| /*------------------------------------------------------------------------- |
| * |
| * predtest.c |
| * Routines to attempt to prove logical implications between predicate |
| * expressions. |
| * |
| * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/optimizer/util/predtest.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include "catalog/pg_proc.h" |
| #include "catalog/pg_operator.h" |
| #include "catalog/pg_type.h" |
| #include "executor/executor.h" |
| #include "miscadmin.h" |
| #include "nodes/makefuncs.h" |
| #include "nodes/nodeFuncs.h" |
| #include "nodes/pathnodes.h" |
| #include "optimizer/optimizer.h" |
| #include "utils/array.h" |
| #include "utils/inval.h" |
| #include "utils/lsyscache.h" |
| #include "utils/syscache.h" |
| #include "nodes/makefuncs.h" |
| |
| #include "catalog/pg_operator.h" |
| #include "optimizer/clauses.h" |
| #include "optimizer/paths.h" |
| #include "optimizer/predtest_valueset.h" |
| |
| /* |
| * Proof attempts involving large arrays in ScalarArrayOpExpr nodes are |
| * likely to require O(N^2) time, and more often than not fail anyway. |
| * So we set an arbitrary limit on the number of array elements that |
| * we will allow to be treated as an AND or OR clause. |
| * XXX is it worth exposing this as a GUC knob? |
| */ |
| #define MAX_SAOP_ARRAY_SIZE 100 |
| |
| /* |
| * To avoid redundant coding in predicate_implied_by_recurse and |
| * predicate_refuted_by_recurse, we need to abstract out the notion of |
| * iterating over the components of an expression that is logically an AND |
| * or OR structure. There are multiple sorts of expression nodes that can |
| * be treated as ANDs or ORs, and we don't want to code each one separately. |
| * Hence, these types and support routines. |
| */ |
| typedef enum |
| { |
| CLASS_ATOM, /* expression that's not AND or OR */ |
| CLASS_AND, /* expression with AND semantics */ |
| CLASS_OR /* expression with OR semantics */ |
| } PredClass; |
| |
| typedef struct PredIterInfoData *PredIterInfo; |
| |
| typedef struct PredIterInfoData |
| { |
| /* node-type-specific iteration state */ |
| void *state; |
| List *state_list; |
| /* initialize to do the iteration */ |
| void (*startup_fn) (Node *clause, PredIterInfo info); |
| /* next-component iteration function */ |
| Node *(*next_fn) (PredIterInfo info); |
| /* release resources when done with iteration */ |
| void (*cleanup_fn) (PredIterInfo info); |
| } PredIterInfoData; |
| |
| #define iterate_begin(item, clause, info) \ |
| do { \ |
| Node *item; \ |
| (info).startup_fn((clause), &(info)); \ |
| while ((item = (info).next_fn(&(info))) != NULL) |
| |
| #define iterate_end(info) \ |
| (info).cleanup_fn(&(info)); \ |
| } while (0) |
| |
| |
| static bool predicate_implied_by_recurse(Node *clause, Node *predicate, |
| bool weak); |
| static bool predicate_refuted_by_recurse(Node *clause, Node *predicate, |
| bool weak); |
| static PredClass predicate_classify(Node *clause, PredIterInfo info); |
| static void list_startup_fn(Node *clause, PredIterInfo info); |
| static Node *list_next_fn(PredIterInfo info); |
| static void list_cleanup_fn(PredIterInfo info); |
| static void boolexpr_startup_fn(Node *clause, PredIterInfo info); |
| static void arrayconst_startup_fn(Node *clause, PredIterInfo info); |
| static Node *arrayconst_next_fn(PredIterInfo info); |
| static void arrayconst_cleanup_fn(PredIterInfo info); |
| static void arrayexpr_startup_fn(Node *clause, PredIterInfo info); |
| static Node *arrayexpr_next_fn(PredIterInfo info); |
| static void arrayexpr_cleanup_fn(PredIterInfo info); |
| static bool predicate_implied_by_simple_clause(Expr *predicate, Node *clause, |
| bool weak); |
| static bool predicate_refuted_by_simple_clause(Expr *predicate, Node *clause, |
| bool weak); |
| static Node *extract_not_arg(Node *clause); |
| static Node *extract_strong_not_arg(Node *clause); |
| static bool clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false); |
| static bool operator_predicate_proof(Expr *predicate, Node *clause, |
| bool refute_it, bool weak); |
| static bool operator_same_subexprs_proof(Oid pred_op, Oid clause_op, |
| bool refute_it); |
| static bool operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, |
| bool refute_it); |
| static Oid get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it); |
| static void InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue); |
| |
| /* |
| * predicate_implied_by |
| * Recursively checks whether the clauses in clause_list imply that the |
| * given predicate is true. |
| * |
| * We support two definitions of implication: |
| * |
| * "Strong" implication: A implies B means that truth of A implies truth of B. |
| * We use this to prove that a row satisfying one WHERE clause or index |
| * predicate must satisfy another one. |
| * |
| * "Weak" implication: A implies B means that non-falsity of A implies |
| * non-falsity of B ("non-false" means "either true or NULL"). We use this to |
| * prove that a row satisfying one CHECK constraint must satisfy another one. |
| * |
| * Strong implication can also be used to prove that a WHERE clause implies a |
| * CHECK constraint, although it will fail to prove a few cases where we could |
| * safely conclude that the implication holds. There's no support for proving |
| * the converse case, since only a few kinds of CHECK constraint would allow |
| * deducing anything. |
| * |
| * The top-level List structure of each list corresponds to an AND list. |
| * We assume that eval_const_expressions() has been applied and so there |
| * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, |
| * including AND just below the top-level List structure). |
| * If this is not true we might fail to prove an implication that is |
| * valid, but no worse consequences will ensue. |
| * |
| * We assume the predicate has already been checked to contain only |
| * immutable functions and operators. (In many current uses this is known |
| * true because the predicate is part of an index predicate that has passed |
| * CheckPredicate(); otherwise, the caller must check it.) We dare not make |
| * deductions based on non-immutable functions, because they might change |
| * answers between the time we make the plan and the time we execute the plan. |
| * Immutability of functions in the clause_list is checked here, if necessary. |
| */ |
| bool |
| predicate_implied_by(List *predicate_list, List *clause_list, |
| bool weak) |
| { |
| Node *p, |
| *c; |
| |
| if (predicate_list == NIL) |
| return true; /* no predicate: implication is vacuous */ |
| if (clause_list == NIL) |
| return false; /* no restriction: implication must fail */ |
| |
| /* |
| * If either input is a single-element list, replace it with its lone |
| * member; this avoids one useless level of AND-recursion. We only need |
| * to worry about this at top level, since eval_const_expressions should |
| * have gotten rid of any trivial ANDs or ORs below that. |
| */ |
| if (list_length(predicate_list) == 1) |
| p = (Node *) linitial(predicate_list); |
| else |
| p = (Node *) predicate_list; |
| if (list_length(clause_list) == 1) |
| c = (Node *) linitial(clause_list); |
| else |
| c = (Node *) clause_list; |
| |
| /* And away we go ... */ |
| return predicate_implied_by_recurse(c, p, weak); |
| } |
| |
| /* |
| * predicate_refuted_by |
| * Recursively checks whether the clauses in clause_list refute the given |
| * predicate (that is, prove it false). |
| * |
| * This is NOT the same as !(predicate_implied_by), though it is similar |
| * in the technique and structure of the code. |
| * |
| * We support two definitions of refutation: |
| * |
| * "Strong" refutation: A refutes B means truth of A implies falsity of B. |
| * We use this to disprove a CHECK constraint given a WHERE clause, i.e., |
| * prove that any row satisfying the WHERE clause would violate the CHECK |
| * constraint. (Observe we must prove B yields false, not just not-true.) |
| * |
| * "Weak" refutation: A refutes B means truth of A implies non-truth of B |
| * (i.e., B must yield false or NULL). We use this to detect mutually |
| * contradictory WHERE clauses. |
| * |
| * Weak refutation can be proven in some cases where strong refutation doesn't |
| * hold, so it's useful to use it when possible. We don't currently have |
| * support for disproving one CHECK constraint based on another one, nor for |
| * disproving WHERE based on CHECK. (As with implication, the last case |
| * doesn't seem very practical. CHECK-vs-CHECK might be useful, but isn't |
| * currently needed anywhere.) |
| * |
| * The top-level List structure of each list corresponds to an AND list. |
| * We assume that eval_const_expressions() has been applied and so there |
| * are no un-flattened ANDs or ORs (e.g., no AND immediately within an AND, |
| * including AND just below the top-level List structure). |
| * If this is not true we might fail to prove an implication that is |
| * valid, but no worse consequences will ensue. |
| * |
| * We assume the predicate has already been checked to contain only |
| * immutable functions and operators. We dare not make deductions based on |
| * non-immutable functions, because they might change answers between the |
| * time we make the plan and the time we execute the plan. |
| * Immutability of functions in the clause_list is checked here, if necessary. |
| */ |
| bool |
| predicate_refuted_by(List *predicate_list, List *clause_list, |
| bool weak) |
| { |
| Node *p, |
| *c; |
| |
| if (predicate_list == NIL) |
| return false; /* no predicate: no refutation is possible */ |
| if (clause_list == NIL) |
| return false; /* no restriction: refutation must fail */ |
| |
| /* |
| * If either input is a single-element list, replace it with its lone |
| * member; this avoids one useless level of AND-recursion. We only need |
| * to worry about this at top level, since eval_const_expressions should |
| * have gotten rid of any trivial ANDs or ORs below that. |
| */ |
| if (list_length(predicate_list) == 1) |
| p = (Node *) linitial(predicate_list); |
| else |
| p = (Node *) predicate_list; |
| if (list_length(clause_list) == 1) |
| c = (Node *) linitial(clause_list); |
| else |
| c = (Node *) clause_list; |
| |
| /* And away we go ... */ |
| return predicate_refuted_by_recurse(c, p, weak); |
| } |
| |
| /*---------- |
| * predicate_implied_by_recurse |
| * Does the predicate implication test for non-NULL restriction and |
| * predicate clauses. |
| * |
| * The logic followed here is ("=>" means "implies"): |
| * atom A => atom B iff: predicate_implied_by_simple_clause says so |
| * atom A => AND-expr B iff: A => each of B's components |
| * atom A => OR-expr B iff: A => any of B's components |
| * AND-expr A => atom B iff: any of A's components => B |
| * AND-expr A => AND-expr B iff: A => each of B's components |
| * AND-expr A => OR-expr B iff: A => any of B's components, |
| * *or* any of A's components => B |
| * OR-expr A => atom B iff: each of A's components => B |
| * OR-expr A => AND-expr B iff: A => each of B's components |
| * OR-expr A => OR-expr B iff: each of A's components => any of B's |
| * |
| * An "atom" is anything other than an AND or OR node. Notice that we don't |
| * have any special logic to handle NOT nodes; these should have been pushed |
| * down or eliminated where feasible during eval_const_expressions(). |
| * |
| * All of these rules apply equally to strong or weak implication. |
| * |
| * We can't recursively expand either side first, but have to interleave |
| * the expansions per the above rules, to be sure we handle all of these |
| * examples: |
| * (x OR y) => (x OR y OR z) |
| * (x AND y AND z) => (x AND y) |
| * (x AND y) => ((x AND y) OR z) |
| * ((x OR y) AND z) => (x OR y) |
| * This is still not an exhaustive test, but it handles most normal cases |
| * under the assumption that both inputs have been AND/OR flattened. |
| * |
| * We have to be prepared to handle RestrictInfo nodes in the restrictinfo |
| * tree, though not in the predicate tree. |
| *---------- |
| */ |
| static bool |
| predicate_implied_by_recurse(Node *clause, Node *predicate, |
| bool weak) |
| { |
| PredIterInfoData clause_info; |
| PredIterInfoData pred_info; |
| PredClass pclass; |
| bool result; |
| |
| /* skip through RestrictInfo */ |
| Assert(clause != NULL); |
| if (IsA(clause, RestrictInfo)) |
| clause = (Node *) ((RestrictInfo *) clause)->clause; |
| |
| pclass = predicate_classify(predicate, &pred_info); |
| |
| switch (predicate_classify(clause, &clause_info)) |
| { |
| case CLASS_AND: |
| switch (pclass) |
| { |
| case CLASS_AND: |
| |
| /* |
| * AND-clause => AND-clause if A implies each of B's items |
| */ |
| result = true; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (!predicate_implied_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_OR: |
| |
| /* |
| * AND-clause => OR-clause if A implies any of B's items |
| * |
| * Needed to handle (x AND y) => ((x AND y) OR z) |
| */ |
| result = false; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_implied_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| if (result) |
| return result; |
| |
| /* |
| * Also check if any of A's items implies B |
| * |
| * Needed to handle ((x OR y) AND z) => (x OR y) |
| */ |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (predicate_implied_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * AND-clause => atom if any of A's items implies B |
| */ |
| result = false; |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (predicate_implied_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| } |
| break; |
| |
| case CLASS_OR: |
| switch (pclass) |
| { |
| case CLASS_OR: |
| |
| /* |
| * OR-clause => OR-clause if each of A's items implies any |
| * of B's items. Messy but can't do it any more simply. |
| */ |
| result = true; |
| iterate_begin(citem, clause, clause_info) |
| { |
| bool presult = false; |
| |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_implied_by_recurse(citem, pitem, |
| weak)) |
| { |
| presult = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| if (!presult) |
| { |
| result = false; /* doesn't imply any of B's */ |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| |
| case CLASS_AND: |
| case CLASS_ATOM: |
| |
| /* |
| * OR-clause => AND-clause if each of A's items implies B |
| * |
| * OR-clause => atom if each of A's items implies B |
| */ |
| result = true; |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (!predicate_implied_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| } |
| break; |
| |
| case CLASS_ATOM: |
| switch (pclass) |
| { |
| case CLASS_AND: |
| |
| /* |
| * atom => AND-clause if A implies each of B's items |
| */ |
| result = true; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (!predicate_implied_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_OR: |
| |
| /* |
| * atom => OR-clause if A implies any of B's items |
| */ |
| result = false; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_implied_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * atom => atom is the base case |
| */ |
| return |
| predicate_implied_by_simple_clause((Expr *) predicate, |
| clause, |
| weak); |
| } |
| break; |
| } |
| |
| /* can't get here */ |
| elog(ERROR, "predicate_classify returned a bogus value"); |
| return false; |
| } |
| |
| /*---------- |
| * predicate_refuted_by_recurse |
| * Does the predicate refutation test for non-NULL restriction and |
| * predicate clauses. |
| * |
| * The logic followed here is ("R=>" means "refutes"): |
| * atom A R=> atom B iff: predicate_refuted_by_simple_clause says so |
| * atom A R=> AND-expr B iff: A R=> any of B's components |
| * atom A R=> OR-expr B iff: A R=> each of B's components |
| * AND-expr A R=> atom B iff: any of A's components R=> B |
| * AND-expr A R=> AND-expr B iff: A R=> any of B's components, |
| * *or* any of A's components R=> B |
| * AND-expr A R=> OR-expr B iff: A R=> each of B's components |
| * OR-expr A R=> atom B iff: each of A's components R=> B |
| * OR-expr A R=> AND-expr B iff: each of A's components R=> any of B's |
| * OR-expr A R=> OR-expr B iff: A R=> each of B's components |
| * |
| * All of the above rules apply equally to strong or weak refutation. |
| * |
| * In addition, if the predicate is a NOT-clause then we can use |
| * A R=> NOT B if: A => B |
| * This works for several different SQL constructs that assert the non-truth |
| * of their argument, ie NOT, IS FALSE, IS NOT TRUE, IS UNKNOWN, although some |
| * of them require that we prove strong implication. Likewise, we can use |
| * NOT A R=> B if: B => A |
| * but here we must be careful about strong vs. weak refutation and make |
| * the appropriate type of implication proof (weak or strong respectively). |
| * |
| * Other comments are as for predicate_implied_by_recurse(). |
| *---------- |
| */ |
| static bool |
| predicate_refuted_by_recurse(Node *clause, Node *predicate, |
| bool weak) |
| { |
| PredIterInfoData clause_info; |
| PredIterInfoData pred_info; |
| PredClass pclass; |
| Node *not_arg; |
| bool result; |
| |
| CHECK_FOR_INTERRUPTS(); |
| |
| /* skip through RestrictInfo */ |
| Assert(clause != NULL); |
| if (IsA(clause, RestrictInfo)) |
| clause = (Node *) ((RestrictInfo *) clause)->clause; |
| |
| pclass = predicate_classify(predicate, &pred_info); |
| |
| switch (predicate_classify(clause, &clause_info)) |
| { |
| case CLASS_AND: |
| switch (pclass) |
| { |
| case CLASS_AND: |
| |
| /* |
| * AND-clause R=> AND-clause if A refutes any of B's items |
| * |
| * Needed to handle (x AND y) R=> ((!x OR !y) AND z) |
| */ |
| result = false; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_refuted_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| if (result) |
| return result; |
| |
| /* |
| * Also check if any of A's items refutes B |
| * |
| * Needed to handle ((x OR y) AND z) R=> (!x AND !y) |
| */ |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (predicate_refuted_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| |
| case CLASS_OR: |
| |
| /* |
| * AND-clause R=> OR-clause if A refutes each of B's items |
| */ |
| result = true; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (!predicate_refuted_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * If B is a NOT-type clause, A R=> B if A => B's arg |
| * |
| * Since, for either type of refutation, we are starting |
| * with the premise that A is true, we can use a strong |
| * implication test in all cases. That proves B's arg is |
| * true, which is more than we need for weak refutation if |
| * B is a simple NOT, but it allows not worrying about |
| * exactly which kind of negation clause we have. |
| */ |
| not_arg = extract_not_arg(predicate); |
| if (not_arg && |
| predicate_implied_by_recurse(clause, not_arg, |
| false)) |
| return true; |
| |
| /* |
| * AND-clause R=> atom if any of A's items refutes B |
| */ |
| result = false; |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (predicate_refuted_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| } |
| break; |
| |
| case CLASS_OR: |
| switch (pclass) |
| { |
| case CLASS_OR: |
| |
| /* |
| * OR-clause R=> OR-clause if A refutes each of B's items |
| */ |
| result = true; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (!predicate_refuted_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_AND: |
| |
| /* |
| * OR-clause R=> AND-clause if each of A's items refutes |
| * any of B's items. |
| */ |
| result = true; |
| iterate_begin(citem, clause, clause_info) |
| { |
| bool presult = false; |
| |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_refuted_by_recurse(citem, pitem, |
| weak)) |
| { |
| presult = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| if (!presult) |
| { |
| result = false; /* citem refutes nothing */ |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * If B is a NOT-type clause, A R=> B if A => B's arg |
| * |
| * Same logic as for the AND-clause case above. |
| */ |
| not_arg = extract_not_arg(predicate); |
| if (not_arg && |
| predicate_implied_by_recurse(clause, not_arg, |
| false)) |
| return true; |
| |
| /* |
| * OR-clause R=> atom if each of A's items refutes B |
| */ |
| result = true; |
| iterate_begin(citem, clause, clause_info) |
| { |
| if (!predicate_refuted_by_recurse(citem, predicate, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(clause_info); |
| return result; |
| } |
| break; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * If A is a strong NOT-clause, A R=> B if B => A's arg |
| * |
| * Since A is strong, we may assume A's arg is false (not just |
| * not-true). If B weakly implies A's arg, then B can be neither |
| * true nor null, so that strong refutation is proven. If B |
| * strongly implies A's arg, then B cannot be true, so that weak |
| * refutation is proven. |
| */ |
| not_arg = extract_strong_not_arg(clause); |
| if (not_arg && |
| predicate_implied_by_recurse(predicate, not_arg, |
| !weak)) |
| return true; |
| |
| switch (pclass) |
| { |
| case CLASS_AND: |
| |
| /* |
| * atom R=> AND-clause if A refutes any of B's items |
| */ |
| result = false; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (predicate_refuted_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = true; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_OR: |
| |
| /* |
| * atom R=> OR-clause if A refutes each of B's items |
| */ |
| result = true; |
| iterate_begin(pitem, predicate, pred_info) |
| { |
| if (!predicate_refuted_by_recurse(clause, pitem, |
| weak)) |
| { |
| result = false; |
| break; |
| } |
| } |
| iterate_end(pred_info); |
| return result; |
| |
| case CLASS_ATOM: |
| |
| /* |
| * If B is a NOT-type clause, A R=> B if A => B's arg |
| * |
| * Same logic as for the AND-clause case above. |
| */ |
| not_arg = extract_not_arg(predicate); |
| if (not_arg && |
| predicate_implied_by_recurse(clause, not_arg, |
| false)) |
| return true; |
| |
| /* |
| * atom R=> atom is the base case |
| */ |
| return |
| predicate_refuted_by_simple_clause((Expr *) predicate, |
| clause, |
| weak); |
| } |
| break; |
| } |
| |
| /* can't get here */ |
| elog(ERROR, "predicate_classify returned a bogus value"); |
| return false; |
| } |
| |
| |
| /* |
| * predicate_classify |
| * Classify an expression node as AND-type, OR-type, or neither (an atom). |
| * |
| * If the expression is classified as AND- or OR-type, then *info is filled |
| * in with the functions needed to iterate over its components. |
| * |
| * This function also implements enforcement of MAX_SAOP_ARRAY_SIZE: if a |
| * ScalarArrayOpExpr's array has too many elements, we just classify it as an |
| * atom. (This will result in its being passed as-is to the simple_clause |
| * functions, many of which will fail to prove anything about it.) Note that we |
| * cannot just stop after considering MAX_SAOP_ARRAY_SIZE elements; in general |
| * that would result in wrong proofs, rather than failing to prove anything. |
| */ |
| static PredClass |
| predicate_classify(Node *clause, PredIterInfo info) |
| { |
| /* Caller should not pass us NULL, nor a RestrictInfo clause */ |
| Assert(clause != NULL); |
| Assert(!IsA(clause, RestrictInfo)); |
| |
| /* |
| * If we see a List, assume it's an implicit-AND list; this is the correct |
| * semantics for lists of RestrictInfo nodes. |
| */ |
| if (IsA(clause, List)) |
| { |
| info->startup_fn = list_startup_fn; |
| info->next_fn = list_next_fn; |
| info->cleanup_fn = list_cleanup_fn; |
| return CLASS_AND; |
| } |
| |
| /* Handle normal AND and OR boolean clauses */ |
| if (is_andclause(clause)) |
| { |
| info->startup_fn = boolexpr_startup_fn; |
| info->next_fn = list_next_fn; |
| info->cleanup_fn = list_cleanup_fn; |
| return CLASS_AND; |
| } |
| if (is_orclause(clause)) |
| { |
| info->startup_fn = boolexpr_startup_fn; |
| info->next_fn = list_next_fn; |
| info->cleanup_fn = list_cleanup_fn; |
| return CLASS_OR; |
| } |
| |
| /* Handle ScalarArrayOpExpr */ |
| if (IsA(clause, ScalarArrayOpExpr)) |
| { |
| ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| Node *arraynode = (Node *) lsecond(saop->args); |
| |
| /* |
| * We can break this down into an AND or OR structure, but only if we |
| * know how to iterate through expressions for the array's elements. |
| * We can do that if the array operand is a non-null constant or a |
| * simple ArrayExpr. |
| */ |
| if (arraynode && IsA(arraynode, Const) && |
| !((Const *) arraynode)->constisnull) |
| { |
| ArrayType *arrayval; |
| int nelems; |
| |
| arrayval = DatumGetArrayTypeP(((Const *) arraynode)->constvalue); |
| nelems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval)); |
| if (nelems <= MAX_SAOP_ARRAY_SIZE) |
| { |
| info->startup_fn = arrayconst_startup_fn; |
| info->next_fn = arrayconst_next_fn; |
| info->cleanup_fn = arrayconst_cleanup_fn; |
| return saop->useOr ? CLASS_OR : CLASS_AND; |
| } |
| } |
| else if (arraynode && IsA(arraynode, ArrayExpr) && |
| !((ArrayExpr *) arraynode)->multidims && |
| list_length(((ArrayExpr *) arraynode)->elements) <= MAX_SAOP_ARRAY_SIZE) |
| { |
| info->startup_fn = arrayexpr_startup_fn; |
| info->next_fn = arrayexpr_next_fn; |
| info->cleanup_fn = arrayexpr_cleanup_fn; |
| return saop->useOr ? CLASS_OR : CLASS_AND; |
| } |
| } |
| |
| /* None of the above, so it's an atom */ |
| return CLASS_ATOM; |
| } |
| |
| /* |
| * PredIterInfo routines for iterating over regular Lists. The iteration |
| * state variable is the next ListCell to visit. |
| */ |
| static void |
| list_startup_fn(Node *clause, PredIterInfo info) |
| { |
| info->state_list = (List *) clause; |
| info->state = (void *) list_head(info->state_list); |
| } |
| |
| static Node * |
| list_next_fn(PredIterInfo info) |
| { |
| ListCell *l = (ListCell *) info->state; |
| Node *n; |
| |
| if (l == NULL) |
| return NULL; |
| n = lfirst(l); |
| info->state = (void *) lnext(info->state_list, l); |
| return n; |
| } |
| |
| static void |
| list_cleanup_fn(PredIterInfo info) |
| { |
| /* Nothing to clean up */ |
| } |
| |
| /* |
| * BoolExpr needs its own startup function, but can use list_next_fn and |
| * list_cleanup_fn. |
| */ |
| static void |
| boolexpr_startup_fn(Node *clause, PredIterInfo info) |
| { |
| info->state_list = ((BoolExpr *) clause)->args; |
| info->state = (void *) list_head(info->state_list); |
| } |
| |
| /* |
| * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a |
| * constant array operand. |
| */ |
| typedef struct |
| { |
| OpExpr opexpr; |
| Const constexpr; |
| int next_elem; |
| int num_elems; |
| Datum *elem_values; |
| bool *elem_nulls; |
| } ArrayConstIterState; |
| |
| static void |
| arrayconst_startup_fn(Node *clause, PredIterInfo info) |
| { |
| ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| ArrayConstIterState *state; |
| Const *arrayconst; |
| ArrayType *arrayval; |
| int16 elmlen; |
| bool elmbyval; |
| char elmalign; |
| |
| /* Create working state struct */ |
| state = (ArrayConstIterState *) palloc(sizeof(ArrayConstIterState)); |
| info->state = (void *) state; |
| |
| /* Deconstruct the array literal */ |
| arrayconst = (Const *) lsecond(saop->args); |
| arrayval = DatumGetArrayTypeP(arrayconst->constvalue); |
| get_typlenbyvalalign(ARR_ELEMTYPE(arrayval), |
| &elmlen, &elmbyval, &elmalign); |
| deconstruct_array(arrayval, |
| ARR_ELEMTYPE(arrayval), |
| elmlen, elmbyval, elmalign, |
| &state->elem_values, &state->elem_nulls, |
| &state->num_elems); |
| |
| /* Set up a dummy OpExpr to return as the per-item node */ |
| state->opexpr.xpr.type = T_OpExpr; |
| state->opexpr.opno = saop->opno; |
| state->opexpr.opfuncid = saop->opfuncid; |
| state->opexpr.opresulttype = BOOLOID; |
| state->opexpr.opretset = false; |
| state->opexpr.opcollid = InvalidOid; |
| state->opexpr.inputcollid = saop->inputcollid; |
| state->opexpr.args = list_copy(saop->args); |
| |
| /* Set up a dummy Const node to hold the per-element values */ |
| state->constexpr.xpr.type = T_Const; |
| state->constexpr.consttype = ARR_ELEMTYPE(arrayval); |
| state->constexpr.consttypmod = -1; |
| state->constexpr.constcollid = arrayconst->constcollid; |
| state->constexpr.constlen = elmlen; |
| state->constexpr.constbyval = elmbyval; |
| lsecond(state->opexpr.args) = &state->constexpr; |
| |
| /* Initialize iteration state */ |
| state->next_elem = 0; |
| } |
| |
| static Node * |
| arrayconst_next_fn(PredIterInfo info) |
| { |
| ArrayConstIterState *state = (ArrayConstIterState *) info->state; |
| |
| if (state->next_elem >= state->num_elems) |
| return NULL; |
| state->constexpr.constvalue = state->elem_values[state->next_elem]; |
| state->constexpr.constisnull = state->elem_nulls[state->next_elem]; |
| state->next_elem++; |
| return (Node *) &(state->opexpr); |
| } |
| |
| static void |
| arrayconst_cleanup_fn(PredIterInfo info) |
| { |
| ArrayConstIterState *state = (ArrayConstIterState *) info->state; |
| |
| pfree(state->elem_values); |
| pfree(state->elem_nulls); |
| list_free(state->opexpr.args); |
| pfree(state); |
| } |
| |
| /* |
| * PredIterInfo routines for iterating over a ScalarArrayOpExpr with a |
| * one-dimensional ArrayExpr array operand. |
| */ |
| typedef struct |
| { |
| OpExpr opexpr; |
| ListCell *next; |
| } ArrayExprIterState; |
| |
| static void |
| arrayexpr_startup_fn(Node *clause, PredIterInfo info) |
| { |
| ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| ArrayExprIterState *state; |
| ArrayExpr *arrayexpr; |
| |
| /* Create working state struct */ |
| state = (ArrayExprIterState *) palloc(sizeof(ArrayExprIterState)); |
| info->state = (void *) state; |
| |
| /* Set up a dummy OpExpr to return as the per-item node */ |
| state->opexpr.xpr.type = T_OpExpr; |
| state->opexpr.opno = saop->opno; |
| state->opexpr.opfuncid = saop->opfuncid; |
| state->opexpr.opresulttype = BOOLOID; |
| state->opexpr.opretset = false; |
| state->opexpr.opcollid = InvalidOid; |
| state->opexpr.inputcollid = saop->inputcollid; |
| state->opexpr.args = list_copy(saop->args); |
| |
| /* Initialize iteration variable to first member of ArrayExpr */ |
| arrayexpr = (ArrayExpr *) lsecond(saop->args); |
| info->state_list = arrayexpr->elements; |
| state->next = list_head(arrayexpr->elements); |
| } |
| |
| static Node * |
| arrayexpr_next_fn(PredIterInfo info) |
| { |
| ArrayExprIterState *state = (ArrayExprIterState *) info->state; |
| |
| if (state->next == NULL) |
| return NULL; |
| lsecond(state->opexpr.args) = lfirst(state->next); |
| state->next = lnext(info->state_list, state->next); |
| return (Node *) &(state->opexpr); |
| } |
| |
| static void |
| arrayexpr_cleanup_fn(PredIterInfo info) |
| { |
| ArrayExprIterState *state = (ArrayExprIterState *) info->state; |
| |
| list_free(state->opexpr.args); |
| pfree(state); |
| } |
| |
| |
| /*---------- |
| * predicate_implied_by_simple_clause |
| * Does the predicate implication test for a "simple clause" predicate |
| * and a "simple clause" restriction. |
| * |
| * We return true if able to prove the implication, false if not. |
| * |
| * We have three strategies for determining whether one simple clause |
| * implies another: |
| * |
| * A simple and general way is to see if they are equal(); this works for any |
| * kind of expression, and for either implication definition. (Actually, |
| * there is an implied assumption that the functions in the expression are |
| * immutable --- but this was checked for the predicate by the caller.) |
| * |
| * If the predicate is of the form "foo IS NOT NULL", and we are considering |
| * strong implication, we can conclude that the predicate is implied if the |
| * clause is strict for "foo", i.e., it must yield false or NULL when "foo" |
| * is NULL. In that case truth of the clause ensures that "foo" isn't NULL. |
| * (Again, this is a safe conclusion because "foo" must be immutable.) |
| * This doesn't work for weak implication, though. |
| * |
| * Finally, if both clauses are binary operator expressions, we may be able |
| * to prove something using the system's knowledge about operators; those |
| * proof rules are encapsulated in operator_predicate_proof(). |
| *---------- |
| */ |
| static bool |
| predicate_implied_by_simple_clause(Expr *predicate, Node *clause, |
| bool weak) |
| { |
| /* Allow interrupting long proof attempts */ |
| CHECK_FOR_INTERRUPTS(); |
| |
| /* First try the equal() test */ |
| if (equal((Node *) predicate, clause)) |
| return true; |
| |
| /* Next try the IS NOT NULL case */ |
| if (!weak && |
| predicate && IsA(predicate, NullTest)) |
| { |
| NullTest *ntest = (NullTest *) predicate; |
| |
| /* row IS NOT NULL does not act in the simple way we have in mind */ |
| if (ntest->nulltesttype == IS_NOT_NULL && |
| !ntest->argisrow) |
| { |
| /* strictness of clause for foo implies foo IS NOT NULL */ |
| if (clause_is_strict_for(clause, (Node *) ntest->arg, true)) |
| return true; |
| } |
| return false; /* we can't succeed below... */ |
| } |
| |
| /* Else try operator-related knowledge */ |
| return operator_predicate_proof(predicate, clause, false, weak); |
| } |
| |
| /*---------- |
| * predicate_refuted_by_simple_clause |
| * Does the predicate refutation test for a "simple clause" predicate |
| * and a "simple clause" restriction. |
| * |
| * We return true if able to prove the refutation, false if not. |
| * |
| * Unlike the implication case, checking for equal() clauses isn't helpful. |
| * But relation_excluded_by_constraints() checks for self-contradictions in a |
| * list of clauses, so that we may get here with predicate and clause being |
| * actually pointer-equal, and that is worth eliminating quickly. |
| * |
| * When the predicate is of the form "foo IS NULL", we can conclude that |
| * the predicate is refuted if the clause is strict for "foo" (see notes for |
| * implication case), or is "foo IS NOT NULL". That works for either strong |
| * or weak refutation. |
| * |
| * A clause "foo IS NULL" refutes a predicate "foo IS NOT NULL" in all cases. |
| * If we are considering weak refutation, it also refutes a predicate that |
| * is strict for "foo", since then the predicate must yield false or NULL |
| * (and since "foo" appears in the predicate, it's known immutable). |
| * |
| * (The main motivation for covering these IS [NOT] NULL cases is to support |
| * using IS NULL/IS NOT NULL as partition-defining constraints.) |
| * |
| * Finally, if both clauses are binary operator expressions, we may be able |
| * to prove something using the system's knowledge about operators; those |
| * proof rules are encapsulated in operator_predicate_proof(). |
| *---------- |
| */ |
| static bool |
| predicate_refuted_by_simple_clause(Expr *predicate, Node *clause, |
| bool weak) |
| { |
| /* Allow interrupting long proof attempts */ |
| CHECK_FOR_INTERRUPTS(); |
| |
| /* A simple clause can't refute itself */ |
| /* Worth checking because of relation_excluded_by_constraints() */ |
| if ((Node *) predicate == clause) |
| return false; |
| |
| /* Try the predicate-IS-NULL case */ |
| if (predicate && IsA(predicate, NullTest) && |
| ((NullTest *) predicate)->nulltesttype == IS_NULL) |
| { |
| Expr *isnullarg = ((NullTest *) predicate)->arg; |
| |
| /* row IS NULL does not act in the simple way we have in mind */ |
| if (((NullTest *) predicate)->argisrow) |
| return false; |
| |
| /* strictness of clause for foo refutes foo IS NULL */ |
| if (clause_is_strict_for(clause, (Node *) isnullarg, true)) |
| return true; |
| |
| /* foo IS NOT NULL refutes foo IS NULL */ |
| if (clause && IsA(clause, NullTest) && |
| ((NullTest *) clause)->nulltesttype == IS_NOT_NULL && |
| !((NullTest *) clause)->argisrow && |
| equal(((NullTest *) clause)->arg, isnullarg)) |
| return true; |
| |
| return false; /* we can't succeed below... */ |
| } |
| |
| /* Try the clause-IS-NULL case */ |
| if (clause && IsA(clause, NullTest) && |
| ((NullTest *) clause)->nulltesttype == IS_NULL) |
| { |
| Expr *isnullarg = ((NullTest *) clause)->arg; |
| |
| /* row IS NULL does not act in the simple way we have in mind */ |
| if (((NullTest *) clause)->argisrow) |
| return false; |
| |
| /* foo IS NULL refutes foo IS NOT NULL */ |
| if (predicate && IsA(predicate, NullTest) && |
| ((NullTest *) predicate)->nulltesttype == IS_NOT_NULL && |
| !((NullTest *) predicate)->argisrow && |
| equal(((NullTest *) predicate)->arg, isnullarg)) |
| return true; |
| |
| /* foo IS NULL weakly refutes any predicate that is strict for foo */ |
| if (weak && |
| clause_is_strict_for((Node *) predicate, (Node *) isnullarg, true)) |
| return true; |
| |
| return false; /* we can't succeed below... */ |
| } |
| |
| /* Else try operator-related knowledge */ |
| return operator_predicate_proof(predicate, clause, true, weak); |
| } |
| |
| /* |
| * If clause asserts the non-truth of a subclause, return that subclause; |
| * otherwise return NULL. |
| */ |
| static Node * |
| extract_not_arg(Node *clause) |
| { |
| if (clause == NULL) |
| return NULL; |
| if (IsA(clause, BoolExpr)) |
| { |
| BoolExpr *bexpr = (BoolExpr *) clause; |
| |
| if (bexpr->boolop == NOT_EXPR) |
| return (Node *) linitial(bexpr->args); |
| } |
| else if (IsA(clause, BooleanTest)) |
| { |
| BooleanTest *btest = (BooleanTest *) clause; |
| |
| if (btest->booltesttype == IS_NOT_TRUE || |
| btest->booltesttype == IS_FALSE || |
| btest->booltesttype == IS_UNKNOWN) |
| return (Node *) btest->arg; |
| } |
| return NULL; |
| } |
| |
| /* |
| * If clause asserts the falsity of a subclause, return that subclause; |
| * otherwise return NULL. |
| */ |
| static Node * |
| extract_strong_not_arg(Node *clause) |
| { |
| if (clause == NULL) |
| return NULL; |
| if (IsA(clause, BoolExpr)) |
| { |
| BoolExpr *bexpr = (BoolExpr *) clause; |
| |
| if (bexpr->boolop == NOT_EXPR) |
| return (Node *) linitial(bexpr->args); |
| } |
| else if (IsA(clause, BooleanTest)) |
| { |
| BooleanTest *btest = (BooleanTest *) clause; |
| |
| if (btest->booltesttype == IS_FALSE) |
| return (Node *) btest->arg; |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * Can we prove that "clause" returns NULL (or FALSE) if "subexpr" is |
| * assumed to yield NULL? |
| * |
| * In most places in the planner, "strictness" refers to a guarantee that |
| * an expression yields NULL output for a NULL input, and that's mostly what |
| * we're looking for here. However, at top level where the clause is known |
| * to yield boolean, it may be sufficient to prove that it cannot return TRUE |
| * when "subexpr" is NULL. The caller should pass allow_false = true when |
| * this weaker property is acceptable. (When this function recurses |
| * internally, we pass down allow_false = false since we need to prove actual |
| * nullness of the subexpression.) |
| * |
| * We assume that the caller checked that least one of the input expressions |
| * is immutable. All of the proof rules here involve matching "subexpr" to |
| * some portion of "clause", so that this allows assuming that "subexpr" is |
| * immutable without a separate check. |
| * |
| * The base case is that clause and subexpr are equal(). |
| * |
| * We can also report success if the subexpr appears as a subexpression |
| * of "clause" in a place where it'd force nullness of the overall result. |
| */ |
| static bool |
| clause_is_strict_for(Node *clause, Node *subexpr, bool allow_false) |
| { |
| ListCell *lc; |
| |
| /* safety checks */ |
| if (clause == NULL || subexpr == NULL) |
| return false; |
| |
| /* |
| * Look through any RelabelType nodes, so that we can match, say, |
| * varcharcol with lower(varcharcol::text). (In general we could recurse |
| * through any nullness-preserving, immutable operation.) We should not |
| * see stacked RelabelTypes here. |
| */ |
| if (IsA(clause, RelabelType)) |
| clause = (Node *) ((RelabelType *) clause)->arg; |
| if (IsA(subexpr, RelabelType)) |
| subexpr = (Node *) ((RelabelType *) subexpr)->arg; |
| |
| /* Base case */ |
| if (equal(clause, subexpr)) |
| return true; |
| |
| /* |
| * If we have a strict operator or function, a NULL result is guaranteed |
| * if any input is forced NULL by subexpr. This is OK even if the op or |
| * func isn't immutable, since it won't even be called on NULL input. |
| */ |
| if (is_opclause(clause) && |
| op_strict(((OpExpr *) clause)->opno)) |
| { |
| foreach(lc, ((OpExpr *) clause)->args) |
| { |
| if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false)) |
| return true; |
| } |
| return false; |
| } |
| if (is_funcclause(clause) && |
| func_strict(((FuncExpr *) clause)->funcid)) |
| { |
| foreach(lc, ((FuncExpr *) clause)->args) |
| { |
| if (clause_is_strict_for((Node *) lfirst(lc), subexpr, false)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * CoerceViaIO is strict (whether or not the I/O functions it calls are). |
| * Likewise, ArrayCoerceExpr is strict for its array argument (regardless |
| * of what the per-element expression is), ConvertRowtypeExpr is strict at |
| * the row level, and CoerceToDomain is strict too. These are worth |
| * checking mainly because it saves us having to explain to users why some |
| * type coercions are known strict and others aren't. |
| */ |
| if (IsA(clause, CoerceViaIO)) |
| return clause_is_strict_for((Node *) ((CoerceViaIO *) clause)->arg, |
| subexpr, false); |
| if (IsA(clause, ArrayCoerceExpr)) |
| return clause_is_strict_for((Node *) ((ArrayCoerceExpr *) clause)->arg, |
| subexpr, false); |
| if (IsA(clause, ConvertRowtypeExpr)) |
| return clause_is_strict_for((Node *) ((ConvertRowtypeExpr *) clause)->arg, |
| subexpr, false); |
| if (IsA(clause, CoerceToDomain)) |
| return clause_is_strict_for((Node *) ((CoerceToDomain *) clause)->arg, |
| subexpr, false); |
| |
| /* |
| * ScalarArrayOpExpr is a special case. Note that we'd only reach here |
| * with a ScalarArrayOpExpr clause if we failed to deconstruct it into an |
| * AND or OR tree, as for example if it has too many array elements. |
| */ |
| if (IsA(clause, ScalarArrayOpExpr)) |
| { |
| ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause; |
| Node *scalarnode = (Node *) linitial(saop->args); |
| Node *arraynode = (Node *) lsecond(saop->args); |
| |
| /* |
| * If we can prove the scalar input to be null, and the operator is |
| * strict, then the SAOP result has to be null --- unless the array is |
| * empty. For an empty array, we'd get either false (for ANY) or true |
| * (for ALL). So if allow_false = true then the proof succeeds anyway |
| * for the ANY case; otherwise we can only make the proof if we can |
| * prove the array non-empty. |
| */ |
| if (clause_is_strict_for(scalarnode, subexpr, false) && |
| op_strict(saop->opno)) |
| { |
| int nelems = 0; |
| |
| if (allow_false && saop->useOr) |
| return true; /* can succeed even if array is empty */ |
| |
| if (arraynode && IsA(arraynode, Const)) |
| { |
| Const *arrayconst = (Const *) arraynode; |
| ArrayType *arrval; |
| |
| /* |
| * If array is constant NULL then we can succeed, as in the |
| * case below. |
| */ |
| if (arrayconst->constisnull) |
| return true; |
| |
| /* Otherwise, we can compute the number of elements. */ |
| arrval = DatumGetArrayTypeP(arrayconst->constvalue); |
| nelems = ArrayGetNItems(ARR_NDIM(arrval), ARR_DIMS(arrval)); |
| } |
| else if (arraynode && IsA(arraynode, ArrayExpr) && |
| !((ArrayExpr *) arraynode)->multidims) |
| { |
| /* |
| * We can also reliably count the number of array elements if |
| * the input is a non-multidim ARRAY[] expression. |
| */ |
| nelems = list_length(((ArrayExpr *) arraynode)->elements); |
| } |
| |
| /* Proof succeeds if array is definitely non-empty */ |
| if (nelems > 0) |
| return true; |
| } |
| |
| /* |
| * If we can prove the array input to be null, the proof succeeds in |
| * all cases, since ScalarArrayOpExpr will always return NULL for a |
| * NULL array. Otherwise, we're done here. |
| */ |
| return clause_is_strict_for(arraynode, subexpr, false); |
| } |
| |
| /* |
| * When recursing into an expression, we might find a NULL constant. |
| * That's certainly NULL, whether it matches subexpr or not. |
| */ |
| if (IsA(clause, Const)) |
| return ((Const *) clause)->constisnull; |
| |
| return false; |
| } |
| |
| |
| /* |
| * Define "operator implication tables" for btree operators ("strategies"), |
| * and similar tables for refutation. |
| * |
| * The strategy numbers defined by btree indexes (see access/stratnum.h) are: |
| * 1 < 2 <= 3 = 4 >= 5 > |
| * and in addition we use 6 to represent <>. <> is not a btree-indexable |
| * operator, but we assume here that if an equality operator of a btree |
| * opfamily has a negator operator, the negator behaves as <> for the opfamily. |
| * (This convention is also known to get_op_btree_interpretation().) |
| * |
| * BT_implies_table[] and BT_refutes_table[] are used for cases where we have |
| * two identical subexpressions and we want to know whether one operator |
| * expression implies or refutes the other. That is, if the "clause" is |
| * EXPR1 clause_op EXPR2 and the "predicate" is EXPR1 pred_op EXPR2 for the |
| * same two (immutable) subexpressions: |
| * BT_implies_table[clause_op-1][pred_op-1] |
| * is true if the clause implies the predicate |
| * BT_refutes_table[clause_op-1][pred_op-1] |
| * is true if the clause refutes the predicate |
| * where clause_op and pred_op are strategy numbers (from 1 to 6) in the |
| * same btree opfamily. For example, "x < y" implies "x <= y" and refutes |
| * "x > y". |
| * |
| * BT_implic_table[] and BT_refute_table[] are used where we have two |
| * constants that we need to compare. The interpretation of: |
| * |
| * test_op = BT_implic_table[clause_op-1][pred_op-1] |
| * |
| * where test_op, clause_op and pred_op are strategy numbers (from 1 to 6) |
| * of btree operators, is as follows: |
| * |
| * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you |
| * want to determine whether "EXPR pred_op CONST2" must also be true, then |
| * you can use "CONST2 test_op CONST1" as a test. If this test returns true, |
| * then the predicate expression must be true; if the test returns false, |
| * then the predicate expression may be false. |
| * |
| * For example, if clause is "Quantity > 10" and pred is "Quantity > 5" |
| * then we test "5 <= 10" which evals to true, so clause implies pred. |
| * |
| * Similarly, the interpretation of a BT_refute_table entry is: |
| * |
| * If you know, for some EXPR, that "EXPR clause_op CONST1" is true, and you |
| * want to determine whether "EXPR pred_op CONST2" must be false, then |
| * you can use "CONST2 test_op CONST1" as a test. If this test returns true, |
| * then the predicate expression must be false; if the test returns false, |
| * then the predicate expression may be true. |
| * |
| * For example, if clause is "Quantity > 10" and pred is "Quantity < 5" |
| * then we test "5 <= 10" which evals to true, so clause refutes pred. |
| * |
| * An entry where test_op == 0 means the implication cannot be determined. |
| */ |
| |
| #define BTLT BTLessStrategyNumber |
| #define BTLE BTLessEqualStrategyNumber |
| #define BTEQ BTEqualStrategyNumber |
| #define BTGE BTGreaterEqualStrategyNumber |
| #define BTGT BTGreaterStrategyNumber |
| #define BTNE ROWCOMPARE_NE |
| |
| /* We use "none" for 0/false to make the tables align nicely */ |
| #define none 0 |
| |
| static const bool BT_implies_table[6][6] = { |
| /* |
| * The predicate operator: |
| * LT LE EQ GE GT NE |
| */ |
| {true, true, none, none, none, true}, /* LT */ |
| {none, true, none, none, none, none}, /* LE */ |
| {none, true, true, true, none, none}, /* EQ */ |
| {none, none, none, true, none, none}, /* GE */ |
| {none, none, none, true, true, true}, /* GT */ |
| {none, none, none, none, none, true} /* NE */ |
| }; |
| |
| static const bool BT_refutes_table[6][6] = { |
| /* |
| * The predicate operator: |
| * LT LE EQ GE GT NE |
| */ |
| {none, none, true, true, true, none}, /* LT */ |
| {none, none, none, none, true, none}, /* LE */ |
| {true, none, none, none, true, true}, /* EQ */ |
| {true, none, none, none, none, none}, /* GE */ |
| {true, true, true, none, none, none}, /* GT */ |
| {none, none, true, none, none, none} /* NE */ |
| }; |
| |
| static const StrategyNumber BT_implic_table[6][6] = { |
| /* |
| * The predicate operator: |
| * LT LE EQ GE GT NE |
| */ |
| {BTGE, BTGE, none, none, none, BTGE}, /* LT */ |
| {BTGT, BTGE, none, none, none, BTGT}, /* LE */ |
| {BTGT, BTGE, BTEQ, BTLE, BTLT, BTNE}, /* EQ */ |
| {none, none, none, BTLE, BTLT, BTLT}, /* GE */ |
| {none, none, none, BTLE, BTLE, BTLE}, /* GT */ |
| {none, none, none, none, none, BTEQ} /* NE */ |
| }; |
| |
| static const StrategyNumber BT_refute_table[6][6] = { |
| /* |
| * The predicate operator: |
| * LT LE EQ GE GT NE |
| */ |
| {none, none, BTGE, BTGE, BTGE, none}, /* LT */ |
| {none, none, BTGT, BTGT, BTGE, none}, /* LE */ |
| {BTLE, BTLT, BTNE, BTGT, BTGE, BTEQ}, /* EQ */ |
| {BTLE, BTLT, BTLT, none, none, none}, /* GE */ |
| {BTLE, BTLE, BTLE, none, none, none}, /* GT */ |
| {none, none, BTEQ, none, none, none} /* NE */ |
| }; |
| |
| |
| /* |
| * operator_predicate_proof |
| * Does the predicate implication or refutation test for a "simple clause" |
| * predicate and a "simple clause" restriction, when both are operator |
| * clauses using related operators and identical input expressions. |
| * |
| * When refute_it == false, we want to prove the predicate true; |
| * when refute_it == true, we want to prove the predicate false. |
| * (There is enough common code to justify handling these two cases |
| * in one routine.) We return true if able to make the proof, false |
| * if not able to prove it. |
| * |
| * We mostly need not distinguish strong vs. weak implication/refutation here. |
| * This depends on the assumption that a pair of related operators (i.e., |
| * commutators, negators, or btree opfamily siblings) will not return one NULL |
| * and one non-NULL result for the same inputs. Then, for the proof types |
| * where we start with an assumption of truth of the clause, the predicate |
| * operator could not return NULL either, so it doesn't matter whether we are |
| * trying to make a strong or weak proof. For weak implication, it could be |
| * that the clause operator returned NULL, but then the predicate operator |
| * would as well, so that the weak implication still holds. This argument |
| * doesn't apply in the case where we are considering two different constant |
| * values, since then the operators aren't being given identical inputs. But |
| * we only support that for btree operators, for which we can assume that all |
| * non-null inputs result in non-null outputs, so that it doesn't matter which |
| * two non-null constants we consider. If either constant is NULL, we have |
| * to think harder, but sometimes the proof still works, as explained below. |
| * |
| * We can make proofs involving several expression forms (here "foo" and "bar" |
| * represent subexpressions that are identical according to equal()): |
| * "foo op1 bar" refutes "foo op2 bar" if op1 is op2's negator |
| * "foo op1 bar" implies "bar op2 foo" if op1 is op2's commutator |
| * "foo op1 bar" refutes "bar op2 foo" if op1 is negator of op2's commutator |
| * "foo op1 bar" can imply/refute "foo op2 bar" based on btree semantics |
| * "foo op1 bar" can imply/refute "bar op2 foo" based on btree semantics |
| * "foo op1 const1" can imply/refute "foo op2 const2" based on btree semantics |
| * |
| * For the last three cases, op1 and op2 have to be members of the same btree |
| * operator family. When both subexpressions are identical, the idea is that, |
| * for instance, x < y implies x <= y, independently of exactly what x and y |
| * are. If we have two different constants compared to the same expression |
| * foo, we have to execute a comparison between the two constant values |
| * in order to determine the result; for instance, foo < c1 implies foo < c2 |
| * if c1 <= c2. We assume it's safe to compare the constants at plan time |
| * if the comparison operator is immutable. |
| * |
| * Note: all the operators and subexpressions have to be immutable for the |
| * proof to be safe. We assume the predicate expression is entirely immutable, |
| * so no explicit check on the subexpressions is needed here, but in some |
| * cases we need an extra check of operator immutability. In particular, |
| * btree opfamilies can contain cross-type operators that are merely stable, |
| * and we dare not make deductions with those. |
| */ |
| static bool |
| operator_predicate_proof(Expr *predicate, Node *clause, |
| bool refute_it, bool weak) |
| { |
| OpExpr *pred_opexpr, |
| *clause_opexpr; |
| Oid pred_collation, |
| clause_collation; |
| Oid pred_op, |
| clause_op, |
| test_op; |
| Node *pred_leftop, |
| *pred_rightop, |
| *clause_leftop, |
| *clause_rightop; |
| Const *pred_const, |
| *clause_const; |
| Expr *test_expr; |
| ExprState *test_exprstate; |
| Datum test_result; |
| bool isNull; |
| EState *estate; |
| MemoryContext oldcontext; |
| |
| /* |
| * Both expressions must be binary opclauses, else we can't do anything. |
| * |
| * Note: in future we might extend this logic to other operator-based |
| * constructs such as DistinctExpr. But the planner isn't very smart |
| * about DistinctExpr in general, and this probably isn't the first place |
| * to fix if you want to improve that. |
| */ |
| if (!is_opclause(predicate)) |
| return false; |
| pred_opexpr = (OpExpr *) predicate; |
| if (list_length(pred_opexpr->args) != 2) |
| return false; |
| if (!is_opclause(clause)) |
| return false; |
| clause_opexpr = (OpExpr *) clause; |
| if (list_length(clause_opexpr->args) != 2) |
| return false; |
| |
| /* |
| * If they're marked with different collations then we can't do anything. |
| * This is a cheap test so let's get it out of the way early. |
| */ |
| pred_collation = pred_opexpr->inputcollid; |
| clause_collation = clause_opexpr->inputcollid; |
| if (pred_collation != clause_collation) |
| return false; |
| |
| /* Grab the operator OIDs now too. We may commute these below. */ |
| pred_op = pred_opexpr->opno; |
| clause_op = clause_opexpr->opno; |
| |
| /* |
| * We have to match up at least one pair of input expressions. |
| */ |
| pred_leftop = (Node *) linitial(pred_opexpr->args); |
| pred_rightop = (Node *) lsecond(pred_opexpr->args); |
| clause_leftop = (Node *) linitial(clause_opexpr->args); |
| clause_rightop = (Node *) lsecond(clause_opexpr->args); |
| |
| if (equal(pred_leftop, clause_leftop)) |
| { |
| if (equal(pred_rightop, clause_rightop)) |
| { |
| /* We have x op1 y and x op2 y */ |
| return operator_same_subexprs_proof(pred_op, clause_op, refute_it); |
| } |
| else |
| { |
| /* Fail unless rightops are both Consts */ |
| if (pred_rightop == NULL || !IsA(pred_rightop, Const)) |
| return false; |
| pred_const = (Const *) pred_rightop; |
| if (clause_rightop == NULL || !IsA(clause_rightop, Const)) |
| return false; |
| clause_const = (Const *) clause_rightop; |
| } |
| } |
| else if (equal(pred_rightop, clause_rightop)) |
| { |
| /* Fail unless leftops are both Consts */ |
| if (pred_leftop == NULL || !IsA(pred_leftop, Const)) |
| return false; |
| pred_const = (Const *) pred_leftop; |
| if (clause_leftop == NULL || !IsA(clause_leftop, Const)) |
| return false; |
| clause_const = (Const *) clause_leftop; |
| /* Commute both operators so we can assume Consts are on the right */ |
| pred_op = get_commutator(pred_op); |
| if (!OidIsValid(pred_op)) |
| return false; |
| clause_op = get_commutator(clause_op); |
| if (!OidIsValid(clause_op)) |
| return false; |
| } |
| else if (equal(pred_leftop, clause_rightop)) |
| { |
| if (equal(pred_rightop, clause_leftop)) |
| { |
| /* We have x op1 y and y op2 x */ |
| /* Commute pred_op that we can treat this like a straight match */ |
| pred_op = get_commutator(pred_op); |
| if (!OidIsValid(pred_op)) |
| return false; |
| return operator_same_subexprs_proof(pred_op, clause_op, refute_it); |
| } |
| else |
| { |
| /* Fail unless pred_rightop/clause_leftop are both Consts */ |
| if (pred_rightop == NULL || !IsA(pred_rightop, Const)) |
| return false; |
| pred_const = (Const *) pred_rightop; |
| if (clause_leftop == NULL || !IsA(clause_leftop, Const)) |
| return false; |
| clause_const = (Const *) clause_leftop; |
| /* Commute clause_op so we can assume Consts are on the right */ |
| clause_op = get_commutator(clause_op); |
| if (!OidIsValid(clause_op)) |
| return false; |
| } |
| } |
| else if (equal(pred_rightop, clause_leftop)) |
| { |
| /* Fail unless pred_leftop/clause_rightop are both Consts */ |
| if (pred_leftop == NULL || !IsA(pred_leftop, Const)) |
| return false; |
| pred_const = (Const *) pred_leftop; |
| if (clause_rightop == NULL || !IsA(clause_rightop, Const)) |
| return false; |
| clause_const = (Const *) clause_rightop; |
| /* Commute pred_op so we can assume Consts are on the right */ |
| pred_op = get_commutator(pred_op); |
| if (!OidIsValid(pred_op)) |
| return false; |
| } |
| else |
| { |
| /* Failed to match up any of the subexpressions, so we lose */ |
| return false; |
| } |
| |
| /* |
| * We have two identical subexpressions, and two other subexpressions that |
| * are not identical but are both Consts; and we have commuted the |
| * operators if necessary so that the Consts are on the right. We'll need |
| * to compare the Consts' values. If either is NULL, we can't do that, so |
| * usually the proof fails ... but in some cases we can claim success. |
| */ |
| if (clause_const->constisnull) |
| { |
| /* If clause_op isn't strict, we can't prove anything */ |
| if (!op_strict(clause_op)) |
| return false; |
| |
| /* |
| * At this point we know that the clause returns NULL. For proof |
| * types that assume truth of the clause, this means the proof is |
| * vacuously true (a/k/a "false implies anything"). That's all proof |
| * types except weak implication. |
| */ |
| if (!(weak && !refute_it)) |
| return true; |
| |
| /* |
| * For weak implication, it's still possible for the proof to succeed, |
| * if the predicate can also be proven NULL. In that case we've got |
| * NULL => NULL which is valid for this proof type. |
| */ |
| if (pred_const->constisnull && op_strict(pred_op)) |
| return true; |
| /* Else the proof fails */ |
| return false; |
| } |
| if (pred_const->constisnull) |
| { |
| /* |
| * If the pred_op is strict, we know the predicate yields NULL, which |
| * means the proof succeeds for either weak implication or weak |
| * refutation. |
| */ |
| if (weak && op_strict(pred_op)) |
| return true; |
| /* Else the proof fails */ |
| return false; |
| } |
| |
| /* |
| * Lookup the constant-comparison operator using the system catalogs and |
| * the operator implication tables. |
| */ |
| test_op = get_btree_test_op(pred_op, clause_op, refute_it); |
| |
| if (!OidIsValid(test_op)) |
| { |
| /* couldn't find a suitable comparison operator */ |
| return false; |
| } |
| |
| /* |
| * Evaluate the test. For this we need an EState. |
| */ |
| estate = CreateExecutorState(); |
| |
| /* We can use the estate's working context to avoid memory leaks. */ |
| oldcontext = MemoryContextSwitchTo(estate->es_query_cxt); |
| |
| /* Build expression tree */ |
| test_expr = make_opclause(test_op, |
| BOOLOID, |
| false, |
| (Expr *) pred_const, |
| (Expr *) clause_const, |
| InvalidOid, |
| pred_collation); |
| |
| /* Fill in opfuncids */ |
| fix_opfuncids((Node *) test_expr); |
| |
| /* Prepare it for execution */ |
| test_exprstate = ExecInitExpr(test_expr, NULL); |
| |
| /* And execute it. */ |
| test_result = ExecEvalExprSwitchContext(test_exprstate, |
| GetPerTupleExprContext(estate), |
| &isNull); |
| |
| /* Get back to outer memory context */ |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* Release all the junk we just created */ |
| FreeExecutorState(estate); |
| |
| if (isNull) |
| { |
| /* Treat a null result as non-proof ... but it's a tad fishy ... */ |
| elog(DEBUG2, "null predicate test result"); |
| return false; |
| } |
| return DatumGetBool(test_result); |
| } |
| |
| |
| /* |
| * operator_same_subexprs_proof |
| * Assuming that EXPR1 clause_op EXPR2 is true, try to prove or refute |
| * EXPR1 pred_op EXPR2. |
| * |
| * Return true if able to make the proof, false if not able to prove it. |
| */ |
| static bool |
| operator_same_subexprs_proof(Oid pred_op, Oid clause_op, bool refute_it) |
| { |
| /* |
| * A simple and general rule is that the predicate is proven if clause_op |
| * and pred_op are the same, or refuted if they are each other's negators. |
| * We need not check immutability since the pred_op is already known |
| * immutable. (Actually, by this point we may have the commutator of a |
| * known-immutable pred_op, but that should certainly be immutable too. |
| * Likewise we don't worry whether the pred_op's negator is immutable.) |
| * |
| * Note: the "same" case won't get here if we actually had EXPR1 clause_op |
| * EXPR2 and EXPR1 pred_op EXPR2, because the overall-expression-equality |
| * test in predicate_implied_by_simple_clause would have caught it. But |
| * we can see the same operator after having commuted the pred_op. |
| */ |
| if (refute_it) |
| { |
| if (get_negator(pred_op) == clause_op) |
| return true; |
| } |
| else |
| { |
| if (pred_op == clause_op) |
| return true; |
| } |
| |
| /* |
| * Otherwise, see if we can determine the implication by finding the |
| * operators' relationship via some btree opfamily. |
| */ |
| return operator_same_subexprs_lookup(pred_op, clause_op, refute_it); |
| } |
| |
| |
| /* |
| * We use a lookaside table to cache the result of btree proof operator |
| * lookups, since the actual lookup is pretty expensive and doesn't change |
| * for any given pair of operators (at least as long as pg_amop doesn't |
| * change). A single hash entry stores both implication and refutation |
| * results for a given pair of operators; but note we may have determined |
| * only one of those sets of results as yet. |
| */ |
| typedef struct OprProofCacheKey |
| { |
| Oid pred_op; /* predicate operator */ |
| Oid clause_op; /* clause operator */ |
| } OprProofCacheKey; |
| |
| typedef struct OprProofCacheEntry |
| { |
| /* the hash lookup key MUST BE FIRST */ |
| OprProofCacheKey key; |
| |
| bool have_implic; /* do we know the implication result? */ |
| bool have_refute; /* do we know the refutation result? */ |
| bool same_subexprs_implies; /* X clause_op Y implies X pred_op Y? */ |
| bool same_subexprs_refutes; /* X clause_op Y refutes X pred_op Y? */ |
| Oid implic_test_op; /* OID of the test operator, or 0 if none */ |
| Oid refute_test_op; /* OID of the test operator, or 0 if none */ |
| } OprProofCacheEntry; |
| |
| static HTAB *OprProofCacheHash = NULL; |
| |
| |
| /* |
| * lookup_proof_cache |
| * Get, and fill in if necessary, the appropriate cache entry. |
| */ |
| static OprProofCacheEntry * |
| lookup_proof_cache(Oid pred_op, Oid clause_op, bool refute_it) |
| { |
| OprProofCacheKey key; |
| OprProofCacheEntry *cache_entry; |
| bool cfound; |
| bool same_subexprs = false; |
| Oid test_op = InvalidOid; |
| bool found = false; |
| List *pred_op_infos, |
| *clause_op_infos; |
| ListCell *lcp, |
| *lcc; |
| |
| /* |
| * Find or make a cache entry for this pair of operators. |
| */ |
| if (OprProofCacheHash == NULL) |
| { |
| /* First time through: initialize the hash table */ |
| HASHCTL ctl; |
| |
| ctl.keysize = sizeof(OprProofCacheKey); |
| ctl.entrysize = sizeof(OprProofCacheEntry); |
| OprProofCacheHash = hash_create("Btree proof lookup cache", 256, |
| &ctl, HASH_ELEM | HASH_BLOBS); |
| |
| /* Arrange to flush cache on pg_amop changes */ |
| CacheRegisterSyscacheCallback(AMOPOPID, |
| InvalidateOprProofCacheCallBack, |
| (Datum) 0); |
| } |
| |
| key.pred_op = pred_op; |
| key.clause_op = clause_op; |
| cache_entry = (OprProofCacheEntry *) hash_search(OprProofCacheHash, |
| (void *) &key, |
| HASH_ENTER, &cfound); |
| if (!cfound) |
| { |
| /* new cache entry, set it invalid */ |
| cache_entry->have_implic = false; |
| cache_entry->have_refute = false; |
| } |
| else |
| { |
| /* pre-existing cache entry, see if we know the answer yet */ |
| if (refute_it ? cache_entry->have_refute : cache_entry->have_implic) |
| return cache_entry; |
| } |
| |
| /* |
| * Try to find a btree opfamily containing the given operators. |
| * |
| * We must find a btree opfamily that contains both operators, else the |
| * implication can't be determined. Also, the opfamily must contain a |
| * suitable test operator taking the operators' righthand datatypes. |
| * |
| * If there are multiple matching opfamilies, assume we can use any one to |
| * determine the logical relationship of the two operators and the correct |
| * corresponding test operator. This should work for any logically |
| * consistent opfamilies. |
| * |
| * Note that we can determine the operators' relationship for |
| * same-subexprs cases even from an opfamily that lacks a usable test |
| * operator. This can happen in cases with incomplete sets of cross-type |
| * comparison operators. |
| */ |
| clause_op_infos = get_op_btree_interpretation(clause_op); |
| if (clause_op_infos) |
| pred_op_infos = get_op_btree_interpretation(pred_op); |
| else /* no point in looking */ |
| pred_op_infos = NIL; |
| |
| foreach(lcp, pred_op_infos) |
| { |
| OpBtreeInterpretation *pred_op_info = lfirst(lcp); |
| Oid opfamily_id = pred_op_info->opfamily_id; |
| |
| foreach(lcc, clause_op_infos) |
| { |
| OpBtreeInterpretation *clause_op_info = lfirst(lcc); |
| StrategyNumber pred_strategy, |
| clause_strategy, |
| test_strategy; |
| |
| /* Must find them in same opfamily */ |
| if (opfamily_id != clause_op_info->opfamily_id) |
| continue; |
| /* Lefttypes should match */ |
| Assert(clause_op_info->oplefttype == pred_op_info->oplefttype); |
| |
| pred_strategy = pred_op_info->strategy; |
| clause_strategy = clause_op_info->strategy; |
| |
| /* |
| * Check to see if we can make a proof for same-subexpressions |
| * cases based on the operators' relationship in this opfamily. |
| */ |
| if (refute_it) |
| same_subexprs |= BT_refutes_table[clause_strategy - 1][pred_strategy - 1]; |
| else |
| same_subexprs |= BT_implies_table[clause_strategy - 1][pred_strategy - 1]; |
| |
| /* |
| * Look up the "test" strategy number in the implication table |
| */ |
| if (refute_it) |
| test_strategy = BT_refute_table[clause_strategy - 1][pred_strategy - 1]; |
| else |
| test_strategy = BT_implic_table[clause_strategy - 1][pred_strategy - 1]; |
| |
| if (test_strategy == 0) |
| { |
| /* Can't determine implication using this interpretation */ |
| continue; |
| } |
| |
| /* |
| * See if opfamily has an operator for the test strategy and the |
| * datatypes. |
| */ |
| if (test_strategy == BTNE) |
| { |
| test_op = get_opfamily_member(opfamily_id, |
| pred_op_info->oprighttype, |
| clause_op_info->oprighttype, |
| BTEqualStrategyNumber); |
| if (OidIsValid(test_op)) |
| test_op = get_negator(test_op); |
| } |
| else |
| { |
| test_op = get_opfamily_member(opfamily_id, |
| pred_op_info->oprighttype, |
| clause_op_info->oprighttype, |
| test_strategy); |
| } |
| |
| if (!OidIsValid(test_op)) |
| continue; |
| |
| /* |
| * Last check: test_op must be immutable. |
| * |
| * Note that we require only the test_op to be immutable, not the |
| * original clause_op. (pred_op is assumed to have been checked |
| * immutable by the caller.) Essentially we are assuming that the |
| * opfamily is consistent even if it contains operators that are |
| * merely stable. |
| */ |
| if (op_volatile(test_op) == PROVOLATILE_IMMUTABLE) |
| { |
| found = true; |
| break; |
| } |
| } |
| |
| if (found) |
| break; |
| } |
| |
| list_free_deep(pred_op_infos); |
| list_free_deep(clause_op_infos); |
| |
| if (!found) |
| { |
| /* couldn't find a suitable comparison operator */ |
| test_op = InvalidOid; |
| } |
| |
| /* |
| * If we think we were able to prove something about same-subexpressions |
| * cases, check to make sure the clause_op is immutable before believing |
| * it completely. (Usually, the clause_op would be immutable if the |
| * pred_op is, but it's not entirely clear that this must be true in all |
| * cases, so let's check.) |
| */ |
| if (same_subexprs && |
| op_volatile(clause_op) != PROVOLATILE_IMMUTABLE) |
| same_subexprs = false; |
| |
| /* Cache the results, whether positive or negative */ |
| if (refute_it) |
| { |
| cache_entry->refute_test_op = test_op; |
| cache_entry->same_subexprs_refutes = same_subexprs; |
| cache_entry->have_refute = true; |
| } |
| else |
| { |
| cache_entry->implic_test_op = test_op; |
| cache_entry->same_subexprs_implies = same_subexprs; |
| cache_entry->have_implic = true; |
| } |
| |
| return cache_entry; |
| } |
| |
| /* |
| * operator_same_subexprs_lookup |
| * Convenience subroutine to look up the cached answer for |
| * same-subexpressions cases. |
| */ |
| static bool |
| operator_same_subexprs_lookup(Oid pred_op, Oid clause_op, bool refute_it) |
| { |
| OprProofCacheEntry *cache_entry; |
| |
| cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it); |
| if (refute_it) |
| return cache_entry->same_subexprs_refutes; |
| else |
| return cache_entry->same_subexprs_implies; |
| } |
| |
| /* |
| * get_btree_test_op |
| * Identify the comparison operator needed for a btree-operator |
| * proof or refutation involving comparison of constants. |
| * |
| * Given the truth of a clause "var clause_op const1", we are attempting to |
| * prove or refute a predicate "var pred_op const2". The identities of the |
| * two operators are sufficient to determine the operator (if any) to compare |
| * const2 to const1 with. |
| * |
| * Returns the OID of the operator to use, or InvalidOid if no proof is |
| * possible. |
| */ |
| static Oid |
| get_btree_test_op(Oid pred_op, Oid clause_op, bool refute_it) |
| { |
| OprProofCacheEntry *cache_entry; |
| |
| cache_entry = lookup_proof_cache(pred_op, clause_op, refute_it); |
| if (refute_it) |
| return cache_entry->refute_test_op; |
| else |
| return cache_entry->implic_test_op; |
| } |
| |
| |
| /* |
| * Callback for pg_amop inval events |
| */ |
| static void |
| InvalidateOprProofCacheCallBack(Datum arg, int cacheid, uint32 hashvalue) |
| { |
| HASH_SEQ_STATUS status; |
| OprProofCacheEntry *hentry; |
| |
| Assert(OprProofCacheHash != NULL); |
| |
| /* Currently we just reset all entries; hard to be smarter ... */ |
| hash_seq_init(&status, OprProofCacheHash); |
| |
| while ((hentry = (OprProofCacheEntry *) hash_seq_search(&status)) != NULL) |
| { |
| hentry->have_implic = false; |
| hentry->have_refute = false; |
| } |
| } |
| |
| /** |
| * Process an AND clause -- this can do a INTERSECTION between sets learned from child clauses |
| */ |
| static PossibleValueSet |
| ProcessAndClauseForPossibleValues( PredIterInfoData *clauseInfo, Node *clause, Node *variable, Oid opfamily) |
| { |
| PossibleValueSet result; |
| |
| InitPossibleValueSetData(&result); |
| |
| iterate_begin(child, clause, *clauseInfo) |
| { |
| PossibleValueSet childPossible = DeterminePossibleValueSet( child, variable, opfamily ); |
| if ( childPossible.isAnyValuePossible) |
| { |
| /* any value possible, this AND member does not add any information */ |
| DeletePossibleValueSetData( &childPossible); |
| } |
| else |
| { |
| /* a particular set so this AND member can refine our estimate */ |
| if ( result.isAnyValuePossible ) |
| { |
| /* current result was not informative so just take the child */ |
| result = childPossible; |
| } |
| else |
| { |
| /* result.set AND childPossible.set: do intersection inside result */ |
| RemoveUnmatchingValues( &result, &childPossible ); |
| DeletePossibleValueSetData( &childPossible); |
| } |
| } |
| } |
| iterate_end(*clauseInfo); |
| |
| return result; |
| } |
| |
| /** |
| * Process an OR clause -- this can do a UNION between sets learned from child clauses |
| */ |
| static PossibleValueSet |
| ProcessOrClauseForPossibleValues( PredIterInfoData *clauseInfo, Node *clause, Node *variable, Oid opfamily) |
| { |
| PossibleValueSet result; |
| InitPossibleValueSetData(&result); |
| |
| iterate_begin(child, clause, *clauseInfo) |
| { |
| PossibleValueSet childPossible = DeterminePossibleValueSet( child, variable, opfamily); |
| if ( childPossible.isAnyValuePossible) |
| { |
| /* any value is possible for the entire AND */ |
| DeletePossibleValueSetData( &childPossible ); |
| DeletePossibleValueSetData( &result ); |
| |
| /* it can't improve once a part of the OR accepts all, so just quit */ |
| result.isAnyValuePossible = true; |
| break; |
| } |
| |
| if ( result.isAnyValuePossible ) |
| { |
| /* first one in loop so just take it */ |
| result = childPossible; |
| } |
| else |
| { |
| /* result.set OR childPossible.set --> do union into result */ |
| AddUnmatchingValues( &result, &childPossible ); |
| DeletePossibleValueSetData( &childPossible); |
| } |
| } |
| iterate_end(*clauseInfo); |
| |
| return result; |
| } |
| |
| |
| /** |
| * |
| * Get the possible values of variable, as determined by the given qualification clause |
| * |
| * Note that only variables whose type is greenplumDbHashtable will return an actual finite set of values. All others |
| * will go to the default behavior -- return that any value is possible |
| * |
| * Note that if there are two variables to check, you must call this twice. This then means that |
| * if the two variables are dependent you won't learn of that -- you only know that the set of |
| * possible values is within the cross-product of the two variables' sets |
| */ |
| PossibleValueSet |
| DeterminePossibleValueSet(Node *clause, Node *variable, Oid opfamily) |
| { |
| PredIterInfoData clauseInfo; |
| PossibleValueSet result; |
| |
| if ( clause == NULL ) |
| { |
| InitPossibleValueSetData(&result); |
| return result; |
| } |
| |
| switch (predicate_classify(clause, &clauseInfo)) |
| { |
| case CLASS_AND: |
| return ProcessAndClauseForPossibleValues(&clauseInfo, clause, variable, opfamily); |
| case CLASS_OR: |
| return ProcessOrClauseForPossibleValues(&clauseInfo, clause, variable, opfamily); |
| case CLASS_ATOM: |
| if (TryProcessExprForPossibleValues(clause, variable, opfamily, &result)) |
| { |
| return result; |
| } |
| /* can't infer anything, so return that any value is possible */ |
| InitPossibleValueSetData(&result); |
| return result; |
| } |
| |
| |
| /* can't get here */ |
| elog(ERROR, "predicate_classify returned a bad value"); |
| return result; |
| } |