too */ |
| Py_XDECREF(savedargs->args); |
| Py_XDECREF(savedargs->td); |
| |
| /* And free the PLySavedArgs struct */ |
| pfree(savedargs); |
| } |
| |
| /* |
| * Save away any existing arguments for the given procedure, so that we can |
| * install new values for a recursive call. This should be invoked before |
| * doing PLy_function_build_args() or PLy_trigger_build_args(). |
| * |
| * NB: callers must ensure that PLy_global_args_pop gets invoked once, and |
| * only once, per successful completion of PLy_global_args_push. Otherwise |
| * we'll end up out-of-sync between the actual call stack and the contents |
| * of proc->argstack. |
| */ |
| static void |
| PLy_global_args_push(PLyProcedure *proc) |
| { |
| /* We only need to push if we are already inside some active call */ |
| if (proc->calldepth > 0) |
| { |
| PLySavedArgs *node; |
| |
| /* Build a struct containing current argument values */ |
| node = PLy_function_save_args(proc); |
| |
| /* |
| * Push the saved argument values into the procedure's stack. Once we |
| * modify either proc->argstack or proc->calldepth, we had better |
| * return without the possibility of error. |
| */ |
| node->next = proc->argstack; |
| proc->argstack = node; |
| } |
| proc->calldepth++; |
| } |
| |
| /* |
| * Pop old arguments when exiting a recursive call. |
| * |
| * Note: the idea here is to adjust the proc's callstack state before doing |
| * anything that could possibly fail. In event of any error, we want the |
| * callstack to look like we've done the pop. Leaking a bit of memory is |
| * tolerable. |
| */ |
| static void |
| PLy_global_args_pop(PLyProcedure *proc) |
| { |
| Assert(proc->calldepth > 0); |
| /* We only need to pop if we were already inside some active call */ |
| if (proc->calldepth > 1) |
| { |
| PLySavedArgs *ptr = proc->argstack; |
| |
| /* Pop the callstack */ |
| Assert(ptr != NULL); |
| proc->argstack = ptr->next; |
| proc->calldepth--; |
| |
| /* Restore argument values, then free ptr */ |
| PLy_function_restore_args(proc, ptr); |
| } |
| else |
| { |
| /* Exiting call depth 1 */ |
| Assert(proc->argstack == NULL); |
| proc->calldepth--; |
| |
| /* |
| * We used to delete the named arguments (but not "args") from the |
| * proc's globals dict when exiting the outermost call level for a |
| * function. This seems rather pointless though: nothing can see the |
| * dict until the function is called again, at which time we'll |
| * overwrite those dict entries. So don't bother with that. |
| */ |
| } |
| } |
| |
| /* |
| * Memory context deletion callback for cleaning up a PLySRFState. |
| * We need this in case execution of the SRF is terminated early, |
| * due to error or the caller simply not running it to completion. |
| */ |
| static void |
| plpython_srf_cleanup_callback(void *arg) |
| { |
| PLySRFState *srfstate = (PLySRFState *) arg; |
| |
| /* Release refcount on the iter, if we still have one */ |
| Py_XDECREF(srfstate->iter); |
| srfstate->iter = NULL; |
| /* And drop any saved args; we won't need them */ |
| if (srfstate->savedargs) |
| PLy_function_drop_args(srfstate->savedargs); |
| srfstate->savedargs = NULL; |
| } |
| |
| static void |
| plpython_return_error_callback(void *arg) |
| { |
| PLyExecutionContext *exec_ctx = PLy_current_execution_context(); |
| |
| if (exec_ctx->curr_proc && |
| !exec_ctx->curr_proc->is_procedure) |
| errcontext("while creating return value"); |
| } |
| |
| static PyObject * |
| PLy_trigger_build_args(FunctionCallInfo fcinfo, PLyProcedure *proc, HeapTuple *rv) |
| { |
| TriggerData *tdata = (TriggerData *) fcinfo->context; |
| TupleDesc rel_descr = RelationGetDescr(tdata->tg_relation); |
| PyObject *pltname, |
| *pltevent, |
| *pltwhen, |
| *pltlevel, |
| *pltrelid, |
| *plttablename, |
| *plttableschema, |
| *pltargs, |
| *pytnew, |
| *pytold, |
| *pltdata; |
| char *stroid; |
| |
| /* |
| * Make any Py*_New() calls before the PG_TRY block so that we can quickly |
| * return NULL on failure. We can't return within the PG_TRY block, else |
| * we'd miss unwinding the exception stack. |
| */ |
| pltdata = PyDict_New(); |
| if (!pltdata) |
| return NULL; |
| |
| if (tdata->tg_trigger->tgnargs) |
| { |
| pltargs = PyList_New(tdata->tg_trigger->tgnargs); |
| if (!pltargs) |
| { |
| Py_DECREF(pltdata); |
| return NULL; |
| } |
| } |
| else |
| { |
| Py_INCREF(Py_None); |
| pltargs = Py_None; |
| } |
| |
| PG_TRY(); |
| { |
| pltname = PyString_FromString(tdata->tg_trigger->tgname); |
| PyDict_SetItemString(pltdata, "name", pltname); |
| Py_DECREF(pltname); |
| |
| stroid = DatumGetCString(DirectFunctionCall1(oidout, |
| ObjectIdGetDatum(tdata->tg_relation->rd_id))); |
| pltrelid = PyString_FromString(stroid); |
| PyDict_SetItemString(pltdata, "relid", pltrelid); |
| Py_DECREF(pltrelid); |
| pfree(stroid); |
| |
| stroid = SPI_getrelname(tdata->tg_relation); |
| plttablename = PyString_FromString(stroid); |
| PyDict_SetItemString(pltdata, "table_name", plttablename); |
| Py_DECREF(plttablename); |
| pfree(stroid); |
| |
| stroid = SPI_getnspname(tdata->tg_relation); |
| plttableschema = PyString_FromString(stroid); |
| PyDict_SetItemString(pltdata, "table_schema", plttableschema); |
| Py_DECREF(plttableschema); |
| pfree(stroid); |
| |
| if (TRIGGER_FIRED_BEFORE(tdata->tg_event)) |
| pltwhen = PyString_FromString("BEFORE"); |
| else if (TRIGGER_FIRED_AFTER(tdata->tg_event)) |
| pltwhen = PyString_FromString("AFTER"); |
| else if (TRIGGER_FIRED_INSTEAD(tdata->tg_event)) |
| pltwhen = PyString_FromString("INSTEAD OF"); |
| else |
| { |
| elog(ERROR, "unrecognized WHEN tg_event: %u", tdata->tg_event); |
| pltwhen = NULL; /* keep compiler quiet */ |
| } |
| PyDict_SetItemString(pltdata, "when", pltwhen); |
| Py_DECREF(pltwhen); |
| |
| if (TRIGGER_FIRED_FOR_ROW(tdata->tg_event)) |
| { |
| pltlevel = PyString_FromString("ROW"); |
| PyDict_SetItemString(pltdata, "level", pltlevel); |
| Py_DECREF(pltlevel); |
| |
| /* |
| * Note: In BEFORE trigger, stored generated columns are not |
| * computed yet, so don't make them accessible in NEW row. |
| */ |
| |
| if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event)) |
| { |
| pltevent = PyString_FromString("INSERT"); |
| |
| PyDict_SetItemString(pltdata, "old", Py_None); |
| pytnew = PLy_input_from_tuple(&proc->result_in, |
| tdata->tg_trigtuple, |
| rel_descr, |
| !TRIGGER_FIRED_BEFORE(tdata->tg_event)); |
| PyDict_SetItemString(pltdata, "new", pytnew); |
| Py_DECREF(pytnew); |
| *rv = tdata->tg_trigtuple; |
| } |
| else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event)) |
| { |
| pltevent = PyString_FromString("DELETE"); |
| |
| PyDict_SetItemString(pltdata, "new", Py_None); |
| pytold = PLy_input_from_tuple(&proc->result_in, |
| tdata->tg_trigtuple, |
| rel_descr, |
| true); |
| PyDict_SetItemString(pltdata, "old", pytold); |
| Py_DECREF(pytold); |
| *rv = tdata->tg_trigtuple; |
| } |
| else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) |
| { |
| pltevent = PyString_FromString("UPDATE"); |
| |
| pytnew = PLy_input_from_tuple(&proc->result_in, |
| tdata->tg_newtuple, |
| rel_descr, |
| !TRIGGER_FIRED_BEFORE(tdata->tg_event)); |
| PyDict_SetItemString(pltdata, "new", pytnew); |
| Py_DECREF(pytnew); |
| pytold = PLy_input_from_tuple(&proc->result_in, |
| tdata->tg_trigtuple, |
| rel_descr, |
| true); |
| PyDict_SetItemString(pltdata, "old", pytold); |
| Py_DECREF(pytold); |
| *rv = tdata->tg_newtuple; |
| } |
| else |
| { |
| elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event); |
| pltevent = NULL; /* keep compiler quiet */ |
| } |
| |
| PyDict_SetItemString(pltdata, "event", pltevent); |
| Py_DECREF(pltevent); |
| } |
| else if (TRIGGER_FIRED_FOR_STATEMENT(tdata->tg_event)) |
| { |
| pltlevel = PyString_FromString("STATEMENT"); |
| PyDict_SetItemString(pltdata, "level", pltlevel); |
| Py_DECREF(pltlevel); |
| |
| PyDict_SetItemString(pltdata, "old", Py_None); |
| PyDict_SetItemString(pltdata, "new", Py_None); |
| *rv = NULL; |
| |
| if (TRIGGER_FIRED_BY_INSERT(tdata->tg_event)) |
| pltevent = PyString_FromString("INSERT"); |
| else if (TRIGGER_FIRED_BY_DELETE(tdata->tg_event)) |
| pltevent = PyString_FromString("DELETE"); |
| else if (TRIGGER_FIRED_BY_UPDATE(tdata->tg_event)) |
| pltevent = PyString_FromString("UPDATE"); |
| else if (TRIGGER_FIRED_BY_TRUNCATE(tdata->tg_event)) |
| pltevent = PyString_FromString("TRUNCATE"); |
| else |
| { |
| elog(ERROR, "unrecognized OP tg_event: %u", tdata->tg_event); |
| pltevent = NULL; /* keep compiler quiet */ |
| } |
| |
| PyDict_SetItemString(pltdata, "event", pltevent); |
| Py_DECREF(pltevent); |
| } |
| else |
| elog(ERROR, "unrecognized LEVEL tg_event: %u", tdata->tg_event); |
| |
| if (tdata->tg_trigger->tgnargs) |
| { |
| /* |
| * all strings... |
| */ |
| int i; |
| PyObject *pltarg; |
| |
| /* pltargs should have been allocated before the PG_TRY block. */ |
| Assert(pltargs && pltargs != Py_None); |
| |
| for (i = 0; i < tdata->tg_trigger->tgnargs; i++) |
| { |
| pltarg = PyString_FromString(tdata->tg_trigger->tgargs[i]); |
| |
| /* |
| * stolen, don't Py_DECREF |
| */ |
| PyList_SetItem(pltargs, i, pltarg); |
| } |
| } |
| else |
| { |
| Assert(pltargs == Py_None); |
| } |
| PyDict_SetItemString(pltdata, "args", pltargs); |
| Py_DECREF(pltargs); |
| } |
| PG_CATCH(); |
| { |
| Py_XDECREF(pltargs); |
| Py_XDECREF(pltdata); |
| PG_RE_THROW(); |
| } |
| PG_END_TRY(); |
| |
| return pltdata; |
| } |
| |
| /* |
| * Apply changes requested by a MODIFY return from a trigger function. |
| */ |
| static HeapTuple |
| PLy_modify_tuple(PLyProcedure *proc, PyObject *pltd, TriggerData *tdata, |
| HeapTuple otup) |
| { |
| HeapTuple rtup; |
| PyObject *volatile plntup; |
| PyObject *volatile plkeys; |
| PyObject *volatile plval; |
| Datum *volatile modvalues; |
| bool *volatile modnulls; |
| bool *volatile modrepls; |
| ErrorContextCallback plerrcontext; |
| |
| plerrcontext.callback = plpython_trigger_error_callback; |
| plerrcontext.previous = error_context_stack; |
| error_context_stack = &plerrcontext; |
| |
| plntup = plkeys = plval = NULL; |
| modvalues = NULL; |
| modnulls = NULL; |
| modrepls = NULL; |
| |
| PG_TRY(); |
| { |
| TupleDesc tupdesc; |
| int nkeys, |
| i; |
| |
| if ((plntup = PyDict_GetItemString(pltd, "new")) == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_OBJECT), |
| errmsg("TD[\"new\"] deleted, cannot modify row"))); |
| Py_INCREF(plntup); |
| if (!PyDict_Check(plntup)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("TD[\"new\"] is not a dictionary"))); |
| |
| plkeys = PyDict_Keys(plntup); |
| nkeys = PyList_Size(plkeys); |
| |
| tupdesc = RelationGetDescr(tdata->tg_relation); |
| |
| modvalues = (Datum *) palloc0(tupdesc->natts * sizeof(Datum)); |
| modnulls = (bool *) palloc0(tupdesc->natts * sizeof(bool)); |
| modrepls = (bool *) palloc0(tupdesc->natts * sizeof(bool)); |
| |
| for (i = 0; i < nkeys; i++) |
| { |
| PyObject *platt; |
| char *plattstr; |
| int attn; |
| PLyObToDatum *att; |
| |
| platt = PyList_GetItem(plkeys, i); |
| if (PyString_Check(platt)) |
| plattstr = PyString_AsString(platt); |
| else if (PyUnicode_Check(platt)) |
| plattstr = PLyUnicode_AsString(platt); |
| else |
| { |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("TD[\"new\"] dictionary key at ordinal position %d is not a string", i))); |
| plattstr = NULL; /* keep compiler quiet */ |
| } |
| attn = SPI_fnumber(tupdesc, plattstr); |
| if (attn == SPI_ERROR_NOATTRIBUTE) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_COLUMN), |
| errmsg("key \"%s\" found in TD[\"new\"] does not exist as a column in the triggering row", |
| plattstr))); |
| if (attn <= 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("cannot set system attribute \"%s\"", |
| plattstr))); |
| if (TupleDescAttr(tupdesc, attn - 1)->attgenerated) |
| ereport(ERROR, |
| (errcode(ERRCODE_E_R_I_E_TRIGGER_PROTOCOL_VIOLATED), |
| errmsg("cannot set generated column \"%s\"", |
| plattstr))); |
| |
| plval = PyDict_GetItem(plntup, platt); |
| if (plval == NULL) |
| elog(FATAL, "Python interpreter is probably corrupted"); |
| |
| Py_INCREF(plval); |
| |
| /* We assume proc->result is set up to convert tuples properly */ |
| att = &proc->result.u.tuple.atts[attn - 1]; |
| |
| modvalues[attn - 1] = PLy_output_convert(att, |
| plval, |
| &modnulls[attn - 1]); |
| modrepls[attn - 1] = true; |
| |
| Py_DECREF(plval); |
| plval = NULL; |
| } |
| |
| rtup = heap_modify_tuple(otup, tupdesc, modvalues, modnulls, modrepls); |
| } |
| PG_CATCH(); |
| { |
| Py_XDECREF(plntup); |
| Py_XDECREF(plkeys); |
| Py_XDECREF(plval); |
| |
| if (modvalues) |
| pfree(modvalues); |
| if (modnulls) |
| pfree(modnulls); |
| if (modrepls) |
| pfree(modrepls); |
| |
| PG_RE_THROW(); |
| } |
| PG_END_TRY(); |
| |
| Py_DECREF(plntup); |
| Py_DECREF(plkeys); |
| |
| pfree(modvalues); |
| pfree(modnulls); |
| pfree(modrepls); |
| |
| error_context_stack = plerrcontext.previous; |
| |
| return rtup; |
| } |
| |
| static void |
| plpython_trigger_error_callback(void *arg) |
| { |
| PLyExecutionContext *exec_ctx = PLy_current_execution_context(); |
| |
| if (exec_ctx->curr_proc) |
| errcontext("while modifying trigger row"); |
| } |
| |
| /* execute Python code, propagate Python errors to the backend */ |
| static PyObject * |
| PLy_procedure_call(PLyProcedure *proc, const char *kargs, PyObject *vargs) |
| { |
| PyObject *rv = NULL; |
| int volatile save_subxact_level = list_length(explicit_subtransactions); |
| |
| PyDict_SetItemString(proc->globals, kargs, vargs); |
| |
| PG_TRY(); |
| { |
| PLy_enter_python_intepreter = true; |
| #if PY_VERSION_HEX >= 0x03020000 |
| rv = PyEval_EvalCode(proc->code, |
| proc->globals, proc->globals); |
| #else |
| rv = PyEval_EvalCode((PyCodeObject *) proc->code, |
| proc->globals, proc->globals); |
| #endif |
| PLy_enter_python_intepreter = false; |
| |
| /* |
| * Since plpy will only let you close subtransactions that you |
| * started, you cannot *unnest* subtransactions, only *nest* them |
| * without closing. |
| */ |
| Assert(list_length(explicit_subtransactions) >= save_subxact_level); |
| } |
| PG_FINALLY(); |
| { |
| PLy_enter_python_intepreter = false; |
| PLy_abort_open_subtransactions(save_subxact_level); |
| } |
| PG_END_TRY(); |
| |
| /* If the Python code returned an error, propagate it */ |
| if (rv == NULL) |
| PLy_elog(ERROR, NULL); |
| |
| return rv; |
| } |
| |
| /* |
| * Abort lingering subtransactions that have been explicitly started |
| * by plpy.subtransaction().start() and not properly closed. |
| */ |
| static void |
| PLy_abort_open_subtransactions(int save_subxact_level) |
| { |
| Assert(save_subxact_level >= 0); |
| |
| while (list_length(explicit_subtransactions) > save_subxact_level) |
| { |
| PLySubtransactionData *subtransactiondata; |
| |
| Assert(explicit_subtransactions != NIL); |
| |
| ereport(WARNING, |
| (errmsg("forcibly aborting a subtransaction that has not been exited"))); |
| |
| RollbackAndReleaseCurrentSubTransaction(); |
| |
| subtransactiondata = (PLySubtransactionData *) linitial(explicit_subtransactions); |
| explicit_subtransactions = list_delete_first(explicit_subtransactions); |
| |
| MemoryContextSwitchTo(subtransactiondata->oldcontext); |
| CurrentResourceOwner = subtransactiondata->oldowner; |
| pfree(subtransactiondata); |
| } |
| } |