| /*------------------------------------------------------------------------- |
| * |
| * parse_coerce.c |
| * handle type coercions/conversions for parser |
| * |
| * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/parser/parse_coerce.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include "catalog/pg_cast.h" |
| #include "catalog/pg_class.h" |
| #include "catalog/pg_inherits.h" |
| #include "catalog/pg_proc.h" |
| #include "catalog/pg_type.h" |
| #include "nodes/makefuncs.h" |
| #include "nodes/nodeFuncs.h" |
| #include "nodes/print.h" |
| #include "nodes/nodeFuncs.h" |
| #include "parser/parsetree.h" /* get_tle_by_resno */ |
| #include "parser/parse_coerce.h" |
| #include "parser/parse_relation.h" |
| #include "parser/parse_type.h" |
| #include "utils/builtins.h" |
| #include "utils/datum.h" /* needed for datumIsEqual() */ |
| #include "utils/fmgroids.h" |
| #include "utils/lsyscache.h" |
| #include "utils/syscache.h" |
| #include "utils/typcache.h" |
| |
| |
| static Node *coerce_type_typmod(Node *node, |
| Oid targetTypeId, int32 targetTypMod, |
| CoercionContext ccontext, CoercionForm cformat, |
| int location, |
| bool hideInputCoercion); |
| static void hide_coercion_node(Node *node); |
| static Node *build_coercion_expression(Node *node, |
| CoercionPathType pathtype, |
| Oid funcId, |
| Oid targetTypeId, int32 targetTypMod, |
| CoercionContext ccontext, CoercionForm cformat, |
| int location); |
| static Node *coerce_record_to_complex(ParseState *pstate, Node *node, |
| Oid targetTypeId, |
| CoercionContext ccontext, |
| CoercionForm cformat, |
| int location); |
| static bool is_complex_array(Oid typid); |
| static bool typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId); |
| |
| |
| /* |
| * coerce_to_target_type() |
| * Convert an expression to a target type and typmod. |
| * |
| * This is the general-purpose entry point for arbitrary type coercion |
| * operations. Direct use of the component operations can_coerce_type, |
| * coerce_type, and coerce_type_typmod should be restricted to special |
| * cases (eg, when the conversion is expected to succeed). |
| * |
| * Returns the possibly-transformed expression tree, or NULL if the type |
| * conversion is not possible. (We do this, rather than ereport'ing directly, |
| * so that callers can generate custom error messages indicating context.) |
| * |
| * pstate - parse state (can be NULL, see coerce_type) |
| * expr - input expression tree (already transformed by transformExpr) |
| * exprtype - result type of expr |
| * targettype - desired result type |
| * targettypmod - desired result typmod |
| * ccontext, cformat - context indicators to control coercions |
| * location - parse location of the coercion request, or -1 if unknown/implicit |
| */ |
| Node * |
| coerce_to_target_type(ParseState *pstate, Node *expr, Oid exprtype, |
| Oid targettype, int32 targettypmod, |
| CoercionContext ccontext, |
| CoercionForm cformat, |
| int location) |
| { |
| Node *result; |
| Node *origexpr; |
| |
| if (!can_coerce_type(1, &exprtype, &targettype, ccontext)) |
| return NULL; |
| |
| /* |
| * If the input has a CollateExpr at the top, strip it off, perform the |
| * coercion, and put a new one back on. This is annoying since it |
| * duplicates logic in coerce_type, but if we don't do this then it's too |
| * hard to tell whether coerce_type actually changed anything, and we |
| * *must* know that to avoid possibly calling hide_coercion_node on |
| * something that wasn't generated by coerce_type. Note that if there are |
| * multiple stacked CollateExprs, we just discard all but the topmost. |
| * Also, if the target type isn't collatable, we discard the CollateExpr. |
| */ |
| origexpr = expr; |
| while (expr && IsA(expr, CollateExpr)) |
| expr = (Node *) ((CollateExpr *) expr)->arg; |
| |
| result = coerce_type(pstate, expr, exprtype, |
| targettype, targettypmod, |
| ccontext, cformat, location); |
| |
| /* |
| * If the target is a fixed-length type, it may need a length coercion as |
| * well as a type coercion. If we find ourselves adding both, force the |
| * inner coercion node to implicit display form. |
| */ |
| result = coerce_type_typmod(result, |
| targettype, targettypmod, |
| ccontext, cformat, location, |
| (result != expr && !IsA(result, Const) && !IsA(result, Var))); |
| |
| if (expr != origexpr && type_is_collatable(targettype)) |
| { |
| /* Reinstall top CollateExpr */ |
| CollateExpr *coll = (CollateExpr *) origexpr; |
| CollateExpr *newcoll = makeNode(CollateExpr); |
| |
| newcoll->arg = (Expr *) result; |
| newcoll->collOid = coll->collOid; |
| newcoll->location = coll->location; |
| result = (Node *) newcoll; |
| } |
| |
| return result; |
| } |
| |
| |
| /* |
| * coerce_type() |
| * Convert an expression to a different type. |
| * |
| * The caller should already have determined that the coercion is possible; |
| * see can_coerce_type. |
| * |
| * Normally, no coercion to a typmod (length) is performed here. The caller |
| * must call coerce_type_typmod as well, if a typmod constraint is wanted. |
| * (But if the target type is a domain, it may internally contain a |
| * typmod constraint, which will be applied inside coerce_to_domain.) |
| * In some cases pg_cast specifies a type coercion function that also |
| * applies length conversion, and in those cases only, the result will |
| * already be properly coerced to the specified typmod. |
| * |
| * pstate is only used in the case that we are able to resolve the type of |
| * a previously UNKNOWN Param. It is okay to pass pstate = NULL if the |
| * caller does not want type information updated for Params. |
| * |
| * Note: this function must not modify the given expression tree, only add |
| * decoration on top of it. See transformSetOperationTree, for example. |
| */ |
| Node * |
| coerce_type(ParseState *pstate, Node *node, |
| Oid inputTypeId, Oid targetTypeId, int32 targetTypeMod, |
| CoercionContext ccontext, CoercionForm cformat, int location) |
| { |
| Node *result; |
| CoercionPathType pathtype; |
| Oid funcId; |
| |
| if (targetTypeId == inputTypeId || |
| node == NULL) |
| { |
| /* no conversion needed */ |
| return node; |
| } |
| if (targetTypeId == ANYOID || |
| targetTypeId == ANYELEMENTOID || |
| targetTypeId == ANYNONARRAYOID || |
| targetTypeId == ANYCOMPATIBLEOID || |
| targetTypeId == ANYCOMPATIBLENONARRAYOID) |
| { |
| /* |
| * Assume can_coerce_type verified that implicit coercion is okay. |
| * |
| * Note: by returning the unmodified node here, we are saying that |
| * it's OK to treat an UNKNOWN constant as a valid input for a |
| * function accepting one of these pseudotypes. This should be all |
| * right, since an UNKNOWN value is still a perfectly valid Datum. |
| * |
| * NB: we do NOT want a RelabelType here: the exposed type of the |
| * function argument must be its actual type, not the polymorphic |
| * pseudotype. |
| */ |
| return node; |
| } |
| if (targetTypeId == ANYARRAYOID || |
| targetTypeId == ANYENUMOID || |
| targetTypeId == ANYRANGEOID || |
| targetTypeId == ANYMULTIRANGEOID || |
| targetTypeId == ANYCOMPATIBLEARRAYOID || |
| targetTypeId == ANYCOMPATIBLERANGEOID || |
| targetTypeId == ANYCOMPATIBLEMULTIRANGEOID) |
| { |
| /* |
| * Assume can_coerce_type verified that implicit coercion is okay. |
| * |
| * These cases are unlike the ones above because the exposed type of |
| * the argument must be an actual array, enum, range, or multirange |
| * type. In particular the argument must *not* be an UNKNOWN |
| * constant. If it is, we just fall through; below, we'll call the |
| * pseudotype's input function, which will produce an error. Also, if |
| * what we have is a domain over array, enum, range, or multirange, we |
| * have to relabel it to its base type. |
| * |
| * Note: currently, we can't actually see a domain-over-enum here, |
| * since the other functions in this file will not match such a |
| * parameter to ANYENUM. But that should get changed eventually. |
| */ |
| |
| /* |
| * BUG BUG |
| * JIRA MPP-3786 |
| * |
| * Special handling for ANYARRAY type. |
| * |
| * GPDB_95_MERGE_FIXME: can this be removed? |
| */ |
| if(targetTypeId == ANYARRAYOID && IsA(node, Const) && inputTypeId != UNKNOWNOID) |
| { |
| Const *con = (Const *) node; |
| Const *newcon = makeNode(Const); |
| Oid elemoid = get_element_type(inputTypeId); |
| |
| if(elemoid == InvalidOid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("cannot convert non-Array type to ANYARRAY"))); |
| |
| memcpy(newcon, con, sizeof(Const)); |
| newcon->consttype = ANYARRAYOID; |
| |
| return (Node *) newcon; |
| } |
| |
| if (inputTypeId != UNKNOWNOID) |
| { |
| Oid baseTypeId = getBaseType(inputTypeId); |
| |
| if (baseTypeId != inputTypeId) |
| { |
| RelabelType *r = makeRelabelType((Expr *) node, |
| baseTypeId, -1, |
| InvalidOid, |
| cformat); |
| |
| r->location = location; |
| return (Node *) r; |
| } |
| /* Not a domain type, so return it as-is */ |
| return node; |
| } |
| } |
| if (inputTypeId == UNKNOWNOID && IsA(node, Const)) |
| { |
| /* |
| * Input is a string constant with previously undetermined type. Apply |
| * the target type's typinput function to it to produce a constant of |
| * the target type. |
| * |
| * NOTE: this case cannot be folded together with the other |
| * constant-input case, since the typinput function does not |
| * necessarily behave the same as a type conversion function. For |
| * example, int4's typinput function will reject "1.2", whereas |
| * float-to-int type conversion will round to integer. |
| * |
| * XXX if the typinput function is not immutable, we really ought to |
| * postpone evaluation of the function call until runtime. But there |
| * is no way to represent a typinput function call as an expression |
| * tree, because C-string values are not Datums. (XXX This *is* |
| * possible as of 7.3, do we want to do it?) |
| */ |
| Const *con = (Const *) node; |
| Const *newcon = makeNode(Const); |
| Oid baseTypeId; |
| int32 baseTypeMod; |
| int32 inputTypeMod; |
| Type baseType; |
| ParseCallbackState pcbstate; |
| |
| /* |
| * If the target type is a domain, we want to call its base type's |
| * input routine, not domain_in(). This is to avoid premature failure |
| * when the domain applies a typmod: existing input routines follow |
| * implicit-coercion semantics for length checks, which is not always |
| * what we want here. The needed check will be applied properly |
| * inside coerce_to_domain(). |
| */ |
| baseTypeMod = targetTypeMod; |
| baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| |
| /* |
| * For most types we pass typmod -1 to the input routine, because |
| * existing input routines follow implicit-coercion semantics for |
| * length checks, which is not always what we want here. Any length |
| * constraint will be applied later by our caller. An exception |
| * however is the INTERVAL type, for which we *must* pass the typmod |
| * or it won't be able to obey the bizarre SQL-spec input rules. (Ugly |
| * as sin, but so is this part of the spec...) |
| */ |
| if (baseTypeId == INTERVALOID) |
| inputTypeMod = baseTypeMod; |
| else |
| inputTypeMod = -1; |
| |
| baseType = typeidType(baseTypeId); |
| |
| newcon->consttype = baseTypeId; |
| newcon->consttypmod = inputTypeMod; |
| newcon->constcollid = typeTypeCollation(baseType); |
| newcon->constlen = typeLen(baseType); |
| newcon->constbyval = typeByVal(baseType); |
| newcon->constisnull = con->constisnull; |
| |
| /* |
| * We use the original literal's location regardless of the position |
| * of the coercion. This is a change from pre-9.2 behavior, meant to |
| * simplify life for pg_stat_statements. |
| */ |
| newcon->location = con->location; |
| |
| /* |
| * Set up to point at the constant's text if the input routine throws |
| * an error. |
| */ |
| setup_parser_errposition_callback(&pcbstate, pstate, con->location); |
| |
| /* |
| * We assume here that UNKNOWN's internal representation is the same |
| * as CSTRING. |
| */ |
| if (!con->constisnull) |
| newcon->constvalue = stringTypeDatum(baseType, |
| DatumGetCString(con->constvalue), |
| inputTypeMod); |
| else |
| newcon->constvalue = stringTypeDatum(baseType, |
| NULL, |
| inputTypeMod); |
| |
| /* |
| * If it's a varlena value, force it to be in non-expanded |
| * (non-toasted) format; this avoids any possible dependency on |
| * external values and improves consistency of representation. |
| */ |
| if (!con->constisnull && newcon->constlen == -1) |
| newcon->constvalue = |
| PointerGetDatum(PG_DETOAST_DATUM(newcon->constvalue)); |
| |
| #ifdef RANDOMIZE_ALLOCATED_MEMORY |
| |
| /* |
| * For pass-by-reference data types, repeat the conversion to see if |
| * the input function leaves any uninitialized bytes in the result. We |
| * can only detect that reliably if RANDOMIZE_ALLOCATED_MEMORY is |
| * enabled, so we don't bother testing otherwise. The reason we don't |
| * want any instability in the input function is that comparison of |
| * Const nodes relies on bytewise comparison of the datums, so if the |
| * input function leaves garbage then subexpressions that should be |
| * identical may not get recognized as such. See pgsql-hackers |
| * discussion of 2008-04-04. |
| */ |
| if (!con->constisnull && !newcon->constbyval) |
| { |
| Datum val2; |
| |
| val2 = stringTypeDatum(baseType, |
| DatumGetCString(con->constvalue), |
| inputTypeMod); |
| if (newcon->constlen == -1) |
| val2 = PointerGetDatum(PG_DETOAST_DATUM(val2)); |
| if (!datumIsEqual(newcon->constvalue, val2, false, newcon->constlen)) |
| elog(WARNING, "type %s has unstable input conversion for \"%s\"", |
| typeTypeName(baseType), DatumGetCString(con->constvalue)); |
| } |
| #endif |
| |
| cancel_parser_errposition_callback(&pcbstate); |
| |
| result = (Node *) newcon; |
| |
| /* If target is a domain, apply constraints. */ |
| if (baseTypeId != targetTypeId) |
| result = coerce_to_domain(result, |
| baseTypeId, baseTypeMod, |
| targetTypeId, |
| ccontext, cformat, location, |
| false); |
| |
| ReleaseSysCache(baseType); |
| |
| return result; |
| } |
| if (IsA(node, Param) && |
| pstate != NULL && pstate->p_coerce_param_hook != NULL) |
| { |
| /* |
| * Allow the CoerceParamHook to decide what happens. It can return a |
| * transformed node (very possibly the same Param node), or return |
| * NULL to indicate we should proceed with normal coercion. |
| */ |
| result = pstate->p_coerce_param_hook(pstate, |
| (Param *) node, |
| targetTypeId, |
| targetTypeMod, |
| location); |
| if (result) |
| return result; |
| } |
| if (IsA(node, CollateExpr)) |
| { |
| /* |
| * If we have a COLLATE clause, we have to push the coercion |
| * underneath the COLLATE; or discard the COLLATE if the target type |
| * isn't collatable. This is really ugly, but there is little choice |
| * because the above hacks on Consts and Params wouldn't happen |
| * otherwise. This kluge has consequences in coerce_to_target_type. |
| */ |
| CollateExpr *coll = (CollateExpr *) node; |
| |
| result = coerce_type(pstate, (Node *) coll->arg, |
| inputTypeId, targetTypeId, targetTypeMod, |
| ccontext, cformat, location); |
| if (type_is_collatable(targetTypeId)) |
| { |
| CollateExpr *newcoll = makeNode(CollateExpr); |
| |
| newcoll->arg = (Expr *) result; |
| newcoll->collOid = coll->collOid; |
| newcoll->location = coll->location; |
| result = (Node *) newcoll; |
| } |
| return result; |
| } |
| pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, |
| &funcId); |
| if (pathtype != COERCION_PATH_NONE) |
| { |
| if (pathtype != COERCION_PATH_RELABELTYPE) |
| { |
| /* |
| * Generate an expression tree representing run-time application |
| * of the conversion function. If we are dealing with a domain |
| * target type, the conversion function will yield the base type, |
| * and we need to extract the correct typmod to use from the |
| * domain's typtypmod. |
| */ |
| Oid baseTypeId; |
| int32 baseTypeMod; |
| |
| baseTypeMod = targetTypeMod; |
| baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| |
| result = build_coercion_expression(node, pathtype, funcId, |
| baseTypeId, baseTypeMod, |
| ccontext, cformat, location); |
| |
| /* |
| * If domain, coerce to the domain type and relabel with domain |
| * type ID, hiding the previous coercion node. |
| */ |
| if (targetTypeId != baseTypeId) |
| result = coerce_to_domain(result, baseTypeId, baseTypeMod, |
| targetTypeId, |
| ccontext, cformat, location, |
| true); |
| } |
| else |
| { |
| /* |
| * We don't need to do a physical conversion, but we do need to |
| * attach a RelabelType node so that the expression will be seen |
| * to have the intended type when inspected by higher-level code. |
| * |
| * Also, domains may have value restrictions beyond the base type |
| * that must be accounted for. If the destination is a domain |
| * then we won't need a RelabelType node. |
| */ |
| result = coerce_to_domain(node, InvalidOid, -1, targetTypeId, |
| ccontext, cformat, location, |
| false); |
| if (result == node) |
| { |
| /* |
| * XXX could we label result with exprTypmod(node) instead of |
| * default -1 typmod, to save a possible length-coercion |
| * later? Would work if both types have same interpretation of |
| * typmod, which is likely but not certain. |
| */ |
| RelabelType *r = makeRelabelType((Expr *) result, |
| targetTypeId, -1, |
| InvalidOid, |
| cformat); |
| |
| r->location = location; |
| result = (Node *) r; |
| } |
| } |
| return result; |
| } |
| if (inputTypeId == RECORDOID && |
| ISCOMPLEX(targetTypeId)) |
| { |
| /* Coerce a RECORD to a specific complex type */ |
| return coerce_record_to_complex(pstate, node, targetTypeId, |
| ccontext, cformat, location); |
| } |
| if (targetTypeId == RECORDOID && |
| ISCOMPLEX(inputTypeId)) |
| { |
| /* Coerce a specific complex type to RECORD */ |
| /* NB: we do NOT want a RelabelType here */ |
| return node; |
| } |
| #ifdef NOT_USED |
| if (inputTypeId == RECORDARRAYOID && |
| is_complex_array(targetTypeId)) |
| { |
| /* Coerce record[] to a specific complex array type */ |
| /* not implemented yet ... */ |
| } |
| #endif |
| if (targetTypeId == RECORDARRAYOID && |
| is_complex_array(inputTypeId)) |
| { |
| /* Coerce a specific complex array type to record[] */ |
| /* NB: we do NOT want a RelabelType here */ |
| return node; |
| } |
| if (typeInheritsFrom(inputTypeId, targetTypeId) |
| || typeIsOfTypedTable(inputTypeId, targetTypeId)) |
| { |
| /* |
| * Input class type is a subclass of target, so generate an |
| * appropriate runtime conversion (removing unneeded columns and |
| * possibly rearranging the ones that are wanted). |
| * |
| * We will also get here when the input is a domain over a subclass of |
| * the target type. To keep life simple for the executor, we define |
| * ConvertRowtypeExpr as only working between regular composite types; |
| * therefore, in such cases insert a RelabelType to smash the input |
| * expression down to its base type. |
| */ |
| Oid baseTypeId = getBaseType(inputTypeId); |
| ConvertRowtypeExpr *r = makeNode(ConvertRowtypeExpr); |
| |
| if (baseTypeId != inputTypeId) |
| { |
| RelabelType *rt = makeRelabelType((Expr *) node, |
| baseTypeId, -1, |
| InvalidOid, |
| COERCE_IMPLICIT_CAST); |
| |
| rt->location = location; |
| node = (Node *) rt; |
| } |
| r->arg = (Expr *) node; |
| r->resulttype = targetTypeId; |
| r->convertformat = cformat; |
| r->location = location; |
| return (Node *) r; |
| } |
| /* If we get here, caller blew it */ |
| elog(ERROR, "failed to find conversion function from %s to %s", |
| format_type_be(inputTypeId), format_type_be(targetTypeId)); |
| return NULL; /* keep compiler quiet */ |
| } |
| |
| |
| /* |
| * can_coerce_type() |
| * Can input_typeids be coerced to target_typeids? |
| * |
| * We must be told the context (CAST construct, assignment, implicit coercion) |
| * as this determines the set of available casts. |
| */ |
| bool |
| can_coerce_type(int nargs, const Oid *input_typeids, const Oid *target_typeids, |
| CoercionContext ccontext) |
| { |
| bool have_generics = false; |
| int i; |
| |
| /* run through argument list... */ |
| for (i = 0; i < nargs; i++) |
| { |
| Oid inputTypeId = input_typeids[i]; |
| Oid targetTypeId = target_typeids[i]; |
| CoercionPathType pathtype; |
| Oid funcId; |
| |
| /* no problem if same type */ |
| if (inputTypeId == targetTypeId) |
| continue; |
| |
| /* |
| * ANYTABLE is a special case that can occur when a function is |
| * called with a TableValue expression. A table value expression |
| * can only match a parameter to a function defined as a "anytable". |
| * |
| * Only allow ANYTABLE to match another ANYTABLE, anything else would |
| * be a mismatch of Table domain and Value domain expressions. |
| * |
| * Validation of ANYTABLE coercion is processed at a higher level |
| * that has more context related to the tupleDesc for the tables |
| * involved. |
| */ |
| if (targetTypeId == ANYTABLEOID || inputTypeId == ANYTABLEOID) |
| return false; |
| |
| /* accept if target is ANY */ |
| if (targetTypeId == ANYOID) |
| continue; |
| |
| /* accept if target is polymorphic, for now */ |
| if (IsPolymorphicType(targetTypeId)) |
| { |
| have_generics = true; /* do more checking later */ |
| continue; |
| } |
| |
| /* |
| * If input is an untyped string constant, assume we can convert it to |
| * anything. |
| */ |
| if (inputTypeId == UNKNOWNOID) |
| continue; |
| |
| /* |
| * If pg_cast shows that we can coerce, accept. This test now covers |
| * both binary-compatible and coercion-function cases. |
| */ |
| pathtype = find_coercion_pathway(targetTypeId, inputTypeId, ccontext, |
| &funcId); |
| if (pathtype != COERCION_PATH_NONE) |
| continue; |
| |
| /* |
| * If input is RECORD and target is a composite type, assume we can |
| * coerce (may need tighter checking here) |
| */ |
| if (inputTypeId == RECORDOID && |
| ISCOMPLEX(targetTypeId)) |
| continue; |
| |
| /* |
| * If input is a composite type and target is RECORD, accept |
| */ |
| if (targetTypeId == RECORDOID && |
| ISCOMPLEX(inputTypeId)) |
| continue; |
| |
| #ifdef NOT_USED /* not implemented yet */ |
| |
| /* |
| * If input is record[] and target is a composite array type, assume |
| * we can coerce (may need tighter checking here) |
| */ |
| if (inputTypeId == RECORDARRAYOID && |
| is_complex_array(targetTypeId)) |
| continue; |
| #endif |
| |
| /* |
| * If input is a composite array type and target is record[], accept |
| */ |
| if (targetTypeId == RECORDARRAYOID && |
| is_complex_array(inputTypeId)) |
| continue; |
| |
| /* |
| * If input is a class type that inherits from target, accept |
| */ |
| if (typeInheritsFrom(inputTypeId, targetTypeId) |
| || typeIsOfTypedTable(inputTypeId, targetTypeId)) |
| continue; |
| |
| /* |
| * Else, cannot coerce at this argument position |
| */ |
| return false; |
| } |
| |
| /* If we found any generic argument types, cross-check them */ |
| if (have_generics) |
| { |
| if (!check_generic_type_consistency(input_typeids, target_typeids, |
| nargs)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /* |
| * Create an expression tree to represent coercion to a domain type. |
| * |
| * 'arg': input expression |
| * 'baseTypeId': base type of domain, if known (pass InvalidOid if caller |
| * has not bothered to look this up) |
| * 'baseTypeMod': base type typmod of domain, if known (pass -1 if caller |
| * has not bothered to look this up) |
| * 'typeId': target type to coerce to |
| * 'ccontext': context indicator to control coercions |
| * 'cformat': coercion display format |
| * 'location': coercion request location |
| * 'hideInputCoercion': if true, hide the input coercion under this one. |
| * |
| * If the target type isn't a domain, the given 'arg' is returned as-is. |
| */ |
| Node * |
| coerce_to_domain(Node *arg, Oid baseTypeId, int32 baseTypeMod, Oid typeId, |
| CoercionContext ccontext, CoercionForm cformat, int location, |
| bool hideInputCoercion) |
| { |
| CoerceToDomain *result; |
| |
| /* Get the base type if it hasn't been supplied */ |
| if (baseTypeId == InvalidOid) |
| baseTypeId = getBaseTypeAndTypmod(typeId, &baseTypeMod); |
| |
| /* If it isn't a domain, return the node as it was passed in */ |
| if (baseTypeId == typeId) |
| return arg; |
| |
| /* Suppress display of nested coercion steps */ |
| if (hideInputCoercion) |
| hide_coercion_node(arg); |
| |
| /* |
| * If the domain applies a typmod to its base type, build the appropriate |
| * coercion step. Mark it implicit for display purposes, because we don't |
| * want it shown separately by ruleutils.c; but the isExplicit flag passed |
| * to the conversion function depends on the manner in which the domain |
| * coercion is invoked, so that the semantics of implicit and explicit |
| * coercion differ. (Is that really the behavior we want?) |
| * |
| * NOTE: because we apply this as part of the fixed expression structure, |
| * ALTER DOMAIN cannot alter the typtypmod. But it's unclear that that |
| * would be safe to do anyway, without lots of knowledge about what the |
| * base type thinks the typmod means. |
| */ |
| arg = coerce_type_typmod(arg, baseTypeId, baseTypeMod, |
| ccontext, COERCE_IMPLICIT_CAST, location, |
| false); |
| |
| /* |
| * Now build the domain coercion node. This represents run-time checking |
| * of any constraints currently attached to the domain. This also ensures |
| * that the expression is properly labeled as to result type. |
| */ |
| result = makeNode(CoerceToDomain); |
| result->arg = (Expr *) arg; |
| result->resulttype = typeId; |
| result->resulttypmod = -1; /* currently, always -1 for domains */ |
| /* resultcollid will be set by parse_collate.c */ |
| result->coercionformat = cformat; |
| result->location = location; |
| |
| return (Node *) result; |
| } |
| |
| |
| /* |
| * coerce_type_typmod() |
| * Force a value to a particular typmod, if meaningful and possible. |
| * |
| * This is applied to values that are going to be stored in a relation |
| * (where we have an atttypmod for the column) as well as values being |
| * explicitly CASTed (where the typmod comes from the target type spec). |
| * |
| * The caller must have already ensured that the value is of the correct |
| * type, typically by applying coerce_type. |
| * |
| * ccontext may affect semantics, depending on whether the length coercion |
| * function pays attention to the isExplicit flag it's passed. |
| * |
| * cformat determines the display properties of the generated node (if any). |
| * |
| * If hideInputCoercion is true *and* we generate a node, the input node is |
| * forced to IMPLICIT display form, so that only the typmod coercion node will |
| * be visible when displaying the expression. |
| * |
| * NOTE: this does not need to work on domain types, because any typmod |
| * coercion for a domain is considered to be part of the type coercion |
| * needed to produce the domain value in the first place. So, no getBaseType. |
| */ |
| static Node * |
| coerce_type_typmod(Node *node, Oid targetTypeId, int32 targetTypMod, |
| CoercionContext ccontext, CoercionForm cformat, |
| int location, |
| bool hideInputCoercion) |
| { |
| CoercionPathType pathtype; |
| Oid funcId; |
| |
| /* Skip coercion if already done */ |
| if (targetTypMod == exprTypmod(node)) |
| return node; |
| |
| /* Suppress display of nested coercion steps */ |
| if (hideInputCoercion) |
| hide_coercion_node(node); |
| |
| /* |
| * A negative typmod means that no actual coercion is needed, but we still |
| * want a RelabelType to ensure that the expression exposes the intended |
| * typmod. |
| */ |
| if (targetTypMod < 0) |
| pathtype = COERCION_PATH_NONE; |
| else |
| pathtype = find_typmod_coercion_function(targetTypeId, &funcId); |
| |
| if (pathtype != COERCION_PATH_NONE) |
| { |
| node = build_coercion_expression(node, pathtype, funcId, |
| targetTypeId, targetTypMod, |
| ccontext, cformat, location); |
| } |
| else |
| { |
| /* |
| * We don't need to perform any actual coercion step, but we should |
| * apply a RelabelType to ensure that the expression exposes the |
| * intended typmod. |
| */ |
| node = applyRelabelType(node, targetTypeId, targetTypMod, |
| exprCollation(node), |
| cformat, location, false); |
| } |
| |
| return node; |
| } |
| |
| /* |
| * Mark a coercion node as IMPLICIT so it will never be displayed by |
| * ruleutils.c. We use this when we generate a nest of coercion nodes |
| * to implement what is logically one conversion; the inner nodes are |
| * forced to IMPLICIT_CAST format. This does not change their semantics, |
| * only display behavior. |
| * |
| * It is caller error to call this on something that doesn't have a |
| * CoercionForm field. |
| */ |
| static void |
| hide_coercion_node(Node *node) |
| { |
| if (IsA(node, FuncExpr)) |
| ((FuncExpr *) node)->funcformat = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, RelabelType)) |
| ((RelabelType *) node)->relabelformat = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, CoerceViaIO)) |
| ((CoerceViaIO *) node)->coerceformat = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, ArrayCoerceExpr)) |
| ((ArrayCoerceExpr *) node)->coerceformat = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, ConvertRowtypeExpr)) |
| ((ConvertRowtypeExpr *) node)->convertformat = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, RowExpr)) |
| ((RowExpr *) node)->row_format = COERCE_IMPLICIT_CAST; |
| else if (IsA(node, CoerceToDomain)) |
| ((CoerceToDomain *) node)->coercionformat = COERCE_IMPLICIT_CAST; |
| else |
| elog(ERROR, "unsupported node type: %d", (int) nodeTag(node)); |
| } |
| |
| /* |
| * build_coercion_expression() |
| * Construct an expression tree for applying a pg_cast entry. |
| * |
| * This is used for both type-coercion and length-coercion operations, |
| * since there is no difference in terms of the calling convention. |
| */ |
| static Node * |
| build_coercion_expression(Node *node, |
| CoercionPathType pathtype, |
| Oid funcId, |
| Oid targetTypeId, int32 targetTypMod, |
| CoercionContext ccontext, CoercionForm cformat, |
| int location) |
| { |
| int nargs = 0; |
| |
| if (OidIsValid(funcId)) |
| { |
| HeapTuple tp; |
| Form_pg_proc procstruct; |
| |
| tp = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcId)); |
| if (!HeapTupleIsValid(tp)) |
| elog(ERROR, "cache lookup failed for function %u", funcId); |
| procstruct = (Form_pg_proc) GETSTRUCT(tp); |
| |
| /* |
| * These Asserts essentially check that function is a legal coercion |
| * function. We can't make the seemingly obvious tests on prorettype |
| * and proargtypes[0], even in the COERCION_PATH_FUNC case, because of |
| * various binary-compatibility cases. |
| */ |
| /* Assert(targetTypeId == procstruct->prorettype); */ |
| Assert(!procstruct->proretset); |
| Assert(procstruct->prokind == PROKIND_FUNCTION); |
| nargs = procstruct->pronargs; |
| Assert(nargs >= 1 && nargs <= 3); |
| /* Assert(procstruct->proargtypes.values[0] == exprType(node)); */ |
| Assert(nargs < 2 || procstruct->proargtypes.values[1] == INT4OID); |
| Assert(nargs < 3 || procstruct->proargtypes.values[2] == BOOLOID); |
| |
| ReleaseSysCache(tp); |
| } |
| |
| if (pathtype == COERCION_PATH_FUNC) |
| { |
| /* We build an ordinary FuncExpr with special arguments */ |
| FuncExpr *fexpr; |
| List *args; |
| Const *cons; |
| |
| Assert(OidIsValid(funcId)); |
| |
| args = list_make1(node); |
| |
| if (nargs >= 2) |
| { |
| /* Pass target typmod as an int4 constant */ |
| cons = makeConst(INT4OID, |
| -1, |
| InvalidOid, |
| sizeof(int32), |
| Int32GetDatum(targetTypMod), |
| false, |
| true); |
| |
| args = lappend(args, cons); |
| } |
| |
| if (nargs == 3) |
| { |
| /* Pass it a boolean isExplicit parameter, too */ |
| cons = makeConst(BOOLOID, |
| -1, |
| InvalidOid, |
| sizeof(bool), |
| BoolGetDatum(ccontext == COERCION_EXPLICIT), |
| false, |
| true); |
| |
| args = lappend(args, cons); |
| } |
| |
| fexpr = makeFuncExpr(funcId, targetTypeId, args, |
| InvalidOid, InvalidOid, cformat); |
| fexpr->location = location; |
| return (Node *) fexpr; |
| } |
| else if (pathtype == COERCION_PATH_ARRAYCOERCE) |
| { |
| /* We need to build an ArrayCoerceExpr */ |
| ArrayCoerceExpr *acoerce = makeNode(ArrayCoerceExpr); |
| CaseTestExpr *ctest = makeNode(CaseTestExpr); |
| Oid sourceBaseTypeId; |
| int32 sourceBaseTypeMod; |
| Oid targetElementType; |
| Node *elemexpr; |
| |
| /* |
| * Look through any domain over the source array type. Note we don't |
| * expect that the target type is a domain; it must be a plain array. |
| * (To get to a domain target type, we'll do coerce_to_domain later.) |
| */ |
| sourceBaseTypeMod = exprTypmod(node); |
| sourceBaseTypeId = getBaseTypeAndTypmod(exprType(node), |
| &sourceBaseTypeMod); |
| |
| /* |
| * Set up a CaseTestExpr representing one element of the source array. |
| * This is an abuse of CaseTestExpr, but it's OK as long as there |
| * can't be any CaseExpr or ArrayCoerceExpr within the completed |
| * elemexpr. |
| */ |
| ctest->typeId = get_element_type(sourceBaseTypeId); |
| Assert(OidIsValid(ctest->typeId)); |
| ctest->typeMod = sourceBaseTypeMod; |
| ctest->collation = InvalidOid; /* Assume coercions don't care */ |
| |
| /* And coerce it to the target element type */ |
| targetElementType = get_element_type(targetTypeId); |
| Assert(OidIsValid(targetElementType)); |
| |
| elemexpr = coerce_to_target_type(NULL, |
| (Node *) ctest, |
| ctest->typeId, |
| targetElementType, |
| targetTypMod, |
| ccontext, |
| cformat, |
| location); |
| if (elemexpr == NULL) /* shouldn't happen */ |
| elog(ERROR, "failed to coerce array element type as expected"); |
| |
| acoerce->arg = (Expr *) node; |
| acoerce->elemexpr = (Expr *) elemexpr; |
| acoerce->resulttype = targetTypeId; |
| |
| /* |
| * Label the output as having a particular element typmod only if we |
| * ended up with a per-element expression that is labeled that way. |
| */ |
| acoerce->resulttypmod = exprTypmod(elemexpr); |
| /* resultcollid will be set by parse_collate.c */ |
| acoerce->coerceformat = cformat; |
| acoerce->location = location; |
| |
| return (Node *) acoerce; |
| } |
| else if (pathtype == COERCION_PATH_COERCEVIAIO) |
| { |
| /* We need to build a CoerceViaIO node */ |
| CoerceViaIO *iocoerce = makeNode(CoerceViaIO); |
| |
| Assert(!OidIsValid(funcId)); |
| |
| iocoerce->arg = (Expr *) node; |
| iocoerce->resulttype = targetTypeId; |
| /* resultcollid will be set by parse_collate.c */ |
| iocoerce->coerceformat = cformat; |
| iocoerce->location = location; |
| |
| return (Node *) iocoerce; |
| } |
| else |
| { |
| elog(ERROR, "unsupported pathtype %d in build_coercion_expression", |
| (int) pathtype); |
| return NULL; /* keep compiler quiet */ |
| } |
| } |
| |
| |
| /* |
| * coerce_record_to_complex |
| * Coerce a RECORD to a specific composite type. |
| * |
| * Currently we only support this for inputs that are RowExprs or whole-row |
| * Vars. |
| */ |
| static Node * |
| coerce_record_to_complex(ParseState *pstate, Node *node, |
| Oid targetTypeId, |
| CoercionContext ccontext, |
| CoercionForm cformat, |
| int location) |
| { |
| RowExpr *rowexpr; |
| Oid baseTypeId; |
| int32 baseTypeMod = -1; |
| TupleDesc tupdesc; |
| List *args = NIL; |
| List *newargs; |
| int i; |
| int ucolno; |
| ListCell *arg; |
| |
| if (node && IsA(node, RowExpr)) |
| { |
| /* |
| * Since the RowExpr must be of type RECORD, we needn't worry about it |
| * containing any dropped columns. |
| */ |
| args = ((RowExpr *) node)->args; |
| } |
| else if (node && IsA(node, Var) && |
| ((Var *) node)->varattno == InvalidAttrNumber) |
| { |
| int rtindex = ((Var *) node)->varno; |
| int sublevels_up = ((Var *) node)->varlevelsup; |
| int vlocation = ((Var *) node)->location; |
| ParseNamespaceItem *nsitem; |
| |
| nsitem = GetNSItemByRangeTablePosn(pstate, rtindex, sublevels_up); |
| args = expandNSItemVars(nsitem, sublevels_up, vlocation, NULL); |
| } |
| else |
| ereport(ERROR, |
| (errcode(ERRCODE_CANNOT_COERCE), |
| errmsg("cannot cast type %s to %s", |
| format_type_be(RECORDOID), |
| format_type_be(targetTypeId)), |
| parser_coercion_errposition(pstate, location, node))); |
| |
| /* |
| * Look up the composite type, accounting for possibility that what we are |
| * given is a domain over composite. |
| */ |
| baseTypeId = getBaseTypeAndTypmod(targetTypeId, &baseTypeMod); |
| tupdesc = lookup_rowtype_tupdesc(baseTypeId, baseTypeMod); |
| |
| /* Process the fields */ |
| newargs = NIL; |
| ucolno = 1; |
| arg = list_head(args); |
| for (i = 0; i < tupdesc->natts; i++) |
| { |
| Node *expr; |
| Node *cexpr; |
| Oid exprtype; |
| Form_pg_attribute attr = TupleDescAttr(tupdesc, i); |
| |
| /* Fill in NULLs for dropped columns in rowtype */ |
| if (attr->attisdropped) |
| { |
| /* |
| * can't use atttypid here, but it doesn't really matter what type |
| * the Const claims to be. |
| */ |
| newargs = lappend(newargs, |
| makeNullConst(INT4OID, -1, InvalidOid)); |
| continue; |
| } |
| |
| if (arg == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_CANNOT_COERCE), |
| errmsg("cannot cast type %s to %s", |
| format_type_be(RECORDOID), |
| format_type_be(targetTypeId)), |
| errdetail("Input has too few columns."), |
| parser_coercion_errposition(pstate, location, node))); |
| expr = (Node *) lfirst(arg); |
| exprtype = exprType(expr); |
| |
| cexpr = coerce_to_target_type(pstate, |
| expr, exprtype, |
| attr->atttypid, |
| attr->atttypmod, |
| ccontext, |
| COERCE_IMPLICIT_CAST, |
| -1); |
| if (cexpr == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_CANNOT_COERCE), |
| errmsg("cannot cast type %s to %s", |
| format_type_be(RECORDOID), |
| format_type_be(targetTypeId)), |
| errdetail("Cannot cast type %s to %s in column %d.", |
| format_type_be(exprtype), |
| format_type_be(attr->atttypid), |
| ucolno), |
| parser_coercion_errposition(pstate, location, expr))); |
| newargs = lappend(newargs, cexpr); |
| ucolno++; |
| arg = lnext(args, arg); |
| } |
| if (arg != NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_CANNOT_COERCE), |
| errmsg("cannot cast type %s to %s", |
| format_type_be(RECORDOID), |
| format_type_be(targetTypeId)), |
| errdetail("Input has too many columns."), |
| parser_coercion_errposition(pstate, location, node))); |
| |
| ReleaseTupleDesc(tupdesc); |
| |
| rowexpr = makeNode(RowExpr); |
| rowexpr->args = newargs; |
| rowexpr->row_typeid = baseTypeId; |
| rowexpr->row_format = cformat; |
| rowexpr->colnames = NIL; /* not needed for named target type */ |
| rowexpr->location = location; |
| |
| /* If target is a domain, apply constraints */ |
| if (baseTypeId != targetTypeId) |
| { |
| rowexpr->row_format = COERCE_IMPLICIT_CAST; |
| return coerce_to_domain((Node *) rowexpr, |
| baseTypeId, baseTypeMod, |
| targetTypeId, |
| ccontext, cformat, location, |
| false); |
| } |
| |
| return (Node *) rowexpr; |
| } |
| |
| /* |
| * coerce_to_boolean() |
| * Coerce an argument of a construct that requires boolean input |
| * (AND, OR, NOT, etc). Also check that input is not a set. |
| * |
| * Returns the possibly-transformed node tree. |
| * |
| * As with coerce_type, pstate may be NULL if no special unknown-Param |
| * processing is wanted. |
| */ |
| Node * |
| coerce_to_boolean(ParseState *pstate, Node *node, |
| const char *constructName) |
| { |
| Oid inputTypeId = exprType(node); |
| |
| if (inputTypeId != BOOLOID) |
| { |
| Node *newnode; |
| |
| newnode = coerce_to_target_type(pstate, node, inputTypeId, |
| BOOLOID, -1, |
| COERCION_ASSIGNMENT, |
| COERCE_IMPLICIT_CAST, |
| -1); |
| if (newnode == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| /* translator: first %s is name of a SQL construct, eg WHERE */ |
| errmsg("argument of %s must be type %s, not type %s", |
| constructName, "boolean", |
| format_type_be(inputTypeId)), |
| parser_errposition(pstate, exprLocation(node)))); |
| node = newnode; |
| } |
| |
| if (expression_returns_set(node)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| /* translator: %s is name of a SQL construct, eg WHERE */ |
| errmsg("argument of %s must not return a set", |
| constructName), |
| parser_errposition(pstate, exprLocation(node)))); |
| |
| return node; |
| } |
| |
| /* |
| * coerce_to_specific_type_typmod() |
| * Coerce an argument of a construct that requires a specific data type, |
| * with a specific typmod. Also check that input is not a set. |
| * |
| * Returns the possibly-transformed node tree. |
| * |
| * As with coerce_type, pstate may be NULL if no special unknown-Param |
| * processing is wanted. |
| */ |
| Node * |
| coerce_to_specific_type_typmod(ParseState *pstate, Node *node, |
| Oid targetTypeId, int32 targetTypmod, |
| const char *constructName) |
| { |
| Oid inputTypeId = exprType(node); |
| |
| if (inputTypeId != targetTypeId) |
| { |
| Node *newnode; |
| |
| newnode = coerce_to_target_type(pstate, node, inputTypeId, |
| targetTypeId, targetTypmod, |
| COERCION_ASSIGNMENT, |
| COERCE_IMPLICIT_CAST, |
| -1); |
| if (newnode == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| /* translator: first %s is name of a SQL construct, eg LIMIT */ |
| errmsg("argument of %s must be type %s, not type %s", |
| constructName, |
| format_type_be(targetTypeId), |
| format_type_be(inputTypeId)), |
| parser_errposition(pstate, exprLocation(node)))); |
| node = newnode; |
| } |
| |
| if (expression_returns_set(node)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| /* translator: %s is name of a SQL construct, eg LIMIT */ |
| errmsg("argument of %s must not return a set", |
| constructName), |
| parser_errposition(pstate, exprLocation(node)))); |
| |
| return node; |
| } |
| |
| /* |
| * coerce_to_specific_type() |
| * Coerce an argument of a construct that requires a specific data type. |
| * Also check that input is not a set. |
| * |
| * Returns the possibly-transformed node tree. |
| * |
| * As with coerce_type, pstate may be NULL if no special unknown-Param |
| * processing is wanted. |
| */ |
| Node * |
| coerce_to_specific_type(ParseState *pstate, Node *node, |
| Oid targetTypeId, |
| const char *constructName) |
| { |
| return coerce_to_specific_type_typmod(pstate, node, |
| targetTypeId, -1, |
| constructName); |
| } |
| |
| /* |
| * parser_coercion_errposition - report coercion error location, if possible |
| * |
| * We prefer to point at the coercion request (CAST, ::, etc) if possible; |
| * but there may be no such location in the case of an implicit coercion. |
| * In that case point at the input expression. |
| * |
| * XXX possibly this is more generally useful than coercion errors; |
| * if so, should rename and place with parser_errposition. |
| */ |
| void |
| parser_coercion_errposition(ParseState *pstate, |
| int coerce_location, |
| Node *input_expr) |
| { |
| if (coerce_location >= 0) |
| parser_errposition(pstate, coerce_location); |
| else |
| parser_errposition(pstate, exprLocation(input_expr)); |
| } |
| |
| |
| /* |
| * select_common_type() |
| * Determine the common supertype of a list of input expressions. |
| * This is used for determining the output type of CASE, UNION, |
| * and similar constructs. |
| * |
| * 'exprs' is a *nonempty* list of expressions. Note that earlier items |
| * in the list will be preferred if there is doubt. |
| * 'context' is a phrase to use in the error message if we fail to select |
| * a usable type. Pass NULL to have the routine return InvalidOid |
| * rather than throwing an error on failure. |
| * 'which_expr': if not NULL, receives a pointer to the particular input |
| * expression from which the result type was taken. |
| * |
| * Caution: "failure" just means that there were inputs of different type |
| * categories. It is not guaranteed that all the inputs are coercible to the |
| * selected type; caller must check that (see verify_common_type). |
| */ |
| Oid |
| select_common_type(ParseState *pstate, List *exprs, const char *context, |
| Node **which_expr) |
| { |
| Node *pexpr; |
| Oid ptype; |
| TYPCATEGORY pcategory; |
| bool pispreferred; |
| ListCell *lc; |
| |
| Assert(exprs != NIL); |
| pexpr = (Node *) linitial(exprs); |
| lc = list_second_cell(exprs); |
| ptype = exprType(pexpr); |
| |
| /* |
| * If all input types are valid and exactly the same, just pick that type. |
| * This is the only way that we will resolve the result as being a domain |
| * type; otherwise domains are smashed to their base types for comparison. |
| */ |
| if (ptype != UNKNOWNOID) |
| { |
| for_each_cell(lc, exprs, lc) |
| { |
| Node *nexpr = (Node *) lfirst(lc); |
| Oid ntype = exprType(nexpr); |
| |
| if (ntype != ptype) |
| break; |
| } |
| if (lc == NULL) /* got to the end of the list? */ |
| { |
| if (which_expr) |
| *which_expr = pexpr; |
| return ptype; |
| } |
| } |
| |
| /* |
| * Nope, so set up for the full algorithm. Note that at this point, lc |
| * points to the first list item with type different from pexpr's; we need |
| * not re-examine any items the previous loop advanced over. |
| */ |
| ptype = getBaseType(ptype); |
| get_type_category_preferred(ptype, &pcategory, &pispreferred); |
| |
| for_each_cell(lc, exprs, lc) |
| { |
| Node *nexpr = (Node *) lfirst(lc); |
| Oid ntype = getBaseType(exprType(nexpr)); |
| |
| /* move on to next one if no new information... */ |
| if (ntype != UNKNOWNOID && ntype != ptype) |
| { |
| TYPCATEGORY ncategory; |
| bool nispreferred; |
| |
| get_type_category_preferred(ntype, &ncategory, &nispreferred); |
| if (ptype == UNKNOWNOID) |
| { |
| /* so far, only unknowns so take anything... */ |
| pexpr = nexpr; |
| ptype = ntype; |
| pcategory = ncategory; |
| pispreferred = nispreferred; |
| } |
| else if (ncategory != pcategory) |
| { |
| /* |
| * both types in different categories? then not much hope... |
| */ |
| if (context == NULL) |
| return InvalidOid; |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| /*------ |
| translator: first %s is name of a SQL construct, eg CASE */ |
| errmsg("%s types %s and %s cannot be matched", |
| context, |
| format_type_be(ptype), |
| format_type_be(ntype)), |
| parser_errposition(pstate, exprLocation(nexpr)))); |
| } |
| else if (!pispreferred && |
| can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) && |
| !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) |
| { |
| /* |
| * take new type if can coerce to it implicitly but not the |
| * other way; but if we have a preferred type, stay on it. |
| */ |
| pexpr = nexpr; |
| ptype = ntype; |
| pcategory = ncategory; |
| pispreferred = nispreferred; |
| } |
| } |
| } |
| |
| /* |
| * If all the inputs were UNKNOWN type --- ie, unknown-type literals --- |
| * then resolve as type TEXT. This situation comes up with constructs |
| * like SELECT (CASE WHEN foo THEN 'bar' ELSE 'baz' END); SELECT 'foo' |
| * UNION SELECT 'bar'; It might seem desirable to leave the construct's |
| * output type as UNKNOWN, but that really doesn't work, because we'd |
| * probably end up needing a runtime coercion from UNKNOWN to something |
| * else, and we usually won't have it. We need to coerce the unknown |
| * literals while they are still literals, so a decision has to be made |
| * now. |
| */ |
| if (ptype == UNKNOWNOID) |
| ptype = TEXTOID; |
| |
| if (which_expr) |
| *which_expr = pexpr; |
| return ptype; |
| } |
| |
| /* |
| * select_common_type_from_oids() |
| * Determine the common supertype of an array of type OIDs. |
| * |
| * This is the same logic as select_common_type(), but working from |
| * an array of type OIDs not a list of expressions. As in that function, |
| * earlier entries in the array have some preference over later ones. |
| * On failure, return InvalidOid if noerror is true, else throw an error. |
| * |
| * Caution: "failure" just means that there were inputs of different type |
| * categories. It is not guaranteed that all the inputs are coercible to the |
| * selected type; caller must check that (see verify_common_type_from_oids). |
| * |
| * Note: neither caller will pass any UNKNOWNOID entries, so the tests |
| * for that in this function are dead code. However, they don't cost much, |
| * and it seems better to keep this logic as close to select_common_type() |
| * as possible. |
| */ |
| static Oid |
| select_common_type_from_oids(int nargs, const Oid *typeids, bool noerror) |
| { |
| Oid ptype; |
| TYPCATEGORY pcategory; |
| bool pispreferred; |
| int i = 1; |
| |
| Assert(nargs > 0); |
| ptype = typeids[0]; |
| |
| /* If all input types are valid and exactly the same, pick that type. */ |
| if (ptype != UNKNOWNOID) |
| { |
| for (; i < nargs; i++) |
| { |
| if (typeids[i] != ptype) |
| break; |
| } |
| if (i == nargs) |
| return ptype; |
| } |
| |
| /* |
| * Nope, so set up for the full algorithm. Note that at this point, we |
| * can skip array entries before "i"; they are all equal to ptype. |
| */ |
| ptype = getBaseType(ptype); |
| get_type_category_preferred(ptype, &pcategory, &pispreferred); |
| |
| for (; i < nargs; i++) |
| { |
| Oid ntype = getBaseType(typeids[i]); |
| |
| /* move on to next one if no new information... */ |
| if (ntype != UNKNOWNOID && ntype != ptype) |
| { |
| TYPCATEGORY ncategory; |
| bool nispreferred; |
| |
| get_type_category_preferred(ntype, &ncategory, &nispreferred); |
| if (ptype == UNKNOWNOID) |
| { |
| /* so far, only unknowns so take anything... */ |
| ptype = ntype; |
| pcategory = ncategory; |
| pispreferred = nispreferred; |
| } |
| else if (ncategory != pcategory) |
| { |
| /* |
| * both types in different categories? then not much hope... |
| */ |
| if (noerror) |
| return InvalidOid; |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument types %s and %s cannot be matched", |
| format_type_be(ptype), |
| format_type_be(ntype)))); |
| } |
| else if (!pispreferred && |
| can_coerce_type(1, &ptype, &ntype, COERCION_IMPLICIT) && |
| !can_coerce_type(1, &ntype, &ptype, COERCION_IMPLICIT)) |
| { |
| /* |
| * take new type if can coerce to it implicitly but not the |
| * other way; but if we have a preferred type, stay on it. |
| */ |
| ptype = ntype; |
| pcategory = ncategory; |
| pispreferred = nispreferred; |
| } |
| } |
| } |
| |
| /* Like select_common_type(), choose TEXT if all inputs were UNKNOWN */ |
| if (ptype == UNKNOWNOID) |
| ptype = TEXTOID; |
| |
| return ptype; |
| } |
| |
| /* |
| * coerce_to_common_type() |
| * Coerce an expression to the given type. |
| * |
| * This is used following select_common_type() to coerce the individual |
| * expressions to the desired type. 'context' is a phrase to use in the |
| * error message if we fail to coerce. |
| * |
| * As with coerce_type, pstate may be NULL if no special unknown-Param |
| * processing is wanted. |
| */ |
| Node * |
| coerce_to_common_type(ParseState *pstate, Node *node, |
| Oid targetTypeId, const char *context) |
| { |
| Oid inputTypeId = exprType(node); |
| |
| if (inputTypeId == targetTypeId) |
| return node; /* no work */ |
| if (can_coerce_type(1, &inputTypeId, &targetTypeId, COERCION_IMPLICIT)) |
| node = coerce_type(pstate, node, inputTypeId, targetTypeId, -1, |
| COERCION_IMPLICIT, COERCE_IMPLICIT_CAST, -1); |
| else |
| ereport(ERROR, |
| (errcode(ERRCODE_CANNOT_COERCE), |
| /* translator: first %s is name of a SQL construct, eg CASE */ |
| errmsg("%s could not convert type %s to %s", |
| context, |
| format_type_be(inputTypeId), |
| format_type_be(targetTypeId)), |
| parser_errposition(pstate, exprLocation(node)))); |
| return node; |
| } |
| |
| /* |
| * verify_common_type() |
| * Verify that all input types can be coerced to a proposed common type. |
| * Return true if so, false if not all coercions are possible. |
| * |
| * Most callers of select_common_type() don't need to do this explicitly |
| * because the checks will happen while trying to convert input expressions |
| * to the right type, e.g. in coerce_to_common_type(). However, if a separate |
| * check step is needed to validate the applicability of the common type, call |
| * this. |
| */ |
| bool |
| verify_common_type(Oid common_type, List *exprs) |
| { |
| ListCell *lc; |
| |
| foreach(lc, exprs) |
| { |
| Node *nexpr = (Node *) lfirst(lc); |
| Oid ntype = exprType(nexpr); |
| |
| if (!can_coerce_type(1, &ntype, &common_type, COERCION_IMPLICIT)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * verify_common_type_from_oids() |
| * As above, but work from an array of type OIDs. |
| */ |
| static bool |
| verify_common_type_from_oids(Oid common_type, int nargs, const Oid *typeids) |
| { |
| for (int i = 0; i < nargs; i++) |
| { |
| if (!can_coerce_type(1, &typeids[i], &common_type, COERCION_IMPLICIT)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * select_common_typmod() |
| * Determine the common typmod of a list of input expressions. |
| * |
| * common_type is the selected common type of the expressions, typically |
| * computed using select_common_type(). |
| */ |
| int32 |
| select_common_typmod(ParseState *pstate, List *exprs, Oid common_type) |
| { |
| ListCell *lc; |
| bool first = true; |
| int32 result = -1; |
| |
| foreach(lc, exprs) |
| { |
| Node *expr = (Node *) lfirst(lc); |
| |
| /* Types must match */ |
| if (exprType(expr) != common_type) |
| return -1; |
| else if (first) |
| { |
| result = exprTypmod(expr); |
| first = false; |
| } |
| else |
| { |
| /* As soon as we see a non-matching typmod, fall back to -1 */ |
| if (result != exprTypmod(expr)) |
| return -1; |
| } |
| } |
| |
| return result; |
| } |
| |
| /* |
| * check_generic_type_consistency() |
| * Are the actual arguments potentially compatible with a |
| * polymorphic function? |
| * |
| * The argument consistency rules are: |
| * |
| * 1) All arguments declared ANYELEMENT must have the same datatype. |
| * 2) All arguments declared ANYARRAY must have the same datatype, |
| * which must be a varlena array type. |
| * 3) All arguments declared ANYRANGE must be the same range type. |
| * Similarly, all arguments declared ANYMULTIRANGE must be the same |
| * multirange type; and if both of these appear, the ANYRANGE type |
| * must be the element type of the ANYMULTIRANGE type. |
| * 4) If there are arguments of more than one of these polymorphic types, |
| * the array element type and/or range subtype must be the same as each |
| * other and the same as the ANYELEMENT type. |
| * 5) ANYENUM is treated the same as ANYELEMENT except that if it is used |
| * (alone or in combination with plain ANYELEMENT), we add the extra |
| * condition that the ANYELEMENT type must be an enum. |
| * 6) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, |
| * we add the extra condition that the ANYELEMENT type must not be an array. |
| * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but |
| * is an extra restriction if not.) |
| * 7) All arguments declared ANYCOMPATIBLE must be implicitly castable |
| * to a common supertype (chosen as per select_common_type's rules). |
| * ANYCOMPATIBLENONARRAY works like ANYCOMPATIBLE but also requires the |
| * common supertype to not be an array. If there are ANYCOMPATIBLEARRAY |
| * or ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE arguments, their element |
| * types or subtypes are included while making the choice of common supertype. |
| * 8) The resolved type of ANYCOMPATIBLEARRAY arguments will be the array |
| * type over the common supertype (which might not be the same array type |
| * as any of the original arrays). |
| * 9) All ANYCOMPATIBLERANGE arguments must be the exact same range type |
| * (after domain flattening), since we have no preference rule that would |
| * let us choose one over another. Furthermore, that range's subtype |
| * must exactly match the common supertype chosen by rule 7. |
| * 10) All ANYCOMPATIBLEMULTIRANGE arguments must be the exact same multirange |
| * type (after domain flattening), since we have no preference rule that |
| * would let us choose one over another. Furthermore, if ANYCOMPATIBLERANGE |
| * also appears, that range type must be the multirange's element type; |
| * otherwise, the multirange's range's subtype must exactly match the |
| * common supertype chosen by rule 7. |
| * |
| * Domains over arrays match ANYARRAY, and are immediately flattened to their |
| * base type. (Thus, for example, we will consider it a match if one ANYARRAY |
| * argument is a domain over int4[] while another one is just int4[].) Also |
| * notice that such a domain does *not* match ANYNONARRAY. The same goes |
| * for ANYCOMPATIBLEARRAY and ANYCOMPATIBLENONARRAY. |
| * |
| * Similarly, domains over ranges match ANYRANGE or ANYCOMPATIBLERANGE, |
| * and are immediately flattened to their base type. Likewise, domains |
| * over multiranges match ANYMULTIRANGE or ANYCOMPATIBLEMULTIRANGE and are |
| * immediately flattened to their base type. |
| * |
| * Note that domains aren't currently considered to match ANYENUM, |
| * even if their base type would match. |
| * |
| * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic |
| * argument, assume it is okay. |
| * |
| * We do not ereport here, but just return false if a rule is violated. |
| */ |
| bool |
| check_generic_type_consistency(const Oid *actual_arg_types, |
| const Oid *declared_arg_types, |
| int nargs) |
| { |
| Oid elem_typeid = InvalidOid; |
| Oid array_typeid = InvalidOid; |
| Oid range_typeid = InvalidOid; |
| Oid multirange_typeid = InvalidOid; |
| Oid anycompatible_range_typeid = InvalidOid; |
| Oid anycompatible_range_typelem = InvalidOid; |
| Oid anycompatible_multirange_typeid = InvalidOid; |
| Oid anycompatible_multirange_typelem = InvalidOid; |
| Oid range_typelem = InvalidOid; |
| bool have_anynonarray = false; |
| bool have_anyenum = false; |
| bool have_anycompatible_nonarray = false; |
| int n_anycompatible_args = 0; |
| Oid anycompatible_actual_types[FUNC_MAX_ARGS]; |
| |
| /* |
| * Loop through the arguments to see if we have any that are polymorphic. |
| * If so, require the actual types to be consistent. |
| */ |
| Assert(nargs <= FUNC_MAX_ARGS); |
| for (int j = 0; j < nargs; j++) |
| { |
| Oid decl_type = declared_arg_types[j]; |
| Oid actual_type = actual_arg_types[j]; |
| |
| if (decl_type == ANYELEMENTOID || |
| decl_type == ANYNONARRAYOID || |
| decl_type == ANYENUMOID) |
| { |
| if (decl_type == ANYNONARRAYOID) |
| have_anynonarray = true; |
| else if (decl_type == ANYENUMOID) |
| have_anyenum = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| if (OidIsValid(elem_typeid) && actual_type != elem_typeid) |
| return false; |
| elem_typeid = actual_type; |
| } |
| else if (decl_type == ANYARRAYOID) |
| { |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(array_typeid) && actual_type != array_typeid) |
| return false; |
| array_typeid = actual_type; |
| } |
| else if (decl_type == ANYRANGEOID) |
| { |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(range_typeid) && actual_type != range_typeid) |
| return false; |
| range_typeid = actual_type; |
| } |
| else if (decl_type == ANYMULTIRANGEOID) |
| { |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid) |
| return false; |
| multirange_typeid = actual_type; |
| } |
| else if (decl_type == ANYCOMPATIBLEOID || |
| decl_type == ANYCOMPATIBLENONARRAYOID) |
| { |
| if (decl_type == ANYCOMPATIBLENONARRAYOID) |
| have_anycompatible_nonarray = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| /* collect the actual types of non-unknown COMPATIBLE args */ |
| anycompatible_actual_types[n_anycompatible_args++] = actual_type; |
| } |
| else if (decl_type == ANYCOMPATIBLEARRAYOID) |
| { |
| Oid elem_type; |
| |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| elem_type = get_element_type(actual_type); |
| if (!OidIsValid(elem_type)) |
| return false; /* not an array */ |
| /* collect the element type for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = elem_type; |
| } |
| else if (decl_type == ANYCOMPATIBLERANGEOID) |
| { |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(anycompatible_range_typeid)) |
| { |
| /* All ANYCOMPATIBLERANGE arguments must be the same type */ |
| if (anycompatible_range_typeid != actual_type) |
| return false; |
| } |
| else |
| { |
| anycompatible_range_typeid = actual_type; |
| anycompatible_range_typelem = get_range_subtype(actual_type); |
| if (!OidIsValid(anycompatible_range_typelem)) |
| return false; /* not a range type */ |
| /* collect the subtype for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem; |
| } |
| } |
| else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) |
| { |
| if (actual_type == UNKNOWNOID) |
| continue; |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(anycompatible_multirange_typeid)) |
| { |
| /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */ |
| if (anycompatible_multirange_typeid != actual_type) |
| return false; |
| } |
| else |
| { |
| anycompatible_multirange_typeid = actual_type; |
| anycompatible_multirange_typelem = get_multirange_range(actual_type); |
| if (!OidIsValid(anycompatible_multirange_typelem)) |
| return false; /* not a multirange type */ |
| /* we'll consider the subtype below */ |
| } |
| } |
| } |
| |
| /* Get the element type based on the array type, if we have one */ |
| if (OidIsValid(array_typeid)) |
| { |
| if (array_typeid == ANYARRAYOID) |
| { |
| /* |
| * Special case for matching ANYARRAY input to an ANYARRAY |
| * argument: allow it for now. enforce_generic_type_consistency() |
| * might complain later, depending on the presence of other |
| * polymorphic arguments or results, but it will deliver a less |
| * surprising error message than "function does not exist". |
| * |
| * (If you think to change this, note that can_coerce_type will |
| * consider such a situation as a match, so that we might not even |
| * get here.) |
| */ |
| } |
| else |
| { |
| Oid array_typelem; |
| |
| array_typelem = get_element_type(array_typeid); |
| if (!OidIsValid(array_typelem)) |
| return false; /* should be an array, but isn't */ |
| |
| if (!OidIsValid(elem_typeid)) |
| { |
| /* |
| * if we don't have an element type yet, use the one we just |
| * got |
| */ |
| elem_typeid = array_typelem; |
| } |
| else if (array_typelem != elem_typeid) |
| { |
| /* otherwise, they better match */ |
| return false; |
| } |
| } |
| } |
| |
| /* Deduce range type from multirange type, or check that they agree */ |
| if (OidIsValid(multirange_typeid)) |
| { |
| Oid multirange_typelem; |
| |
| multirange_typelem = get_multirange_range(multirange_typeid); |
| if (!OidIsValid(multirange_typelem)) |
| return false; /* should be a multirange, but isn't */ |
| |
| if (!OidIsValid(range_typeid)) |
| { |
| /* If we don't have a range type yet, use the one we just got */ |
| range_typeid = multirange_typelem; |
| range_typelem = get_range_subtype(multirange_typelem); |
| if (!OidIsValid(range_typelem)) |
| return false; /* should be a range, but isn't */ |
| } |
| else if (multirange_typelem != range_typeid) |
| { |
| /* otherwise, they better match */ |
| return false; |
| } |
| } |
| |
| /* Get the element type based on the range type, if we have one */ |
| if (OidIsValid(range_typeid)) |
| { |
| range_typelem = get_range_subtype(range_typeid); |
| if (!OidIsValid(range_typelem)) |
| return false; /* should be a range, but isn't */ |
| |
| if (!OidIsValid(elem_typeid)) |
| { |
| /* |
| * If we don't have an element type yet, use the one we just got |
| */ |
| elem_typeid = range_typelem; |
| } |
| else if (range_typelem != elem_typeid) |
| { |
| /* otherwise, they better match */ |
| return false; |
| } |
| } |
| |
| if (have_anynonarray) |
| { |
| /* require the element type to not be an array or domain over array */ |
| if (type_is_array_domain(elem_typeid)) |
| return false; |
| } |
| |
| if (have_anyenum) |
| { |
| /* require the element type to be an enum */ |
| if (!type_is_enum(elem_typeid)) |
| return false; |
| } |
| |
| /* Deduce range type from multirange type, or check that they agree */ |
| if (OidIsValid(anycompatible_multirange_typeid)) |
| { |
| if (OidIsValid(anycompatible_range_typeid)) |
| { |
| if (anycompatible_multirange_typelem != |
| anycompatible_range_typeid) |
| return false; |
| } |
| else |
| { |
| anycompatible_range_typeid = anycompatible_multirange_typelem; |
| anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid); |
| if (!OidIsValid(anycompatible_range_typelem)) |
| return false; /* not a range type */ |
| /* collect the subtype for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = |
| anycompatible_range_typelem; |
| } |
| } |
| |
| /* Check matching of ANYCOMPATIBLE-family arguments, if any */ |
| if (n_anycompatible_args > 0) |
| { |
| Oid anycompatible_typeid; |
| |
| anycompatible_typeid = |
| select_common_type_from_oids(n_anycompatible_args, |
| anycompatible_actual_types, |
| true); |
| |
| if (!OidIsValid(anycompatible_typeid)) |
| return false; /* there's definitely no common supertype */ |
| |
| /* We have to verify that the selected type actually works */ |
| if (!verify_common_type_from_oids(anycompatible_typeid, |
| n_anycompatible_args, |
| anycompatible_actual_types)) |
| return false; |
| |
| if (have_anycompatible_nonarray) |
| { |
| /* |
| * require the anycompatible type to not be an array or domain |
| * over array |
| */ |
| if (type_is_array_domain(anycompatible_typeid)) |
| return false; |
| } |
| |
| /* |
| * The anycompatible type must exactly match the range element type, |
| * if we were able to identify one. This checks compatibility for |
| * anycompatiblemultirange too since that also sets |
| * anycompatible_range_typelem above. |
| */ |
| if (OidIsValid(anycompatible_range_typelem) && |
| anycompatible_range_typelem != anycompatible_typeid) |
| return false; |
| } |
| |
| /* Looks valid */ |
| return true; |
| } |
| |
| /* |
| * enforce_generic_type_consistency() |
| * Make sure a polymorphic function is legally callable, and |
| * deduce actual argument and result types. |
| * |
| * If any polymorphic pseudotype is used in a function's arguments or |
| * return type, we make sure the actual data types are consistent with |
| * each other. The argument consistency rules are shown above for |
| * check_generic_type_consistency(). |
| * |
| * If we have UNKNOWN input (ie, an untyped literal) for any polymorphic |
| * argument, we attempt to deduce the actual type it should have. If |
| * successful, we alter that position of declared_arg_types[] so that |
| * make_fn_arguments will coerce the literal to the right thing. |
| * |
| * If we have polymorphic arguments of the ANYCOMPATIBLE family, |
| * we similarly alter declared_arg_types[] entries to show the resolved |
| * common supertype, so that make_fn_arguments will coerce the actual |
| * arguments to the proper type. |
| * |
| * Rules are applied to the function's return type (possibly altering it) |
| * if it is declared as a polymorphic type and there is at least one |
| * polymorphic argument type: |
| * |
| * 1) If return type is ANYELEMENT, and any argument is ANYELEMENT, use the |
| * argument's actual type as the function's return type. |
| * 2) If return type is ANYARRAY, and any argument is ANYARRAY, use the |
| * argument's actual type as the function's return type. |
| * 3) Similarly, if return type is ANYRANGE or ANYMULTIRANGE, and any |
| * argument is ANYRANGE or ANYMULTIRANGE, use that argument's actual type |
| * (or the corresponding range or multirange type) as the function's return |
| * type. |
| * 4) Otherwise, if return type is ANYELEMENT or ANYARRAY, and there is |
| * at least one ANYELEMENT, ANYARRAY, ANYRANGE, or ANYMULTIRANGE input, |
| * deduce the return type from those inputs, or throw error if we can't. |
| * 5) Otherwise, if return type is ANYRANGE or ANYMULTIRANGE, throw error. |
| * (We have no way to select a specific range type if the arguments don't |
| * include ANYRANGE or ANYMULTIRANGE.) |
| * 6) ANYENUM is treated the same as ANYELEMENT except that if it is used |
| * (alone or in combination with plain ANYELEMENT), we add the extra |
| * condition that the ANYELEMENT type must be an enum. |
| * 7) ANYNONARRAY is treated the same as ANYELEMENT except that if it is used, |
| * we add the extra condition that the ANYELEMENT type must not be an array. |
| * (This is a no-op if used in combination with ANYARRAY or ANYENUM, but |
| * is an extra restriction if not.) |
| * 8) ANYCOMPATIBLE, ANYCOMPATIBLEARRAY, and ANYCOMPATIBLENONARRAY are handled |
| * by resolving the common supertype of those arguments (or their element |
| * types, for array inputs), and then coercing all those arguments to the |
| * common supertype, or the array type over the common supertype for |
| * ANYCOMPATIBLEARRAY. |
| * 9) For ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE, there must be at |
| * least one non-UNKNOWN input matching those arguments, and all such |
| * inputs must be the same range type (or its multirange type, as |
| * appropriate), since we cannot deduce a range type from non-range types. |
| * Furthermore, the range type's subtype is included while choosing the |
| * common supertype for ANYCOMPATIBLE et al, and it must exactly match |
| * that common supertype. |
| * |
| * Domains over arrays or ranges match ANYARRAY or ANYRANGE arguments, |
| * respectively, and are immediately flattened to their base type. (In |
| * particular, if the return type is also ANYARRAY or ANYRANGE, we'll set |
| * it to the base type not the domain type.) The same is true for |
| * ANYMULTIRANGE, ANYCOMPATIBLEARRAY, ANYCOMPATIBLERANGE, and |
| * ANYCOMPATIBLEMULTIRANGE. |
| * |
| * When allow_poly is false, we are not expecting any of the actual_arg_types |
| * to be polymorphic, and we should not return a polymorphic result type |
| * either. When allow_poly is true, it is okay to have polymorphic "actual" |
| * arg types, and we can return a matching polymorphic type as the result. |
| * (This case is currently used only to check compatibility of an aggregate's |
| * declaration with the underlying transfn.) |
| * |
| * A special case is that we could see ANYARRAY as an actual_arg_type even |
| * when allow_poly is false (this is possible only because pg_statistic has |
| * columns shown as anyarray in the catalogs). We allow this to match a |
| * declared ANYARRAY argument, but only if there is no other polymorphic |
| * argument that we would need to match it with, and no need to determine |
| * the element type to infer the result type. Note this means that functions |
| * taking ANYARRAY had better behave sanely if applied to the pg_statistic |
| * columns; they can't just assume that successive inputs are of the same |
| * actual element type. There is no similar logic for ANYCOMPATIBLEARRAY; |
| * there isn't a need for it since there are no catalog columns of that type, |
| * so we won't see it as input. We could consider matching an actual ANYARRAY |
| * input to an ANYCOMPATIBLEARRAY argument, but at present that seems useless |
| * as well, since there's no value in using ANYCOMPATIBLEARRAY unless there's |
| * at least one other ANYCOMPATIBLE-family argument or result. |
| * |
| * Also, if there are no arguments declared to be of polymorphic types, |
| * we'll return the rettype unmodified even if it's polymorphic. This should |
| * never occur for user-declared functions, because CREATE FUNCTION prevents |
| * it. But it does happen for some built-in functions, such as array_in(). |
| */ |
| Oid |
| enforce_generic_type_consistency(const Oid *actual_arg_types, |
| Oid *declared_arg_types, |
| int nargs, |
| Oid rettype, |
| bool allow_poly) |
| { |
| bool have_poly_anycompatible = false; |
| bool have_poly_unknowns = false; |
| Oid elem_typeid = InvalidOid; |
| Oid array_typeid = InvalidOid; |
| Oid range_typeid = InvalidOid; |
| Oid multirange_typeid = InvalidOid; |
| Oid anycompatible_typeid = InvalidOid; |
| Oid anycompatible_array_typeid = InvalidOid; |
| Oid anycompatible_range_typeid = InvalidOid; |
| Oid anycompatible_range_typelem = InvalidOid; |
| Oid anycompatible_multirange_typeid = InvalidOid; |
| Oid anycompatible_multirange_typelem = InvalidOid; |
| bool have_anynonarray = (rettype == ANYNONARRAYOID); |
| bool have_anyenum = (rettype == ANYENUMOID); |
| bool have_anymultirange = (rettype == ANYMULTIRANGEOID); |
| bool have_anycompatible_nonarray = (rettype == ANYCOMPATIBLENONARRAYOID); |
| bool have_anycompatible_array = (rettype == ANYCOMPATIBLEARRAYOID); |
| bool have_anycompatible_range = (rettype == ANYCOMPATIBLERANGEOID); |
| bool have_anycompatible_multirange = (rettype == ANYCOMPATIBLEMULTIRANGEOID); |
| int n_poly_args = 0; /* this counts all family-1 arguments */ |
| int n_anycompatible_args = 0; /* this counts only non-unknowns */ |
| Oid anycompatible_actual_types[FUNC_MAX_ARGS]; |
| |
| /* |
| * Loop through the arguments to see if we have any that are polymorphic. |
| * If so, require the actual types to be consistent. |
| */ |
| Assert(nargs <= FUNC_MAX_ARGS); |
| for (int j = 0; j < nargs; j++) |
| { |
| Oid decl_type = declared_arg_types[j]; |
| Oid actual_type = actual_arg_types[j]; |
| |
| if (decl_type == ANYELEMENTOID || |
| decl_type == ANYNONARRAYOID || |
| decl_type == ANYENUMOID) |
| { |
| n_poly_args++; |
| if (decl_type == ANYNONARRAYOID) |
| have_anynonarray = true; |
| else if (decl_type == ANYENUMOID) |
| have_anyenum = true; |
| if (actual_type == UNKNOWNOID) |
| { |
| have_poly_unknowns = true; |
| continue; |
| } |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| if (OidIsValid(elem_typeid) && actual_type != elem_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anyelement"), |
| errdetail("%s versus %s", |
| format_type_be(elem_typeid), |
| format_type_be(actual_type)))); |
| elem_typeid = actual_type; |
| } |
| else if (decl_type == ANYARRAYOID) |
| { |
| n_poly_args++; |
| if (actual_type == UNKNOWNOID) |
| { |
| have_poly_unknowns = true; |
| continue; |
| } |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(array_typeid) && actual_type != array_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anyarray"), |
| errdetail("%s versus %s", |
| format_type_be(array_typeid), |
| format_type_be(actual_type)))); |
| array_typeid = actual_type; |
| } |
| else if (decl_type == ANYRANGEOID) |
| { |
| n_poly_args++; |
| if (actual_type == UNKNOWNOID) |
| { |
| have_poly_unknowns = true; |
| continue; |
| } |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(range_typeid) && actual_type != range_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anyrange"), |
| errdetail("%s versus %s", |
| format_type_be(range_typeid), |
| format_type_be(actual_type)))); |
| range_typeid = actual_type; |
| } |
| else if (decl_type == ANYMULTIRANGEOID) |
| { |
| n_poly_args++; |
| have_anymultirange = true; |
| if (actual_type == UNKNOWNOID) |
| { |
| have_poly_unknowns = true; |
| continue; |
| } |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(multirange_typeid) && actual_type != multirange_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anymultirange"), |
| errdetail("%s versus %s", |
| format_type_be(multirange_typeid), |
| format_type_be(actual_type)))); |
| multirange_typeid = actual_type; |
| } |
| else if (decl_type == ANYCOMPATIBLEOID || |
| decl_type == ANYCOMPATIBLENONARRAYOID) |
| { |
| have_poly_anycompatible = true; |
| if (decl_type == ANYCOMPATIBLENONARRAYOID) |
| have_anycompatible_nonarray = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| /* collect the actual types of non-unknown COMPATIBLE args */ |
| anycompatible_actual_types[n_anycompatible_args++] = actual_type; |
| } |
| else if (decl_type == ANYCOMPATIBLEARRAYOID) |
| { |
| Oid anycompatible_elem_type; |
| |
| have_poly_anycompatible = true; |
| have_anycompatible_array = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| anycompatible_elem_type = get_element_type(actual_type); |
| if (!OidIsValid(anycompatible_elem_type)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not an array but type %s", |
| "anycompatiblearray", |
| format_type_be(actual_type)))); |
| /* collect the element type for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = anycompatible_elem_type; |
| } |
| else if (decl_type == ANYCOMPATIBLERANGEOID) |
| { |
| have_poly_anycompatible = true; |
| have_anycompatible_range = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(anycompatible_range_typeid)) |
| { |
| /* All ANYCOMPATIBLERANGE arguments must be the same type */ |
| if (anycompatible_range_typeid != actual_type) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anycompatiblerange"), |
| errdetail("%s versus %s", |
| format_type_be(anycompatible_range_typeid), |
| format_type_be(actual_type)))); |
| } |
| else |
| { |
| anycompatible_range_typeid = actual_type; |
| anycompatible_range_typelem = get_range_subtype(actual_type); |
| if (!OidIsValid(anycompatible_range_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not a range type but type %s", |
| "anycompatiblerange", |
| format_type_be(actual_type)))); |
| /* collect the subtype for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = anycompatible_range_typelem; |
| } |
| } |
| else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) |
| { |
| have_poly_anycompatible = true; |
| have_anycompatible_multirange = true; |
| if (actual_type == UNKNOWNOID) |
| continue; |
| if (allow_poly && decl_type == actual_type) |
| continue; /* no new information here */ |
| actual_type = getBaseType(actual_type); /* flatten domains */ |
| if (OidIsValid(anycompatible_multirange_typeid)) |
| { |
| /* All ANYCOMPATIBLEMULTIRANGE arguments must be the same type */ |
| if (anycompatible_multirange_typeid != actual_type) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments declared \"%s\" are not all alike", "anycompatiblemultirange"), |
| errdetail("%s versus %s", |
| format_type_be(anycompatible_multirange_typeid), |
| format_type_be(actual_type)))); |
| } |
| else |
| { |
| anycompatible_multirange_typeid = actual_type; |
| anycompatible_multirange_typelem = get_multirange_range(actual_type); |
| if (!OidIsValid(anycompatible_multirange_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not a multirange type but type %s", |
| "anycompatiblemultirange", |
| format_type_be(actual_type)))); |
| /* we'll consider the subtype below */ |
| } |
| } |
| } |
| |
| /* |
| * Fast Track: if none of the arguments are polymorphic, return the |
| * unmodified rettype. Not our job to resolve it if it's polymorphic. |
| */ |
| if (n_poly_args == 0 && !have_poly_anycompatible) |
| return rettype; |
| |
| /* Check matching of family-1 polymorphic arguments, if any */ |
| if (n_poly_args) |
| { |
| /* Get the element type based on the array type, if we have one */ |
| if (OidIsValid(array_typeid)) |
| { |
| Oid array_typelem; |
| |
| if (array_typeid == ANYARRAYOID) |
| { |
| /* |
| * Special case for matching ANYARRAY input to an ANYARRAY |
| * argument: allow it iff no other arguments are family-1 |
| * polymorphics (otherwise we couldn't be sure whether the |
| * array element type matches up) and the result type doesn't |
| * require us to infer a specific element type. |
| */ |
| if (n_poly_args != 1 || |
| (rettype != ANYARRAYOID && |
| IsPolymorphicTypeFamily1(rettype))) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("cannot determine element type of \"anyarray\" argument"))); |
| array_typelem = ANYELEMENTOID; |
| } |
| else |
| { |
| array_typelem = get_element_type(array_typeid); |
| if (!OidIsValid(array_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not an array but type %s", |
| "anyarray", format_type_be(array_typeid)))); |
| } |
| |
| if (!OidIsValid(elem_typeid)) |
| { |
| /* |
| * if we don't have an element type yet, use the one we just |
| * got |
| */ |
| elem_typeid = array_typelem; |
| } |
| else if (array_typelem != elem_typeid) |
| { |
| /* otherwise, they better match */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not consistent with argument declared %s", |
| "anyarray", "anyelement"), |
| errdetail("%s versus %s", |
| format_type_be(array_typeid), |
| format_type_be(elem_typeid)))); |
| } |
| } |
| |
| /* Deduce range type from multirange type, or vice versa */ |
| if (OidIsValid(multirange_typeid)) |
| { |
| Oid multirange_typelem; |
| |
| multirange_typelem = get_multirange_range(multirange_typeid); |
| if (!OidIsValid(multirange_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not a multirange type but type %s", |
| "anymultirange", |
| format_type_be(multirange_typeid)))); |
| |
| if (!OidIsValid(range_typeid)) |
| { |
| /* if we don't have a range type yet, use the one we just got */ |
| range_typeid = multirange_typelem; |
| } |
| else if (multirange_typelem != range_typeid) |
| { |
| /* otherwise, they better match */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not consistent with argument declared %s", |
| "anymultirange", "anyrange"), |
| errdetail("%s versus %s", |
| format_type_be(multirange_typeid), |
| format_type_be(range_typeid)))); |
| } |
| } |
| else if (have_anymultirange && OidIsValid(range_typeid)) |
| { |
| multirange_typeid = get_range_multirange(range_typeid); |
| /* We'll complain below if that didn't work */ |
| } |
| |
| /* Get the element type based on the range type, if we have one */ |
| if (OidIsValid(range_typeid)) |
| { |
| Oid range_typelem; |
| |
| range_typelem = get_range_subtype(range_typeid); |
| if (!OidIsValid(range_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not a range type but type %s", |
| "anyrange", |
| format_type_be(range_typeid)))); |
| |
| if (!OidIsValid(elem_typeid)) |
| { |
| /* |
| * if we don't have an element type yet, use the one we just |
| * got |
| */ |
| elem_typeid = range_typelem; |
| } |
| else if (range_typelem != elem_typeid) |
| { |
| /* otherwise, they better match */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not consistent with argument declared %s", |
| "anyrange", "anyelement"), |
| errdetail("%s versus %s", |
| format_type_be(range_typeid), |
| format_type_be(elem_typeid)))); |
| } |
| } |
| |
| if (!OidIsValid(elem_typeid)) |
| { |
| if (allow_poly) |
| { |
| elem_typeid = ANYELEMENTOID; |
| array_typeid = ANYARRAYOID; |
| range_typeid = ANYRANGEOID; |
| multirange_typeid = ANYMULTIRANGEOID; |
| } |
| else |
| { |
| /* |
| * Only way to get here is if all the family-1 polymorphic |
| * arguments have UNKNOWN inputs. |
| */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type because input has type %s", |
| "unknown"))); |
| } |
| } |
| |
| if (have_anynonarray && elem_typeid != ANYELEMENTOID) |
| { |
| /* |
| * require the element type to not be an array or domain over |
| * array |
| */ |
| if (type_is_array_domain(elem_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("type matched to anynonarray is an array type: %s", |
| format_type_be(elem_typeid)))); |
| } |
| |
| if (have_anyenum && elem_typeid != ANYELEMENTOID) |
| { |
| /* require the element type to be an enum */ |
| if (!type_is_enum(elem_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("type matched to anyenum is not an enum type: %s", |
| format_type_be(elem_typeid)))); |
| } |
| } |
| |
| /* Check matching of family-2 polymorphic arguments, if any */ |
| if (have_poly_anycompatible) |
| { |
| /* Deduce range type from multirange type, or vice versa */ |
| if (OidIsValid(anycompatible_multirange_typeid)) |
| { |
| if (OidIsValid(anycompatible_range_typeid)) |
| { |
| if (anycompatible_multirange_typelem != |
| anycompatible_range_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not consistent with argument declared %s", |
| "anycompatiblemultirange", |
| "anycompatiblerange"), |
| errdetail("%s versus %s", |
| format_type_be(anycompatible_multirange_typeid), |
| format_type_be(anycompatible_range_typeid)))); |
| } |
| else |
| { |
| anycompatible_range_typeid = anycompatible_multirange_typelem; |
| anycompatible_range_typelem = get_range_subtype(anycompatible_range_typeid); |
| if (!OidIsValid(anycompatible_range_typelem)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("argument declared %s is not a multirange type but type %s", |
| "anycompatiblemultirange", |
| format_type_be(anycompatible_multirange_typeid)))); |
| /* this enables element type matching check below */ |
| have_anycompatible_range = true; |
| /* collect the subtype for common-supertype choice */ |
| anycompatible_actual_types[n_anycompatible_args++] = |
| anycompatible_range_typelem; |
| } |
| } |
| else if (have_anycompatible_multirange && |
| OidIsValid(anycompatible_range_typeid)) |
| { |
| anycompatible_multirange_typeid = get_range_multirange(anycompatible_range_typeid); |
| /* We'll complain below if that didn't work */ |
| } |
| |
| if (n_anycompatible_args > 0) |
| { |
| anycompatible_typeid = |
| select_common_type_from_oids(n_anycompatible_args, |
| anycompatible_actual_types, |
| false); |
| |
| /* We have to verify that the selected type actually works */ |
| if (!verify_common_type_from_oids(anycompatible_typeid, |
| n_anycompatible_args, |
| anycompatible_actual_types)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("arguments of anycompatible family cannot be cast to a common type"))); |
| |
| if (have_anycompatible_array) |
| { |
| anycompatible_array_typeid = get_array_type(anycompatible_typeid); |
| if (!OidIsValid(anycompatible_array_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_OBJECT), |
| errmsg("could not find array type for data type %s", |
| format_type_be(anycompatible_typeid)))); |
| } |
| |
| if (have_anycompatible_range) |
| { |
| /* we can't infer a range type from the others */ |
| if (!OidIsValid(anycompatible_range_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anycompatiblerange", "unknown"))); |
| |
| /* |
| * the anycompatible type must exactly match the range element |
| * type |
| */ |
| if (anycompatible_range_typelem != anycompatible_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("anycompatiblerange type %s does not match anycompatible type %s", |
| format_type_be(anycompatible_range_typeid), |
| format_type_be(anycompatible_typeid)))); |
| } |
| |
| if (have_anycompatible_multirange) |
| { |
| /* we can't infer a multirange type from the others */ |
| if (!OidIsValid(anycompatible_multirange_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anycompatiblemultirange", "unknown"))); |
| |
| /* |
| * the anycompatible type must exactly match the multirange |
| * element type |
| */ |
| if (anycompatible_range_typelem != anycompatible_typeid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("anycompatiblemultirange type %s does not match anycompatible type %s", |
| format_type_be(anycompatible_multirange_typeid), |
| format_type_be(anycompatible_typeid)))); |
| } |
| |
| if (have_anycompatible_nonarray) |
| { |
| /* |
| * require the element type to not be an array or domain over |
| * array |
| */ |
| if (type_is_array_domain(anycompatible_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("type matched to anycompatiblenonarray is an array type: %s", |
| format_type_be(anycompatible_typeid)))); |
| } |
| } |
| else |
| { |
| if (allow_poly) |
| { |
| anycompatible_typeid = ANYCOMPATIBLEOID; |
| anycompatible_array_typeid = ANYCOMPATIBLEARRAYOID; |
| anycompatible_range_typeid = ANYCOMPATIBLERANGEOID; |
| anycompatible_multirange_typeid = ANYCOMPATIBLEMULTIRANGEOID; |
| } |
| else |
| { |
| /* |
| * Only way to get here is if all the family-2 polymorphic |
| * arguments have UNKNOWN inputs. Resolve to TEXT as |
| * select_common_type() would do. That doesn't license us to |
| * use TEXTRANGE or TEXTMULTIRANGE, though. |
| */ |
| anycompatible_typeid = TEXTOID; |
| anycompatible_array_typeid = TEXTARRAYOID; |
| if (have_anycompatible_range) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anycompatiblerange", "unknown"))); |
| if (have_anycompatible_multirange) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anycompatiblemultirange", "unknown"))); |
| } |
| } |
| |
| /* replace family-2 polymorphic types by selected types */ |
| for (int j = 0; j < nargs; j++) |
| { |
| Oid decl_type = declared_arg_types[j]; |
| |
| if (decl_type == ANYCOMPATIBLEOID || |
| decl_type == ANYCOMPATIBLENONARRAYOID) |
| declared_arg_types[j] = anycompatible_typeid; |
| else if (decl_type == ANYCOMPATIBLEARRAYOID) |
| declared_arg_types[j] = anycompatible_array_typeid; |
| else if (decl_type == ANYCOMPATIBLERANGEOID) |
| declared_arg_types[j] = anycompatible_range_typeid; |
| else if (decl_type == ANYCOMPATIBLEMULTIRANGEOID) |
| declared_arg_types[j] = anycompatible_multirange_typeid; |
| } |
| } |
| |
| /* |
| * If we had any UNKNOWN inputs for family-1 polymorphic arguments, |
| * re-scan to assign correct types to them. |
| * |
| * Note: we don't have to consider unknown inputs that were matched to |
| * family-2 polymorphic arguments, because we forcibly updated their |
| * declared_arg_types[] positions just above. |
| */ |
| if (have_poly_unknowns) |
| { |
| for (int j = 0; j < nargs; j++) |
| { |
| Oid decl_type = declared_arg_types[j]; |
| Oid actual_type = actual_arg_types[j]; |
| |
| if (actual_type != UNKNOWNOID) |
| continue; |
| |
| if (decl_type == ANYELEMENTOID || |
| decl_type == ANYNONARRAYOID || |
| decl_type == ANYENUMOID) |
| declared_arg_types[j] = elem_typeid; |
| else if (decl_type == ANYARRAYOID) |
| { |
| if (!OidIsValid(array_typeid)) |
| { |
| array_typeid = get_array_type(elem_typeid); |
| if (!OidIsValid(array_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_OBJECT), |
| errmsg("could not find array type for data type %s", |
| format_type_be(elem_typeid)))); |
| } |
| declared_arg_types[j] = array_typeid; |
| } |
| else if (decl_type == ANYRANGEOID) |
| { |
| if (!OidIsValid(range_typeid)) |
| { |
| /* we can't infer a range type from the others */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anyrange", "unknown"))); |
| } |
| declared_arg_types[j] = range_typeid; |
| } |
| else if (decl_type == ANYMULTIRANGEOID) |
| { |
| if (!OidIsValid(multirange_typeid)) |
| { |
| /* we can't infer a multirange type from the others */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("could not determine polymorphic type %s because input has type %s", |
| "anymultirange", "unknown"))); |
| } |
| declared_arg_types[j] = multirange_typeid; |
| } |
| } |
| } |
| |
| /* if we return ANYELEMENT use the appropriate argument type */ |
| if (rettype == ANYELEMENTOID || |
| rettype == ANYNONARRAYOID || |
| rettype == ANYENUMOID) |
| return elem_typeid; |
| |
| /* if we return ANYARRAY use the appropriate argument type */ |
| if (rettype == ANYARRAYOID) |
| { |
| if (!OidIsValid(array_typeid)) |
| { |
| array_typeid = get_array_type(elem_typeid); |
| if (!OidIsValid(array_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_OBJECT), |
| errmsg("could not find array type for data type %s", |
| format_type_be(elem_typeid)))); |
| } |
| return array_typeid; |
| } |
| |
| /* if we return ANYRANGE use the appropriate argument type */ |
| if (rettype == ANYRANGEOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(range_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not determine polymorphic type %s because input has type %s", |
| "anyrange", "unknown"))); |
| return range_typeid; |
| } |
| |
| /* if we return ANYMULTIRANGE use the appropriate argument type */ |
| if (rettype == ANYMULTIRANGEOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(multirange_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not determine polymorphic type %s because input has type %s", |
| "anymultirange", "unknown"))); |
| return multirange_typeid; |
| } |
| |
| /* if we return ANYCOMPATIBLE use the appropriate type */ |
| if (rettype == ANYCOMPATIBLEOID || |
| rettype == ANYCOMPATIBLENONARRAYOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(anycompatible_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not identify anycompatible type"))); |
| return anycompatible_typeid; |
| } |
| |
| /* if we return ANYCOMPATIBLEARRAY use the appropriate type */ |
| if (rettype == ANYCOMPATIBLEARRAYOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(anycompatible_array_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not identify anycompatiblearray type"))); |
| return anycompatible_array_typeid; |
| } |
| |
| /* if we return ANYCOMPATIBLERANGE use the appropriate argument type */ |
| if (rettype == ANYCOMPATIBLERANGEOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(anycompatible_range_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not identify anycompatiblerange type"))); |
| return anycompatible_range_typeid; |
| } |
| |
| /* if we return ANYCOMPATIBLEMULTIRANGE use the appropriate argument type */ |
| if (rettype == ANYCOMPATIBLEMULTIRANGEOID) |
| { |
| /* this error is unreachable if the function signature is valid: */ |
| if (!OidIsValid(anycompatible_multirange_typeid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg_internal("could not identify anycompatiblemultirange type"))); |
| return anycompatible_multirange_typeid; |
| } |
| |
| /* we don't return a generic type; send back the original return type */ |
| return rettype; |
| } |
| |
| /* |
| * check_valid_polymorphic_signature() |
| * Is a proposed function signature valid per polymorphism rules? |
| * |
| * Returns NULL if the signature is valid (either ret_type is not polymorphic, |
| * or it can be deduced from the given declared argument types). Otherwise, |
| * returns a palloc'd, already translated errdetail string saying why not. |
| */ |
| char * |
| check_valid_polymorphic_signature(Oid ret_type, |
| const Oid *declared_arg_types, |
| int nargs) |
| { |
| if (ret_type == ANYRANGEOID || ret_type == ANYMULTIRANGEOID) |
| { |
| /* |
| * ANYRANGE and ANYMULTIRANGE require an ANYRANGE or ANYMULTIRANGE |
| * input, else we can't tell which of several range types with the |
| * same element type to use. |
| */ |
| for (int i = 0; i < nargs; i++) |
| { |
| if (declared_arg_types[i] == ANYRANGEOID || |
| declared_arg_types[i] == ANYMULTIRANGEOID) |
| return NULL; /* OK */ |
| } |
| return psprintf(_("A result of type %s requires at least one input of type anyrange or anymultirange."), |
| format_type_be(ret_type)); |
| } |
| else if (ret_type == ANYCOMPATIBLERANGEOID || ret_type == ANYCOMPATIBLEMULTIRANGEOID) |
| { |
| /* |
| * ANYCOMPATIBLERANGE and ANYCOMPATIBLEMULTIRANGE require an |
| * ANYCOMPATIBLERANGE or ANYCOMPATIBLEMULTIRANGE input, else we can't |
| * tell which of several range types with the same element type to |
| * use. |
| */ |
| for (int i = 0; i < nargs; i++) |
| { |
| if (declared_arg_types[i] == ANYCOMPATIBLERANGEOID || |
| declared_arg_types[i] == ANYCOMPATIBLEMULTIRANGEOID) |
| return NULL; /* OK */ |
| } |
| return psprintf(_("A result of type %s requires at least one input of type anycompatiblerange or anycompatiblemultirange."), |
| format_type_be(ret_type)); |
| } |
| else if (IsPolymorphicTypeFamily1(ret_type)) |
| { |
| /* Otherwise, any family-1 type can be deduced from any other */ |
| for (int i = 0; i < nargs; i++) |
| { |
| if (IsPolymorphicTypeFamily1(declared_arg_types[i])) |
| return NULL; /* OK */ |
| } |
| /* Keep this list in sync with IsPolymorphicTypeFamily1! */ |
| return psprintf(_("A result of type %s requires at least one input of type anyelement, anyarray, anynonarray, anyenum, anyrange, or anymultirange."), |
| format_type_be(ret_type)); |
| } |
| else if (IsPolymorphicTypeFamily2(ret_type)) |
| { |
| /* Otherwise, any family-2 type can be deduced from any other */ |
| for (int i = 0; i < nargs; i++) |
| { |
| if (IsPolymorphicTypeFamily2(declared_arg_types[i])) |
| return NULL; /* OK */ |
| } |
| /* Keep this list in sync with IsPolymorphicTypeFamily2! */ |
| return psprintf(_("A result of type %s requires at least one input of type anycompatible, anycompatiblearray, anycompatiblenonarray, anycompatiblerange, or anycompatiblemultirange."), |
| format_type_be(ret_type)); |
| } |
| else |
| return NULL; /* OK, ret_type is not polymorphic */ |
| } |
| |
| /* |
| * check_valid_internal_signature() |
| * Is a proposed function signature valid per INTERNAL safety rules? |
| * |
| * Returns NULL if OK, or a suitable error message if ret_type is INTERNAL but |
| * none of the declared arg types are. (It's unsafe to create such a function |
| * since it would allow invocation of INTERNAL-consuming functions directly |
| * from SQL.) It's overkill to return the error detail message, since there |
| * is only one possibility, but we do it like this to keep the API similar to |
| * check_valid_polymorphic_signature(). |
| */ |
| char * |
| check_valid_internal_signature(Oid ret_type, |
| const Oid *declared_arg_types, |
| int nargs) |
| { |
| if (ret_type == INTERNALOID) |
| { |
| for (int i = 0; i < nargs; i++) |
| { |
| if (declared_arg_types[i] == ret_type) |
| return NULL; /* OK */ |
| } |
| return pstrdup(_("A result of type internal requires at least one input of type internal.")); |
| } |
| else |
| return NULL; /* OK, ret_type is not INTERNAL */ |
| } |
| |
| |
| /* TypeCategory() |
| * Assign a category to the specified type OID. |
| * |
| * NB: this must not return TYPCATEGORY_INVALID. |
| */ |
| TYPCATEGORY |
| TypeCategory(Oid type) |
| { |
| char typcategory; |
| bool typispreferred; |
| |
| get_type_category_preferred(type, &typcategory, &typispreferred); |
| Assert(typcategory != TYPCATEGORY_INVALID); |
| return (TYPCATEGORY) typcategory; |
| } |
| |
| |
| /* IsPreferredType() |
| * Check if this type is a preferred type for the given category. |
| * |
| * If category is TYPCATEGORY_INVALID, then we'll return true for preferred |
| * types of any category; otherwise, only for preferred types of that |
| * category. |
| */ |
| bool |
| IsPreferredType(TYPCATEGORY category, Oid type) |
| { |
| char typcategory; |
| bool typispreferred; |
| |
| get_type_category_preferred(type, &typcategory, &typispreferred); |
| if (category == typcategory || category == TYPCATEGORY_INVALID) |
| return typispreferred; |
| else |
| return false; |
| } |
| |
| |
| /* IsBinaryCoercible() |
| * Check if srctype is binary-coercible to targettype. |
| * |
| * This notion allows us to cheat and directly exchange values without |
| * going through the trouble of calling a conversion function. Note that |
| * in general, this should only be an implementation shortcut. Before 7.4, |
| * this was also used as a heuristic for resolving overloaded functions and |
| * operators, but that's basically a bad idea. |
| * |
| * As of 7.3, binary coercibility isn't hardwired into the code anymore. |
| * We consider two types binary-coercible if there is an implicitly |
| * invokable, no-function-needed pg_cast entry. Also, a domain is always |
| * binary-coercible to its base type, though *not* vice versa (in the other |
| * direction, one must apply domain constraint checks before accepting the |
| * value as legitimate). We also need to special-case various polymorphic |
| * types. |
| * |
| * This function replaces IsBinaryCompatible(), which was an inherently |
| * symmetric test. Since the pg_cast entries aren't necessarily symmetric, |
| * the order of the operands is now significant. |
| */ |
| bool |
| IsBinaryCoercible(Oid srctype, Oid targettype) |
| { |
| HeapTuple tuple; |
| Form_pg_cast castForm; |
| bool result; |
| |
| /* Fast path if same type */ |
| if (srctype == targettype) |
| return true; |
| |
| /* Anything is coercible to ANY or ANYELEMENT or ANYCOMPATIBLE */ |
| if (targettype == ANYOID || targettype == ANYELEMENTOID || |
| targettype == ANYCOMPATIBLEOID) |
| return true; |
| |
| /* If srctype is a domain, reduce to its base type */ |
| if (OidIsValid(srctype)) |
| srctype = getBaseType(srctype); |
| |
| /* Somewhat-fast path for domain -> base type case */ |
| if (srctype == targettype) |
| return true; |
| |
| /* Also accept any array type as coercible to ANY[COMPATIBLE]ARRAY */ |
| if (targettype == ANYARRAYOID || targettype == ANYCOMPATIBLEARRAYOID) |
| if (type_is_array(srctype)) |
| return true; |
| |
| /* Also accept any non-array type as coercible to ANY[COMPATIBLE]NONARRAY */ |
| if (targettype == ANYNONARRAYOID || targettype == ANYCOMPATIBLENONARRAYOID) |
| if (!type_is_array(srctype)) |
| return true; |
| |
| /* Also accept any enum type as coercible to ANYENUM */ |
| if (targettype == ANYENUMOID) |
| if (type_is_enum(srctype)) |
| return true; |
| |
| /* Also accept any range type as coercible to ANY[COMPATIBLE]RANGE */ |
| if (targettype == ANYRANGEOID || targettype == ANYCOMPATIBLERANGEOID) |
| if (type_is_range(srctype)) |
| return true; |
| |
| /* Also, any multirange type is coercible to ANY[COMPATIBLE]MULTIRANGE */ |
| if (targettype == ANYMULTIRANGEOID || targettype == ANYCOMPATIBLEMULTIRANGEOID) |
| if (type_is_multirange(srctype)) |
| return true; |
| |
| /* Also accept any composite type as coercible to RECORD */ |
| if (targettype == RECORDOID) |
| if (ISCOMPLEX(srctype)) |
| return true; |
| |
| /* Also accept any composite array type as coercible to RECORD[] */ |
| if (targettype == RECORDARRAYOID) |
| if (is_complex_array(srctype)) |
| return true; |
| |
| /* Else look in pg_cast */ |
| tuple = SearchSysCache2(CASTSOURCETARGET, |
| ObjectIdGetDatum(srctype), |
| ObjectIdGetDatum(targettype)); |
| if (!HeapTupleIsValid(tuple)) |
| return false; /* no cast */ |
| castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| |
| result = (castForm->castmethod == COERCION_METHOD_BINARY && |
| castForm->castcontext == COERCION_CODE_IMPLICIT); |
| |
| ReleaseSysCache(tuple); |
| |
| return result; |
| } |
| |
| |
| /* |
| * find_coercion_pathway |
| * Look for a coercion pathway between two types. |
| * |
| * Currently, this deals only with scalar-type cases; it does not consider |
| * polymorphic types nor casts between composite types. (Perhaps fold |
| * those in someday?) |
| * |
| * ccontext determines the set of available casts. |
| * |
| * The possible result codes are: |
| * COERCION_PATH_NONE: failed to find any coercion pathway |
| * *funcid is set to InvalidOid |
| * COERCION_PATH_FUNC: apply the coercion function returned in *funcid |
| * COERCION_PATH_RELABELTYPE: binary-compatible cast, no function needed |
| * *funcid is set to InvalidOid |
| * COERCION_PATH_ARRAYCOERCE: need an ArrayCoerceExpr node |
| * *funcid is set to InvalidOid |
| * COERCION_PATH_COERCEVIAIO: need a CoerceViaIO node |
| * *funcid is set to InvalidOid |
| * |
| * Note: COERCION_PATH_RELABELTYPE does not necessarily mean that no work is |
| * needed to do the coercion; if the target is a domain then we may need to |
| * apply domain constraint checking. If you want to check for a zero-effort |
| * conversion then use IsBinaryCoercible(). |
| */ |
| CoercionPathType |
| find_coercion_pathway(Oid targetTypeId, Oid sourceTypeId, |
| CoercionContext ccontext, |
| Oid *funcid) |
| { |
| CoercionPathType result = COERCION_PATH_NONE; |
| HeapTuple tuple; |
| |
| *funcid = InvalidOid; |
| |
| /* Perhaps the types are domains; if so, look at their base types */ |
| if (OidIsValid(sourceTypeId)) |
| sourceTypeId = getBaseType(sourceTypeId); |
| if (OidIsValid(targetTypeId)) |
| targetTypeId = getBaseType(targetTypeId); |
| |
| /* Domains are always coercible to and from their base type */ |
| if (sourceTypeId == targetTypeId) |
| return COERCION_PATH_RELABELTYPE; |
| |
| /* Look in pg_cast */ |
| tuple = SearchSysCache2(CASTSOURCETARGET, |
| ObjectIdGetDatum(sourceTypeId), |
| ObjectIdGetDatum(targetTypeId)); |
| |
| if (HeapTupleIsValid(tuple)) |
| { |
| Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| CoercionContext castcontext; |
| |
| /* convert char value for castcontext to CoercionContext enum */ |
| switch (castForm->castcontext) |
| { |
| case COERCION_CODE_IMPLICIT: |
| castcontext = COERCION_IMPLICIT; |
| break; |
| case COERCION_CODE_ASSIGNMENT: |
| castcontext = COERCION_ASSIGNMENT; |
| break; |
| case COERCION_CODE_EXPLICIT: |
| castcontext = COERCION_EXPLICIT; |
| break; |
| default: |
| elog(ERROR, "unrecognized castcontext: %d", |
| (int) castForm->castcontext); |
| castcontext = 0; /* keep compiler quiet */ |
| break; |
| } |
| |
| /* Rely on ordering of enum for correct behavior here */ |
| if (ccontext >= castcontext) |
| { |
| switch (castForm->castmethod) |
| { |
| case COERCION_METHOD_FUNCTION: |
| result = COERCION_PATH_FUNC; |
| *funcid = castForm->castfunc; |
| break; |
| case COERCION_METHOD_INOUT: |
| result = COERCION_PATH_COERCEVIAIO; |
| break; |
| case COERCION_METHOD_BINARY: |
| result = COERCION_PATH_RELABELTYPE; |
| break; |
| default: |
| elog(ERROR, "unrecognized castmethod: %d", |
| (int) castForm->castmethod); |
| break; |
| } |
| } |
| |
| ReleaseSysCache(tuple); |
| } |
| else |
| { |
| /* |
| * If there's no pg_cast entry, perhaps we are dealing with a pair of |
| * array types. If so, and if their element types have a conversion |
| * pathway, report that we can coerce with an ArrayCoerceExpr. |
| * |
| * Hack: disallow coercions to oidvector and int2vector, which |
| * otherwise tend to capture coercions that should go to "real" array |
| * types. We want those types to be considered "real" arrays for many |
| * purposes, but not this one. (Also, ArrayCoerceExpr isn't |
| * guaranteed to produce an output that meets the restrictions of |
| * these datatypes, such as being 1-dimensional.) |
| */ |
| if (targetTypeId != OIDVECTOROID && targetTypeId != INT2VECTOROID) |
| { |
| Oid targetElem; |
| Oid sourceElem; |
| |
| if ((targetElem = get_element_type(targetTypeId)) != InvalidOid && |
| (sourceElem = get_element_type(sourceTypeId)) != InvalidOid) |
| { |
| CoercionPathType elempathtype; |
| Oid elemfuncid; |
| |
| elempathtype = find_coercion_pathway(targetElem, |
| sourceElem, |
| ccontext, |
| &elemfuncid); |
| if (elempathtype != COERCION_PATH_NONE) |
| { |
| result = COERCION_PATH_ARRAYCOERCE; |
| } |
| } |
| } |
| |
| /* |
| * If we still haven't found a possibility, consider automatic casting |
| * using I/O functions. We allow assignment casts to string types and |
| * explicit casts from string types to be handled this way. (The |
| * CoerceViaIO mechanism is a lot more general than that, but this is |
| * all we want to allow in the absence of a pg_cast entry.) It would |
| * probably be better to insist on explicit casts in both directions, |
| * but this is a compromise to preserve something of the pre-8.3 |
| * behavior that many types had implicit (yipes!) casts to text. |
| */ |
| if (result == COERCION_PATH_NONE) |
| { |
| if (ccontext >= COERCION_ASSIGNMENT && |
| TypeCategory(targetTypeId) == TYPCATEGORY_STRING) |
| result = COERCION_PATH_COERCEVIAIO; |
| else if (ccontext >= COERCION_EXPLICIT && |
| TypeCategory(sourceTypeId) == TYPCATEGORY_STRING) |
| result = COERCION_PATH_COERCEVIAIO; |
| } |
| } |
| |
| /* |
| * When parsing PL/pgSQL assignments, allow an I/O cast to be used |
| * whenever no normal coercion is available. |
| */ |
| if (result == COERCION_PATH_NONE && |
| ccontext == COERCION_PLPGSQL) |
| result = COERCION_PATH_COERCEVIAIO; |
| |
| return result; |
| } |
| |
| |
| /* |
| * find_typmod_coercion_function -- does the given type need length coercion? |
| * |
| * If the target type possesses a pg_cast function from itself to itself, |
| * it must need length coercion. |
| * |
| * "bpchar" (ie, char(N)) and "numeric" are examples of such types. |
| * |
| * If the given type is a varlena array type, we do not look for a coercion |
| * function associated directly with the array type, but instead look for |
| * one associated with the element type. An ArrayCoerceExpr node must be |
| * used to apply such a function. (Note: currently, it's pointless to |
| * return the funcid in this case, because it'll just get looked up again |
| * in the recursive construction of the ArrayCoerceExpr's elemexpr.) |
| * |
| * We use the same result enum as find_coercion_pathway, but the only possible |
| * result codes are: |
| * COERCION_PATH_NONE: no length coercion needed |
| * COERCION_PATH_FUNC: apply the function returned in *funcid |
| * COERCION_PATH_ARRAYCOERCE: apply the function using ArrayCoerceExpr |
| */ |
| CoercionPathType |
| find_typmod_coercion_function(Oid typeId, |
| Oid *funcid) |
| { |
| CoercionPathType result; |
| Type targetType; |
| Form_pg_type typeForm; |
| HeapTuple tuple; |
| |
| *funcid = InvalidOid; |
| result = COERCION_PATH_FUNC; |
| |
| targetType = typeidType(typeId); |
| typeForm = (Form_pg_type) GETSTRUCT(targetType); |
| |
| /* Check for a "true" array type */ |
| if (IsTrueArrayType(typeForm)) |
| { |
| /* Yes, switch our attention to the element type */ |
| typeId = typeForm->typelem; |
| result = COERCION_PATH_ARRAYCOERCE; |
| } |
| ReleaseSysCache(targetType); |
| |
| /* Look in pg_cast */ |
| tuple = SearchSysCache2(CASTSOURCETARGET, |
| ObjectIdGetDatum(typeId), |
| ObjectIdGetDatum(typeId)); |
| |
| if (HeapTupleIsValid(tuple)) |
| { |
| Form_pg_cast castForm = (Form_pg_cast) GETSTRUCT(tuple); |
| |
| *funcid = castForm->castfunc; |
| ReleaseSysCache(tuple); |
| } |
| |
| if (!OidIsValid(*funcid)) |
| result = COERCION_PATH_NONE; |
| |
| return result; |
| } |
| |
| /* |
| * is_complex_array |
| * Is this type an array of composite? |
| * |
| * Note: this will not return true for record[]; check for RECORDARRAYOID |
| * separately if needed. |
| */ |
| static bool |
| is_complex_array(Oid typid) |
| { |
| Oid elemtype = get_element_type(typid); |
| |
| return (OidIsValid(elemtype) && ISCOMPLEX(elemtype)); |
| } |
| |
| |
| /* |
| * Check whether reltypeId is the row type of a typed table of type |
| * reloftypeId, or is a domain over such a row type. (This is conceptually |
| * similar to the subtype relationship checked by typeInheritsFrom().) |
| */ |
| static bool |
| typeIsOfTypedTable(Oid reltypeId, Oid reloftypeId) |
| { |
| Oid relid = typeOrDomainTypeRelid(reltypeId); |
| bool result = false; |
| |
| if (relid) |
| { |
| HeapTuple tp; |
| Form_pg_class reltup; |
| |
| tp = SearchSysCache1(RELOID, ObjectIdGetDatum(relid)); |
| if (!HeapTupleIsValid(tp)) |
| elog(ERROR, "cache lookup failed for relation %u", relid); |
| |
| reltup = (Form_pg_class) GETSTRUCT(tp); |
| if (reltup->reloftype == reloftypeId) |
| result = true; |
| |
| ReleaseSysCache(tp); |
| } |
| |
| return result; |
| } |