| /* Convert timestamp from pg_time_t to struct pg_tm. */ |
| |
| /* |
| * This file is in the public domain, so clarified as of |
| * 1996-06-05 by Arthur David Olson. |
| * |
| * IDENTIFICATION |
| * src/timezone/localtime.c |
| */ |
| |
| /* |
| * Leap second handling from Bradley White. |
| * POSIX-style TZ environment variable handling from Guy Harris. |
| */ |
| |
| /* this file needs to build in both frontend and backend contexts */ |
| #include "c.h" |
| |
| #include <fcntl.h> |
| |
| #include "datatype/timestamp.h" |
| #include "pgtz.h" |
| |
| #include "private.h" |
| #include "tzfile.h" |
| |
| |
| #ifndef WILDABBR |
| /* |
| * Someone might make incorrect use of a time zone abbreviation: |
| * 1. They might reference tzname[0] before calling tzset (explicitly |
| * or implicitly). |
| * 2. They might reference tzname[1] before calling tzset (explicitly |
| * or implicitly). |
| * 3. They might reference tzname[1] after setting to a time zone |
| * in which Daylight Saving Time is never observed. |
| * 4. They might reference tzname[0] after setting to a time zone |
| * in which Standard Time is never observed. |
| * 5. They might reference tm.tm_zone after calling offtime. |
| * What's best to do in the above cases is open to debate; |
| * for now, we just set things up so that in any of the five cases |
| * WILDABBR is used. Another possibility: initialize tzname[0] to the |
| * string "tzname[0] used before set", and similarly for the other cases. |
| * And another: initialize tzname[0] to "ERA", with an explanation in the |
| * manual page of what this "time zone abbreviation" means (doing this so |
| * that tzname[0] has the "normal" length of three characters). |
| */ |
| #define WILDABBR " " |
| #endif /* !defined WILDABBR */ |
| |
| static const char wildabbr[] = WILDABBR; |
| |
| static const char gmt[] = "GMT"; |
| |
| /* |
| * The DST rules to use if a POSIX TZ string has no rules. |
| * Default to US rules as of 2017-05-07. |
| * POSIX does not specify the default DST rules; |
| * for historical reasons, US rules are a common default. |
| */ |
| #define TZDEFRULESTRING ",M3.2.0,M11.1.0" |
| |
| /* structs ttinfo, lsinfo, state have been moved to pgtz.h */ |
| |
| enum r_type |
| { |
| JULIAN_DAY, /* Jn = Julian day */ |
| DAY_OF_YEAR, /* n = day of year */ |
| MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */ |
| }; |
| |
| struct rule |
| { |
| enum r_type r_type; /* type of rule */ |
| int r_day; /* day number of rule */ |
| int r_week; /* week number of rule */ |
| int r_mon; /* month number of rule */ |
| int32 r_time; /* transition time of rule */ |
| }; |
| |
| /* |
| * Prototypes for static functions. |
| */ |
| |
| static struct pg_tm *gmtsub(pg_time_t const *timep, int32 offset, |
| struct pg_tm *tmp); |
| static bool increment_overflow(int *ip, int j); |
| static bool increment_overflow_time(pg_time_t *tp, int32 j); |
| static int64 leapcorr(struct state const *sp, pg_time_t t); |
| static struct pg_tm *timesub(pg_time_t const *timep, |
| int32 offset, struct state const *sp, |
| struct pg_tm *tmp); |
| static bool typesequiv(struct state const *sp, int a, int b); |
| |
| |
| /* |
| * Section 4.12.3 of X3.159-1989 requires that |
| * Except for the strftime function, these functions [asctime, |
| * ctime, gmtime, localtime] return values in one of two static |
| * objects: a broken-down time structure and an array of char. |
| * Thanks to Paul Eggert for noting this. |
| */ |
| |
| static struct pg_tm tm; |
| |
| /* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX. */ |
| static void |
| init_ttinfo(struct ttinfo *s, int32 utoff, bool isdst, int desigidx) |
| { |
| s->tt_utoff = utoff; |
| s->tt_isdst = isdst; |
| s->tt_desigidx = desigidx; |
| s->tt_ttisstd = false; |
| s->tt_ttisut = false; |
| } |
| |
| static int32 |
| detzcode(const char *const codep) |
| { |
| int32 result; |
| int i; |
| int32 one = 1; |
| int32 halfmaxval = one << (32 - 2); |
| int32 maxval = halfmaxval - 1 + halfmaxval; |
| int32 minval = -1 - maxval; |
| |
| result = codep[0] & 0x7f; |
| for (i = 1; i < 4; ++i) |
| result = (result << 8) | (codep[i] & 0xff); |
| |
| if (codep[0] & 0x80) |
| { |
| /* |
| * Do two's-complement negation even on non-two's-complement machines. |
| * If the result would be minval - 1, return minval. |
| */ |
| result -= !TWOS_COMPLEMENT(int32) && result != 0; |
| result += minval; |
| } |
| return result; |
| } |
| |
| static int64 |
| detzcode64(const char *const codep) |
| { |
| uint64 result; |
| int i; |
| int64 one = 1; |
| int64 halfmaxval = one << (64 - 2); |
| int64 maxval = halfmaxval - 1 + halfmaxval; |
| int64 minval = -TWOS_COMPLEMENT(int64) - maxval; |
| |
| result = codep[0] & 0x7f; |
| for (i = 1; i < 8; ++i) |
| result = (result << 8) | (codep[i] & 0xff); |
| |
| if (codep[0] & 0x80) |
| { |
| /* |
| * Do two's-complement negation even on non-two's-complement machines. |
| * If the result would be minval - 1, return minval. |
| */ |
| result -= !TWOS_COMPLEMENT(int64) && result != 0; |
| result += minval; |
| } |
| return result; |
| } |
| |
| static bool |
| differ_by_repeat(const pg_time_t t1, const pg_time_t t0) |
| { |
| if (TYPE_BIT(pg_time_t) - TYPE_SIGNED(pg_time_t) < SECSPERREPEAT_BITS) |
| return 0; |
| return t1 - t0 == SECSPERREPEAT; |
| } |
| |
| /* Input buffer for data read from a compiled tz file. */ |
| union input_buffer |
| { |
| /* The first part of the buffer, interpreted as a header. */ |
| struct tzhead tzhead; |
| |
| /* The entire buffer. */ |
| char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state) |
| + 4 * TZ_MAX_TIMES]; |
| }; |
| |
| /* Local storage needed for 'tzloadbody'. */ |
| union local_storage |
| { |
| /* The results of analyzing the file's contents after it is opened. */ |
| struct file_analysis |
| { |
| /* The input buffer. */ |
| union input_buffer u; |
| |
| /* A temporary state used for parsing a TZ string in the file. */ |
| struct state st; |
| } u; |
| |
| /* We don't need the "fullname" member */ |
| }; |
| |
| /* Load tz data from the file named NAME into *SP. Read extended |
| * format if DOEXTEND. Use *LSP for temporary storage. Return 0 on |
| * success, an errno value on failure. |
| * PG: If "canonname" is not NULL, then on success the canonical spelling of |
| * given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!). |
| */ |
| static int |
| tzloadbody(char const *name, char *canonname, struct state *sp, bool doextend, |
| union local_storage *lsp) |
| { |
| int i; |
| int fid; |
| int stored; |
| ssize_t nread; |
| union input_buffer *up = &lsp->u.u; |
| int tzheadsize = sizeof(struct tzhead); |
| |
| sp->goback = sp->goahead = false; |
| |
| if (!name) |
| { |
| name = TZDEFAULT; |
| if (!name) |
| return EINVAL; |
| } |
| |
| if (name[0] == ':') |
| ++name; |
| |
| fid = pg_open_tzfile(name, canonname); |
| if (fid < 0) |
| return ENOENT; /* pg_open_tzfile may not set errno */ |
| |
| nread = read(fid, up->buf, sizeof up->buf); |
| if (nread < tzheadsize) |
| { |
| int err = nread < 0 ? errno : EINVAL; |
| |
| close(fid); |
| return err; |
| } |
| if (close(fid) < 0) |
| return errno; |
| for (stored = 4; stored <= 8; stored *= 2) |
| { |
| int32 ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt); |
| int32 ttisutcnt = detzcode(up->tzhead.tzh_ttisutcnt); |
| int64 prevtr = 0; |
| int32 prevcorr = 0; |
| int32 leapcnt = detzcode(up->tzhead.tzh_leapcnt); |
| int32 timecnt = detzcode(up->tzhead.tzh_timecnt); |
| int32 typecnt = detzcode(up->tzhead.tzh_typecnt); |
| int32 charcnt = detzcode(up->tzhead.tzh_charcnt); |
| char const *p = up->buf + tzheadsize; |
| |
| /* |
| * Although tzfile(5) currently requires typecnt to be nonzero, |
| * support future formats that may allow zero typecnt in files that |
| * have a TZ string and no transitions. |
| */ |
| if (!(0 <= leapcnt && leapcnt < TZ_MAX_LEAPS |
| && 0 <= typecnt && typecnt < TZ_MAX_TYPES |
| && 0 <= timecnt && timecnt < TZ_MAX_TIMES |
| && 0 <= charcnt && charcnt < TZ_MAX_CHARS |
| && (ttisstdcnt == typecnt || ttisstdcnt == 0) |
| && (ttisutcnt == typecnt || ttisutcnt == 0))) |
| return EINVAL; |
| if (nread |
| < (tzheadsize /* struct tzhead */ |
| + timecnt * stored /* ats */ |
| + timecnt /* types */ |
| + typecnt * 6 /* ttinfos */ |
| + charcnt /* chars */ |
| + leapcnt * (stored + 4) /* lsinfos */ |
| + ttisstdcnt /* ttisstds */ |
| + ttisutcnt)) /* ttisuts */ |
| return EINVAL; |
| sp->leapcnt = leapcnt; |
| sp->timecnt = timecnt; |
| sp->typecnt = typecnt; |
| sp->charcnt = charcnt; |
| |
| /* |
| * Read transitions, discarding those out of pg_time_t range. But |
| * pretend the last transition before TIME_T_MIN occurred at |
| * TIME_T_MIN. |
| */ |
| timecnt = 0; |
| for (i = 0; i < sp->timecnt; ++i) |
| { |
| int64 at |
| = stored == 4 ? detzcode(p) : detzcode64(p); |
| |
| sp->types[i] = at <= TIME_T_MAX; |
| if (sp->types[i]) |
| { |
| pg_time_t attime |
| = ((TYPE_SIGNED(pg_time_t) ? at < TIME_T_MIN : at < 0) |
| ? TIME_T_MIN : at); |
| |
| if (timecnt && attime <= sp->ats[timecnt - 1]) |
| { |
| if (attime < sp->ats[timecnt - 1]) |
| return EINVAL; |
| sp->types[i - 1] = 0; |
| timecnt--; |
| } |
| sp->ats[timecnt++] = attime; |
| } |
| p += stored; |
| } |
| |
| timecnt = 0; |
| for (i = 0; i < sp->timecnt; ++i) |
| { |
| unsigned char typ = *p++; |
| |
| if (sp->typecnt <= typ) |
| return EINVAL; |
| if (sp->types[i]) |
| sp->types[timecnt++] = typ; |
| } |
| sp->timecnt = timecnt; |
| for (i = 0; i < sp->typecnt; ++i) |
| { |
| struct ttinfo *ttisp; |
| unsigned char isdst, |
| desigidx; |
| |
| ttisp = &sp->ttis[i]; |
| ttisp->tt_utoff = detzcode(p); |
| p += 4; |
| isdst = *p++; |
| if (!(isdst < 2)) |
| return EINVAL; |
| ttisp->tt_isdst = isdst; |
| desigidx = *p++; |
| if (!(desigidx < sp->charcnt)) |
| return EINVAL; |
| ttisp->tt_desigidx = desigidx; |
| } |
| for (i = 0; i < sp->charcnt; ++i) |
| sp->chars[i] = *p++; |
| sp->chars[i] = '\0'; /* ensure '\0' at end */ |
| |
| /* Read leap seconds, discarding those out of pg_time_t range. */ |
| leapcnt = 0; |
| for (i = 0; i < sp->leapcnt; ++i) |
| { |
| int64 tr = stored == 4 ? detzcode(p) : detzcode64(p); |
| int32 corr = detzcode(p + stored); |
| |
| p += stored + 4; |
| /* Leap seconds cannot occur before the Epoch. */ |
| if (tr < 0) |
| return EINVAL; |
| if (tr <= TIME_T_MAX) |
| { |
| /* |
| * Leap seconds cannot occur more than once per UTC month, and |
| * UTC months are at least 28 days long (minus 1 second for a |
| * negative leap second). Each leap second's correction must |
| * differ from the previous one's by 1 second. |
| */ |
| if (tr - prevtr < 28 * SECSPERDAY - 1 |
| || (corr != prevcorr - 1 && corr != prevcorr + 1)) |
| return EINVAL; |
| sp->lsis[leapcnt].ls_trans = prevtr = tr; |
| sp->lsis[leapcnt].ls_corr = prevcorr = corr; |
| leapcnt++; |
| } |
| } |
| sp->leapcnt = leapcnt; |
| |
| for (i = 0; i < sp->typecnt; ++i) |
| { |
| struct ttinfo *ttisp; |
| |
| ttisp = &sp->ttis[i]; |
| if (ttisstdcnt == 0) |
| ttisp->tt_ttisstd = false; |
| else |
| { |
| if (*p != true && *p != false) |
| return EINVAL; |
| ttisp->tt_ttisstd = *p++; |
| } |
| } |
| for (i = 0; i < sp->typecnt; ++i) |
| { |
| struct ttinfo *ttisp; |
| |
| ttisp = &sp->ttis[i]; |
| if (ttisutcnt == 0) |
| ttisp->tt_ttisut = false; |
| else |
| { |
| if (*p != true && *p != false) |
| return EINVAL; |
| ttisp->tt_ttisut = *p++; |
| } |
| } |
| |
| /* |
| * If this is an old file, we're done. |
| */ |
| if (up->tzhead.tzh_version[0] == '\0') |
| break; |
| nread -= p - up->buf; |
| memmove(up->buf, p, nread); |
| } |
| if (doextend && nread > 2 && |
| up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && |
| sp->typecnt + 2 <= TZ_MAX_TYPES) |
| { |
| struct state *ts = &lsp->u.st; |
| |
| up->buf[nread - 1] = '\0'; |
| if (tzparse(&up->buf[1], ts, false)) |
| { |
| /* |
| * Attempt to reuse existing abbreviations. Without this, |
| * America/Anchorage would be right on the edge after 2037 when |
| * TZ_MAX_CHARS is 50, as sp->charcnt equals 40 (for LMT AST AWT |
| * APT AHST AHDT YST AKDT AKST) and ts->charcnt equals 10 (for |
| * AKST AKDT). Reusing means sp->charcnt can stay 40 in this |
| * example. |
| */ |
| int gotabbr = 0; |
| int charcnt = sp->charcnt; |
| |
| for (i = 0; i < ts->typecnt; i++) |
| { |
| char *tsabbr = ts->chars + ts->ttis[i].tt_desigidx; |
| int j; |
| |
| for (j = 0; j < charcnt; j++) |
| if (strcmp(sp->chars + j, tsabbr) == 0) |
| { |
| ts->ttis[i].tt_desigidx = j; |
| gotabbr++; |
| break; |
| } |
| if (!(j < charcnt)) |
| { |
| int tsabbrlen = strlen(tsabbr); |
| |
| if (j + tsabbrlen < TZ_MAX_CHARS) |
| { |
| strcpy(sp->chars + j, tsabbr); |
| charcnt = j + tsabbrlen + 1; |
| ts->ttis[i].tt_desigidx = j; |
| gotabbr++; |
| } |
| } |
| } |
| if (gotabbr == ts->typecnt) |
| { |
| sp->charcnt = charcnt; |
| |
| /* |
| * Ignore any trailing, no-op transitions generated by zic as |
| * they don't help here and can run afoul of bugs in zic 2016j |
| * or earlier. |
| */ |
| while (1 < sp->timecnt |
| && (sp->types[sp->timecnt - 1] |
| == sp->types[sp->timecnt - 2])) |
| sp->timecnt--; |
| |
| for (i = 0; i < ts->timecnt; i++) |
| if (sp->timecnt == 0 |
| || (sp->ats[sp->timecnt - 1] |
| < ts->ats[i] + leapcorr(sp, ts->ats[i]))) |
| break; |
| while (i < ts->timecnt |
| && sp->timecnt < TZ_MAX_TIMES) |
| { |
| sp->ats[sp->timecnt] |
| = ts->ats[i] + leapcorr(sp, ts->ats[i]); |
| sp->types[sp->timecnt] = (sp->typecnt |
| + ts->types[i]); |
| sp->timecnt++; |
| i++; |
| } |
| for (i = 0; i < ts->typecnt; i++) |
| sp->ttis[sp->typecnt++] = ts->ttis[i]; |
| } |
| } |
| } |
| if (sp->typecnt == 0) |
| return EINVAL; |
| if (sp->timecnt > 1) |
| { |
| for (i = 1; i < sp->timecnt; ++i) |
| if (typesequiv(sp, sp->types[i], sp->types[0]) && |
| differ_by_repeat(sp->ats[i], sp->ats[0])) |
| { |
| sp->goback = true; |
| break; |
| } |
| for (i = sp->timecnt - 2; i >= 0; --i) |
| if (typesequiv(sp, sp->types[sp->timecnt - 1], |
| sp->types[i]) && |
| differ_by_repeat(sp->ats[sp->timecnt - 1], |
| sp->ats[i])) |
| { |
| sp->goahead = true; |
| break; |
| } |
| } |
| |
| /* |
| * Infer sp->defaulttype from the data. Although this default type is |
| * always zero for data from recent tzdb releases, things are trickier for |
| * data from tzdb 2018e or earlier. |
| * |
| * The first set of heuristics work around bugs in 32-bit data generated |
| * by tzdb 2013c or earlier. The workaround is for zones like |
| * Australia/Macquarie where timestamps before the first transition have a |
| * time type that is not the earliest standard-time type. See: |
| * https://mm.icann.org/pipermail/tz/2013-May/019368.html |
| */ |
| |
| /* |
| * If type 0 is unused in transitions, it's the type to use for early |
| * times. |
| */ |
| for (i = 0; i < sp->timecnt; ++i) |
| if (sp->types[i] == 0) |
| break; |
| i = i < sp->timecnt ? -1 : 0; |
| |
| /* |
| * Absent the above, if there are transition times and the first |
| * transition is to a daylight time find the standard type less than and |
| * closest to the type of the first transition. |
| */ |
| if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) |
| { |
| i = sp->types[0]; |
| while (--i >= 0) |
| if (!sp->ttis[i].tt_isdst) |
| break; |
| } |
| |
| /* |
| * The next heuristics are for data generated by tzdb 2018e or earlier, |
| * for zones like EST5EDT where the first transition is to DST. |
| */ |
| |
| /* |
| * If no result yet, find the first standard type. If there is none, punt |
| * to type zero. |
| */ |
| if (i < 0) |
| { |
| i = 0; |
| while (sp->ttis[i].tt_isdst) |
| if (++i >= sp->typecnt) |
| { |
| i = 0; |
| break; |
| } |
| } |
| |
| /* |
| * A simple 'sp->defaulttype = 0;' would suffice here if we didn't have to |
| * worry about 2018e-or-earlier data. Even simpler would be to remove the |
| * defaulttype member and just use 0 in its place. |
| */ |
| sp->defaulttype = i; |
| |
| return 0; |
| } |
| |
| /* Load tz data from the file named NAME into *SP. Read extended |
| * format if DOEXTEND. Return 0 on success, an errno value on failure. |
| * PG: If "canonname" is not NULL, then on success the canonical spelling of |
| * given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!). |
| */ |
| int |
| tzload(const char *name, char *canonname, struct state *sp, bool doextend) |
| { |
| union local_storage *lsp = malloc(sizeof *lsp); |
| |
| if (!lsp) |
| return errno; |
| else |
| { |
| int err = tzloadbody(name, canonname, sp, doextend, lsp); |
| |
| free(lsp); |
| return err; |
| } |
| } |
| |
| static bool |
| typesequiv(const struct state *sp, int a, int b) |
| { |
| bool result; |
| |
| if (sp == NULL || |
| a < 0 || a >= sp->typecnt || |
| b < 0 || b >= sp->typecnt) |
| result = false; |
| else |
| { |
| const struct ttinfo *ap = &sp->ttis[a]; |
| const struct ttinfo *bp = &sp->ttis[b]; |
| |
| result = (ap->tt_utoff == bp->tt_utoff |
| && ap->tt_isdst == bp->tt_isdst |
| && ap->tt_ttisstd == bp->tt_ttisstd |
| && ap->tt_ttisut == bp->tt_ttisut |
| && (strcmp(&sp->chars[ap->tt_desigidx], |
| &sp->chars[bp->tt_desigidx]) |
| == 0)); |
| } |
| return result; |
| } |
| |
| static const int mon_lengths[2][MONSPERYEAR] = { |
| {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} |
| }; |
| |
| static const int year_lengths[2] = { |
| DAYSPERNYEAR, DAYSPERLYEAR |
| }; |
| |
| /* |
| * Given a pointer into a timezone string, scan until a character that is not |
| * a valid character in a time zone abbreviation is found. |
| * Return a pointer to that character. |
| */ |
| |
| static const char * |
| getzname(const char *strp) |
| { |
| char c; |
| |
| while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && |
| c != '+') |
| ++strp; |
| return strp; |
| } |
| |
| /* |
| * Given a pointer into an extended timezone string, scan until the ending |
| * delimiter of the time zone abbreviation is located. |
| * Return a pointer to the delimiter. |
| * |
| * As with getzname above, the legal character set is actually quite |
| * restricted, with other characters producing undefined results. |
| * We don't do any checking here; checking is done later in common-case code. |
| */ |
| |
| static const char * |
| getqzname(const char *strp, const int delim) |
| { |
| int c; |
| |
| while ((c = *strp) != '\0' && c != delim) |
| ++strp; |
| return strp; |
| } |
| |
| /* |
| * Given a pointer into a timezone string, extract a number from that string. |
| * Check that the number is within a specified range; if it is not, return |
| * NULL. |
| * Otherwise, return a pointer to the first character not part of the number. |
| */ |
| |
| static const char * |
| getnum(const char *strp, int *const nump, const int min, const int max) |
| { |
| char c; |
| int num; |
| |
| if (strp == NULL || !is_digit(c = *strp)) |
| return NULL; |
| num = 0; |
| do |
| { |
| num = num * 10 + (c - '0'); |
| if (num > max) |
| return NULL; /* illegal value */ |
| c = *++strp; |
| } while (is_digit(c)); |
| if (num < min) |
| return NULL; /* illegal value */ |
| *nump = num; |
| return strp; |
| } |
| |
| /* |
| * Given a pointer into a timezone string, extract a number of seconds, |
| * in hh[:mm[:ss]] form, from the string. |
| * If any error occurs, return NULL. |
| * Otherwise, return a pointer to the first character not part of the number |
| * of seconds. |
| */ |
| |
| static const char * |
| getsecs(const char *strp, int32 *const secsp) |
| { |
| int num; |
| |
| /* |
| * 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
| * "M10.4.6/26", which does not conform to Posix, but which specifies the |
| * equivalent of "02:00 on the first Sunday on or after 23 Oct". |
| */ |
| strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
| if (strp == NULL) |
| return NULL; |
| *secsp = num * (int32) SECSPERHOUR; |
| if (*strp == ':') |
| { |
| ++strp; |
| strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
| if (strp == NULL) |
| return NULL; |
| *secsp += num * SECSPERMIN; |
| if (*strp == ':') |
| { |
| ++strp; |
| /* 'SECSPERMIN' allows for leap seconds. */ |
| strp = getnum(strp, &num, 0, SECSPERMIN); |
| if (strp == NULL) |
| return NULL; |
| *secsp += num; |
| } |
| } |
| return strp; |
| } |
| |
| /* |
| * Given a pointer into a timezone string, extract an offset, in |
| * [+-]hh[:mm[:ss]] form, from the string. |
| * If any error occurs, return NULL. |
| * Otherwise, return a pointer to the first character not part of the time. |
| */ |
| |
| static const char * |
| getoffset(const char *strp, int32 *const offsetp) |
| { |
| bool neg = false; |
| |
| if (*strp == '-') |
| { |
| neg = true; |
| ++strp; |
| } |
| else if (*strp == '+') |
| ++strp; |
| strp = getsecs(strp, offsetp); |
| if (strp == NULL) |
| return NULL; /* illegal time */ |
| if (neg) |
| *offsetp = -*offsetp; |
| return strp; |
| } |
| |
| /* |
| * Given a pointer into a timezone string, extract a rule in the form |
| * date[/time]. See POSIX section 8 for the format of "date" and "time". |
| * If a valid rule is not found, return NULL. |
| * Otherwise, return a pointer to the first character not part of the rule. |
| */ |
| |
| static const char * |
| getrule(const char *strp, struct rule *const rulep) |
| { |
| if (*strp == 'J') |
| { |
| /* |
| * Julian day. |
| */ |
| rulep->r_type = JULIAN_DAY; |
| ++strp; |
| strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
| } |
| else if (*strp == 'M') |
| { |
| /* |
| * Month, week, day. |
| */ |
| rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
| ++strp; |
| strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
| if (strp == NULL) |
| return NULL; |
| if (*strp++ != '.') |
| return NULL; |
| strp = getnum(strp, &rulep->r_week, 1, 5); |
| if (strp == NULL) |
| return NULL; |
| if (*strp++ != '.') |
| return NULL; |
| strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
| } |
| else if (is_digit(*strp)) |
| { |
| /* |
| * Day of year. |
| */ |
| rulep->r_type = DAY_OF_YEAR; |
| strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
| } |
| else |
| return NULL; /* invalid format */ |
| if (strp == NULL) |
| return NULL; |
| if (*strp == '/') |
| { |
| /* |
| * Time specified. |
| */ |
| ++strp; |
| strp = getoffset(strp, &rulep->r_time); |
| } |
| else |
| rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
| return strp; |
| } |
| |
| /* |
| * Given a year, a rule, and the offset from UT at the time that rule takes |
| * effect, calculate the year-relative time that rule takes effect. |
| */ |
| |
| static int32 |
| transtime(const int year, const struct rule *const rulep, |
| const int32 offset) |
| { |
| bool leapyear; |
| int32 value; |
| int i; |
| int d, |
| m1, |
| yy0, |
| yy1, |
| yy2, |
| dow; |
| |
| INITIALIZE(value); |
| leapyear = isleap(year); |
| switch (rulep->r_type) |
| { |
| |
| case JULIAN_DAY: |
| |
| /* |
| * Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
| * years. In non-leap years, or if the day number is 59 or less, |
| * just add SECSPERDAY times the day number-1 to the time of |
| * January 1, midnight, to get the day. |
| */ |
| value = (rulep->r_day - 1) * SECSPERDAY; |
| if (leapyear && rulep->r_day >= 60) |
| value += SECSPERDAY; |
| break; |
| |
| case DAY_OF_YEAR: |
| |
| /* |
| * n - day of year. Just add SECSPERDAY times the day number to |
| * the time of January 1, midnight, to get the day. |
| */ |
| value = rulep->r_day * SECSPERDAY; |
| break; |
| |
| case MONTH_NTH_DAY_OF_WEEK: |
| |
| /* |
| * Mm.n.d - nth "dth day" of month m. |
| */ |
| |
| /* |
| * Use Zeller's Congruence to get day-of-week of first day of |
| * month. |
| */ |
| m1 = (rulep->r_mon + 9) % 12 + 1; |
| yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
| yy1 = yy0 / 100; |
| yy2 = yy0 % 100; |
| dow = ((26 * m1 - 2) / 10 + |
| 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
| if (dow < 0) |
| dow += DAYSPERWEEK; |
| |
| /* |
| * "dow" is the day-of-week of the first day of the month. Get the |
| * day-of-month (zero-origin) of the first "dow" day of the month. |
| */ |
| d = rulep->r_day - dow; |
| if (d < 0) |
| d += DAYSPERWEEK; |
| for (i = 1; i < rulep->r_week; ++i) |
| { |
| if (d + DAYSPERWEEK >= |
| mon_lengths[(int) leapyear][rulep->r_mon - 1]) |
| break; |
| d += DAYSPERWEEK; |
| } |
| |
| /* |
| * "d" is the day-of-month (zero-origin) of the day we want. |
| */ |
| value = d * SECSPERDAY; |
| for (i = 0; i < rulep->r_mon - 1; ++i) |
| value += mon_lengths[(int) leapyear][i] * SECSPERDAY; |
| break; |
| } |
| |
| /* |
| * "value" is the year-relative time of 00:00:00 UT on the day in |
| * question. To get the year-relative time of the specified local time on |
| * that day, add the transition time and the current offset from UT. |
| */ |
| return value + rulep->r_time + offset; |
| } |
| |
| /* |
| * Given a POSIX section 8-style TZ string, fill in the rule tables as |
| * appropriate. |
| * Returns true on success, false on failure. |
| */ |
| bool |
| tzparse(const char *name, struct state *sp, bool lastditch) |
| { |
| const char *stdname; |
| const char *dstname = NULL; |
| size_t stdlen; |
| size_t dstlen; |
| size_t charcnt; |
| int32 stdoffset; |
| int32 dstoffset; |
| char *cp; |
| bool load_ok; |
| |
| stdname = name; |
| if (lastditch) |
| { |
| /* Unlike IANA, don't assume name is exactly "GMT" */ |
| stdlen = strlen(name); /* length of standard zone name */ |
| name += stdlen; |
| stdoffset = 0; |
| } |
| else |
| { |
| if (*name == '<') |
| { |
| name++; |
| stdname = name; |
| name = getqzname(name, '>'); |
| if (*name != '>') |
| return false; |
| stdlen = name - stdname; |
| name++; |
| } |
| else |
| { |
| name = getzname(name); |
| stdlen = name - stdname; |
| } |
| if (*name == '\0') /* we allow empty STD abbrev, unlike IANA */ |
| return false; |
| name = getoffset(name, &stdoffset); |
| if (name == NULL) |
| return false; |
| } |
| charcnt = stdlen + 1; |
| if (sizeof sp->chars < charcnt) |
| return false; |
| |
| /* |
| * The IANA code always tries to tzload(TZDEFRULES) here. We do not want |
| * to do that; it would be bad news in the lastditch case, where we can't |
| * assume pg_open_tzfile() is sane yet. Moreover, if we did load it and |
| * it contains leap-second-dependent info, that would cause problems too. |
| * Finally, IANA has deprecated the TZDEFRULES feature, so it presumably |
| * will die at some point. Desupporting it now seems like good |
| * future-proofing. |
| */ |
| load_ok = false; |
| sp->goback = sp->goahead = false; /* simulate failed tzload() */ |
| sp->leapcnt = 0; /* intentionally assume no leap seconds */ |
| |
| if (*name != '\0') |
| { |
| if (*name == '<') |
| { |
| dstname = ++name; |
| name = getqzname(name, '>'); |
| if (*name != '>') |
| return false; |
| dstlen = name - dstname; |
| name++; |
| } |
| else |
| { |
| dstname = name; |
| name = getzname(name); |
| dstlen = name - dstname; /* length of DST abbr. */ |
| } |
| if (!dstlen) |
| return false; |
| charcnt += dstlen + 1; |
| if (sizeof sp->chars < charcnt) |
| return false; |
| if (*name != '\0' && *name != ',' && *name != ';') |
| { |
| name = getoffset(name, &dstoffset); |
| if (name == NULL) |
| return false; |
| } |
| else |
| dstoffset = stdoffset - SECSPERHOUR; |
| if (*name == '\0' && !load_ok) |
| name = TZDEFRULESTRING; |
| if (*name == ',' || *name == ';') |
| { |
| struct rule start; |
| struct rule end; |
| int year; |
| int yearlim; |
| int timecnt; |
| pg_time_t janfirst; |
| int32 janoffset = 0; |
| int yearbeg; |
| |
| ++name; |
| if ((name = getrule(name, &start)) == NULL) |
| return false; |
| if (*name++ != ',') |
| return false; |
| if ((name = getrule(name, &end)) == NULL) |
| return false; |
| if (*name != '\0') |
| return false; |
| sp->typecnt = 2; /* standard time and DST */ |
| |
| /* |
| * Two transitions per year, from EPOCH_YEAR forward. |
| */ |
| init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); |
| sp->defaulttype = 0; |
| timecnt = 0; |
| janfirst = 0; |
| yearbeg = EPOCH_YEAR; |
| |
| do |
| { |
| int32 yearsecs |
| = year_lengths[isleap(yearbeg - 1)] * SECSPERDAY; |
| |
| yearbeg--; |
| if (increment_overflow_time(&janfirst, -yearsecs)) |
| { |
| janoffset = -yearsecs; |
| break; |
| } |
| } while (EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg); |
| |
| yearlim = yearbeg + YEARSPERREPEAT + 1; |
| for (year = yearbeg; year < yearlim; year++) |
| { |
| int32 |
| starttime = transtime(year, &start, stdoffset), |
| endtime = transtime(year, &end, dstoffset); |
| int32 |
| yearsecs = (year_lengths[isleap(year)] |
| * SECSPERDAY); |
| bool reversed = endtime < starttime; |
| |
| if (reversed) |
| { |
| int32 swap = starttime; |
| |
| starttime = endtime; |
| endtime = swap; |
| } |
| if (reversed |
| || (starttime < endtime |
| && (endtime - starttime |
| < (yearsecs |
| + (stdoffset - dstoffset))))) |
| { |
| if (TZ_MAX_TIMES - 2 < timecnt) |
| break; |
| sp->ats[timecnt] = janfirst; |
| if (!increment_overflow_time |
| (&sp->ats[timecnt], |
| janoffset + starttime)) |
| sp->types[timecnt++] = !reversed; |
| sp->ats[timecnt] = janfirst; |
| if (!increment_overflow_time |
| (&sp->ats[timecnt], |
| janoffset + endtime)) |
| { |
| sp->types[timecnt++] = reversed; |
| yearlim = year + YEARSPERREPEAT + 1; |
| } |
| } |
| if (increment_overflow_time |
| (&janfirst, janoffset + yearsecs)) |
| break; |
| janoffset = 0; |
| } |
| sp->timecnt = timecnt; |
| if (!timecnt) |
| { |
| sp->ttis[0] = sp->ttis[1]; |
| sp->typecnt = 1; /* Perpetual DST. */ |
| } |
| else if (YEARSPERREPEAT < year - yearbeg) |
| sp->goback = sp->goahead = true; |
| } |
| else |
| { |
| int32 theirstdoffset; |
| int32 theirdstoffset; |
| int32 theiroffset; |
| bool isdst; |
| int i; |
| int j; |
| |
| if (*name != '\0') |
| return false; |
| |
| /* |
| * Initial values of theirstdoffset and theirdstoffset. |
| */ |
| theirstdoffset = 0; |
| for (i = 0; i < sp->timecnt; ++i) |
| { |
| j = sp->types[i]; |
| if (!sp->ttis[j].tt_isdst) |
| { |
| theirstdoffset = |
| -sp->ttis[j].tt_utoff; |
| break; |
| } |
| } |
| theirdstoffset = 0; |
| for (i = 0; i < sp->timecnt; ++i) |
| { |
| j = sp->types[i]; |
| if (sp->ttis[j].tt_isdst) |
| { |
| theirdstoffset = |
| -sp->ttis[j].tt_utoff; |
| break; |
| } |
| } |
| |
| /* |
| * Initially we're assumed to be in standard time. |
| */ |
| isdst = false; |
| theiroffset = theirstdoffset; |
| |
| /* |
| * Now juggle transition times and types tracking offsets as you |
| * do. |
| */ |
| for (i = 0; i < sp->timecnt; ++i) |
| { |
| j = sp->types[i]; |
| sp->types[i] = sp->ttis[j].tt_isdst; |
| if (sp->ttis[j].tt_ttisut) |
| { |
| /* No adjustment to transition time */ |
| } |
| else |
| { |
| /* |
| * If daylight saving time is in effect, and the |
| * transition time was not specified as standard time, add |
| * the daylight saving time offset to the transition time; |
| * otherwise, add the standard time offset to the |
| * transition time. |
| */ |
| /* |
| * Transitions from DST to DDST will effectively disappear |
| * since POSIX provides for only one DST offset. |
| */ |
| if (isdst && !sp->ttis[j].tt_ttisstd) |
| { |
| sp->ats[i] += dstoffset - |
| theirdstoffset; |
| } |
| else |
| { |
| sp->ats[i] += stdoffset - |
| theirstdoffset; |
| } |
| } |
| theiroffset = -sp->ttis[j].tt_utoff; |
| if (sp->ttis[j].tt_isdst) |
| theirdstoffset = theiroffset; |
| else |
| theirstdoffset = theiroffset; |
| } |
| |
| /* |
| * Finally, fill in ttis. |
| */ |
| init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); |
| sp->typecnt = 2; |
| sp->defaulttype = 0; |
| } |
| } |
| else |
| { |
| dstlen = 0; |
| sp->typecnt = 1; /* only standard time */ |
| sp->timecnt = 0; |
| init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); |
| sp->defaulttype = 0; |
| } |
| sp->charcnt = charcnt; |
| cp = sp->chars; |
| memcpy(cp, stdname, stdlen); |
| cp += stdlen; |
| *cp++ = '\0'; |
| if (dstlen != 0) |
| { |
| memcpy(cp, dstname, dstlen); |
| *(cp + dstlen) = '\0'; |
| } |
| return true; |
| } |
| |
| static void |
| gmtload(struct state *const sp) |
| { |
| if (tzload(gmt, NULL, sp, true) != 0) |
| tzparse(gmt, sp, true); |
| } |
| |
| |
| /* |
| * The easy way to behave "as if no library function calls" localtime |
| * is to not call it, so we drop its guts into "localsub", which can be |
| * freely called. (And no, the PANS doesn't require the above behavior, |
| * but it *is* desirable.) |
| */ |
| static struct pg_tm * |
| localsub(struct state const *sp, pg_time_t const *timep, |
| struct pg_tm *const tmp) |
| { |
| const struct ttinfo *ttisp; |
| int i; |
| struct pg_tm *result; |
| const pg_time_t t = *timep; |
| |
| if (sp == NULL) |
| return gmtsub(timep, 0, tmp); |
| if ((sp->goback && t < sp->ats[0]) || |
| (sp->goahead && t > sp->ats[sp->timecnt - 1])) |
| { |
| pg_time_t newt = t; |
| pg_time_t seconds; |
| pg_time_t years; |
| |
| if (t < sp->ats[0]) |
| seconds = sp->ats[0] - t; |
| else |
| seconds = t - sp->ats[sp->timecnt - 1]; |
| --seconds; |
| years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT; |
| seconds = years * AVGSECSPERYEAR; |
| if (t < sp->ats[0]) |
| newt += seconds; |
| else |
| newt -= seconds; |
| if (newt < sp->ats[0] || |
| newt > sp->ats[sp->timecnt - 1]) |
| return NULL; /* "cannot happen" */ |
| result = localsub(sp, &newt, tmp); |
| if (result) |
| { |
| int64 newy; |
| |
| newy = result->tm_year; |
| if (t < sp->ats[0]) |
| newy -= years; |
| else |
| newy += years; |
| if (!(INT_MIN <= newy && newy <= INT_MAX)) |
| return NULL; |
| result->tm_year = newy; |
| } |
| return result; |
| } |
| if (sp->timecnt == 0 || t < sp->ats[0]) |
| { |
| i = sp->defaulttype; |
| } |
| else |
| { |
| int lo = 1; |
| int hi = sp->timecnt; |
| |
| while (lo < hi) |
| { |
| int mid = (lo + hi) >> 1; |
| |
| if (t < sp->ats[mid]) |
| hi = mid; |
| else |
| lo = mid + 1; |
| } |
| i = (int) sp->types[lo - 1]; |
| } |
| ttisp = &sp->ttis[i]; |
| |
| /* |
| * To get (wrong) behavior that's compatible with System V Release 2.0 |
| * you'd replace the statement below with t += ttisp->tt_utoff; |
| * timesub(&t, 0L, sp, tmp); |
| */ |
| result = timesub(&t, ttisp->tt_utoff, sp, tmp); |
| if (result) |
| { |
| result->tm_isdst = ttisp->tt_isdst; |
| result->tm_zone = unconstify(char *, &sp->chars[ttisp->tt_desigidx]); |
| } |
| return result; |
| } |
| |
| |
| struct pg_tm * |
| pg_localtime(const pg_time_t *timep, const pg_tz *tz) |
| { |
| return localsub(&tz->state, timep, &tm); |
| } |
| |
| /* |
| * pg_localtime_thread_safe is similar to pg_localtime. |
| * |
| * Except we don't use the global variable 'tm' to make it thread-safe. |
| */ |
| struct pg_tm * |
| pg_localtime_thread_safe(const pg_time_t *timep, const pg_tz *tz, |
| struct pg_tm *const tmp) |
| { |
| return localsub(&tz->state, timep, tmp); |
| } |
| |
| /* |
| * gmtsub is to gmtime as localsub is to localtime. |
| * |
| * Except we have a private "struct state" for GMT, so no sp is passed in. |
| */ |
| |
| static struct pg_tm * |
| gmtsub(pg_time_t const *timep, int32 offset, |
| struct pg_tm *tmp) |
| { |
| struct pg_tm *result; |
| |
| /* GMT timezone state data is kept here */ |
| static struct state *gmtptr = NULL; |
| |
| if (gmtptr == NULL) |
| { |
| /* Allocate on first use */ |
| gmtptr = (struct state *) malloc(sizeof(struct state)); |
| if (gmtptr == NULL) |
| return NULL; /* errno should be set by malloc */ |
| gmtload(gmtptr); |
| } |
| |
| result = timesub(timep, offset, gmtptr, tmp); |
| |
| /* |
| * Could get fancy here and deliver something such as "+xx" or "-xx" if |
| * offset is non-zero, but this is no time for a treasure hunt. |
| */ |
| if (offset != 0) |
| tmp->tm_zone = wildabbr; |
| else |
| tmp->tm_zone = gmtptr->chars; |
| |
| return result; |
| } |
| |
| struct pg_tm * |
| pg_gmtime(const pg_time_t *timep) |
| { |
| return gmtsub(timep, 0, &tm); |
| } |
| |
| /* |
| * Return the number of leap years through the end of the given year |
| * where, to make the math easy, the answer for year zero is defined as zero. |
| */ |
| |
| static int |
| leaps_thru_end_of_nonneg(int y) |
| { |
| return y / 4 - y / 100 + y / 400; |
| } |
| |
| static int |
| leaps_thru_end_of(const int y) |
| { |
| return (y < 0 |
| ? -1 - leaps_thru_end_of_nonneg(-1 - y) |
| : leaps_thru_end_of_nonneg(y)); |
| } |
| |
| static struct pg_tm * |
| timesub(const pg_time_t *timep, int32 offset, |
| const struct state *sp, struct pg_tm *tmp) |
| { |
| const struct lsinfo *lp; |
| pg_time_t tdays; |
| int idays; /* unsigned would be so 2003 */ |
| int64 rem; |
| int y; |
| const int *ip; |
| int64 corr; |
| bool hit; |
| int i; |
| |
| corr = 0; |
| hit = false; |
| i = (sp == NULL) ? 0 : sp->leapcnt; |
| while (--i >= 0) |
| { |
| lp = &sp->lsis[i]; |
| if (*timep >= lp->ls_trans) |
| { |
| corr = lp->ls_corr; |
| hit = (*timep == lp->ls_trans |
| && (i == 0 ? 0 : lp[-1].ls_corr) < corr); |
| break; |
| } |
| } |
| y = EPOCH_YEAR; |
| tdays = *timep / SECSPERDAY; |
| rem = *timep % SECSPERDAY; |
| while (tdays < 0 || tdays >= year_lengths[isleap(y)]) |
| { |
| int newy; |
| pg_time_t tdelta; |
| int idelta; |
| int leapdays; |
| |
| tdelta = tdays / DAYSPERLYEAR; |
| if (!((!TYPE_SIGNED(pg_time_t) || INT_MIN <= tdelta) |
| && tdelta <= INT_MAX)) |
| goto out_of_range; |
| idelta = tdelta; |
| if (idelta == 0) |
| idelta = (tdays < 0) ? -1 : 1; |
| newy = y; |
| if (increment_overflow(&newy, idelta)) |
| goto out_of_range; |
| leapdays = leaps_thru_end_of(newy - 1) - |
| leaps_thru_end_of(y - 1); |
| tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR; |
| tdays -= leapdays; |
| y = newy; |
| } |
| |
| /* |
| * Given the range, we can now fearlessly cast... |
| */ |
| idays = tdays; |
| rem += offset - corr; |
| while (rem < 0) |
| { |
| rem += SECSPERDAY; |
| --idays; |
| } |
| while (rem >= SECSPERDAY) |
| { |
| rem -= SECSPERDAY; |
| ++idays; |
| } |
| while (idays < 0) |
| { |
| if (increment_overflow(&y, -1)) |
| goto out_of_range; |
| idays += year_lengths[isleap(y)]; |
| } |
| while (idays >= year_lengths[isleap(y)]) |
| { |
| idays -= year_lengths[isleap(y)]; |
| if (increment_overflow(&y, 1)) |
| goto out_of_range; |
| } |
| tmp->tm_year = y; |
| if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
| goto out_of_range; |
| tmp->tm_yday = idays; |
| |
| /* |
| * The "extra" mods below avoid overflow problems. |
| */ |
| tmp->tm_wday = EPOCH_WDAY + |
| ((y - EPOCH_YEAR) % DAYSPERWEEK) * |
| (DAYSPERNYEAR % DAYSPERWEEK) + |
| leaps_thru_end_of(y - 1) - |
| leaps_thru_end_of(EPOCH_YEAR - 1) + |
| idays; |
| tmp->tm_wday %= DAYSPERWEEK; |
| if (tmp->tm_wday < 0) |
| tmp->tm_wday += DAYSPERWEEK; |
| tmp->tm_hour = (int) (rem / SECSPERHOUR); |
| rem %= SECSPERHOUR; |
| tmp->tm_min = (int) (rem / SECSPERMIN); |
| |
| /* |
| * A positive leap second requires a special representation. This uses |
| * "... ??:59:60" et seq. |
| */ |
| tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
| ip = mon_lengths[isleap(y)]; |
| for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
| idays -= ip[tmp->tm_mon]; |
| tmp->tm_mday = (int) (idays + 1); |
| tmp->tm_isdst = 0; |
| tmp->tm_gmtoff = offset; |
| return tmp; |
| |
| out_of_range: |
| errno = EOVERFLOW; |
| return NULL; |
| } |
| |
| /* |
| * Normalize logic courtesy Paul Eggert. |
| */ |
| |
| static bool |
| increment_overflow(int *ip, int j) |
| { |
| int const i = *ip; |
| |
| /*---------- |
| * If i >= 0 there can only be overflow if i + j > INT_MAX |
| * or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. |
| * If i < 0 there can only be overflow if i + j < INT_MIN |
| * or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. |
| *---------- |
| */ |
| if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) |
| return true; |
| *ip += j; |
| return false; |
| } |
| |
| static bool |
| increment_overflow_time(pg_time_t *tp, int32 j) |
| { |
| /*---------- |
| * This is like |
| * 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...', |
| * except that it does the right thing even if *tp + j would overflow. |
| *---------- |
| */ |
| if (!(j < 0 |
| ? (TYPE_SIGNED(pg_time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp) |
| : *tp <= TIME_T_MAX - j)) |
| return true; |
| *tp += j; |
| return false; |
| } |
| |
| static int64 |
| leapcorr(struct state const *sp, pg_time_t t) |
| { |
| struct lsinfo const *lp; |
| int i; |
| |
| i = sp->leapcnt; |
| while (--i >= 0) |
| { |
| lp = &sp->lsis[i]; |
| if (t >= lp->ls_trans) |
| return lp->ls_corr; |
| } |
| return 0; |
| } |
| |
| /* |
| * Find the next DST transition time in the given zone after the given time |
| * |
| * *timep and *tz are input arguments, the other parameters are output values. |
| * |
| * When the function result is 1, *boundary is set to the pg_time_t |
| * representation of the next DST transition time after *timep, |
| * *before_gmtoff and *before_isdst are set to the GMT offset and isdst |
| * state prevailing just before that boundary (in particular, the state |
| * prevailing at *timep), and *after_gmtoff and *after_isdst are set to |
| * the state prevailing just after that boundary. |
| * |
| * When the function result is 0, there is no known DST transition |
| * after *timep, but *before_gmtoff and *before_isdst indicate the GMT |
| * offset and isdst state prevailing at *timep. (This would occur in |
| * DST-less time zones, or if a zone has permanently ceased using DST.) |
| * |
| * A function result of -1 indicates failure (this case does not actually |
| * occur in our current implementation). |
| */ |
| int |
| pg_next_dst_boundary(const pg_time_t *timep, |
| long int *before_gmtoff, |
| int *before_isdst, |
| pg_time_t *boundary, |
| long int *after_gmtoff, |
| int *after_isdst, |
| const pg_tz *tz) |
| { |
| const struct state *sp; |
| const struct ttinfo *ttisp; |
| int i; |
| int j; |
| const pg_time_t t = *timep; |
| |
| sp = &tz->state; |
| if (sp->timecnt == 0) |
| { |
| /* non-DST zone, use lowest-numbered standard type */ |
| i = 0; |
| while (sp->ttis[i].tt_isdst) |
| if (++i >= sp->typecnt) |
| { |
| i = 0; |
| break; |
| } |
| ttisp = &sp->ttis[i]; |
| *before_gmtoff = ttisp->tt_utoff; |
| *before_isdst = ttisp->tt_isdst; |
| return 0; |
| } |
| if ((sp->goback && t < sp->ats[0]) || |
| (sp->goahead && t > sp->ats[sp->timecnt - 1])) |
| { |
| /* For values outside the transition table, extrapolate */ |
| pg_time_t newt = t; |
| pg_time_t seconds; |
| pg_time_t tcycles; |
| int64 icycles; |
| int result; |
| |
| if (t < sp->ats[0]) |
| seconds = sp->ats[0] - t; |
| else |
| seconds = t - sp->ats[sp->timecnt - 1]; |
| --seconds; |
| tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
| ++tcycles; |
| icycles = tcycles; |
| if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
| return -1; |
| seconds = icycles; |
| seconds *= YEARSPERREPEAT; |
| seconds *= AVGSECSPERYEAR; |
| if (t < sp->ats[0]) |
| newt += seconds; |
| else |
| newt -= seconds; |
| if (newt < sp->ats[0] || |
| newt > sp->ats[sp->timecnt - 1]) |
| return -1; /* "cannot happen" */ |
| |
| result = pg_next_dst_boundary(&newt, before_gmtoff, |
| before_isdst, |
| boundary, |
| after_gmtoff, |
| after_isdst, |
| tz); |
| if (t < sp->ats[0]) |
| *boundary -= seconds; |
| else |
| *boundary += seconds; |
| return result; |
| } |
| |
| if (t >= sp->ats[sp->timecnt - 1]) |
| { |
| /* No known transition > t, so use last known segment's type */ |
| i = sp->types[sp->timecnt - 1]; |
| ttisp = &sp->ttis[i]; |
| *before_gmtoff = ttisp->tt_utoff; |
| *before_isdst = ttisp->tt_isdst; |
| return 0; |
| } |
| if (t < sp->ats[0]) |
| { |
| /* For "before", use lowest-numbered standard type */ |
| i = 0; |
| while (sp->ttis[i].tt_isdst) |
| if (++i >= sp->typecnt) |
| { |
| i = 0; |
| break; |
| } |
| ttisp = &sp->ttis[i]; |
| *before_gmtoff = ttisp->tt_utoff; |
| *before_isdst = ttisp->tt_isdst; |
| *boundary = sp->ats[0]; |
| /* And for "after", use the first segment's type */ |
| i = sp->types[0]; |
| ttisp = &sp->ttis[i]; |
| *after_gmtoff = ttisp->tt_utoff; |
| *after_isdst = ttisp->tt_isdst; |
| return 1; |
| } |
| /* Else search to find the boundary following t */ |
| { |
| int lo = 1; |
| int hi = sp->timecnt - 1; |
| |
| while (lo < hi) |
| { |
| int mid = (lo + hi) >> 1; |
| |
| if (t < sp->ats[mid]) |
| hi = mid; |
| else |
| lo = mid + 1; |
| } |
| i = lo; |
| } |
| j = sp->types[i - 1]; |
| ttisp = &sp->ttis[j]; |
| *before_gmtoff = ttisp->tt_utoff; |
| *before_isdst = ttisp->tt_isdst; |
| *boundary = sp->ats[i]; |
| j = sp->types[i]; |
| ttisp = &sp->ttis[j]; |
| *after_gmtoff = ttisp->tt_utoff; |
| *after_isdst = ttisp->tt_isdst; |
| return 1; |
| } |
| |
| /* |
| * Identify a timezone abbreviation's meaning in the given zone |
| * |
| * Determine the GMT offset and DST flag associated with the abbreviation. |
| * This is generally used only when the abbreviation has actually changed |
| * meaning over time; therefore, we also take a UTC cutoff time, and return |
| * the meaning in use at or most recently before that time, or the meaning |
| * in first use after that time if the abbrev was never used before that. |
| * |
| * On success, returns true and sets *gmtoff and *isdst. If the abbreviation |
| * was never used at all in this zone, returns false. |
| * |
| * Note: abbrev is matched case-sensitively; it should be all-upper-case. |
| */ |
| bool |
| pg_interpret_timezone_abbrev(const char *abbrev, |
| const pg_time_t *timep, |
| long int *gmtoff, |
| int *isdst, |
| const pg_tz *tz) |
| { |
| const struct state *sp; |
| const char *abbrs; |
| const struct ttinfo *ttisp; |
| int abbrind; |
| int cutoff; |
| int i; |
| const pg_time_t t = *timep; |
| |
| sp = &tz->state; |
| |
| /* |
| * Locate the abbreviation in the zone's abbreviation list. We assume |
| * there are not duplicates in the list. |
| */ |
| abbrs = sp->chars; |
| abbrind = 0; |
| while (abbrind < sp->charcnt) |
| { |
| if (strcmp(abbrev, abbrs + abbrind) == 0) |
| break; |
| while (abbrs[abbrind] != '\0') |
| abbrind++; |
| abbrind++; |
| } |
| if (abbrind >= sp->charcnt) |
| return false; /* not there! */ |
| |
| /* |
| * Unlike pg_next_dst_boundary, we needn't sweat about extrapolation |
| * (goback/goahead zones). Finding the newest or oldest meaning of the |
| * abbreviation should get us what we want, since extrapolation would just |
| * be repeating the newest or oldest meanings. |
| * |
| * Use binary search to locate the first transition > cutoff time. |
| */ |
| { |
| int lo = 0; |
| int hi = sp->timecnt; |
| |
| while (lo < hi) |
| { |
| int mid = (lo + hi) >> 1; |
| |
| if (t < sp->ats[mid]) |
| hi = mid; |
| else |
| lo = mid + 1; |
| } |
| cutoff = lo; |
| } |
| |
| /* |
| * Scan backwards to find the latest interval using the given abbrev |
| * before the cutoff time. |
| */ |
| for (i = cutoff - 1; i >= 0; i--) |
| { |
| ttisp = &sp->ttis[sp->types[i]]; |
| if (ttisp->tt_desigidx == abbrind) |
| { |
| *gmtoff = ttisp->tt_utoff; |
| *isdst = ttisp->tt_isdst; |
| return true; |
| } |
| } |
| |
| /* |
| * Not there, so scan forwards to find the first one after. |
| */ |
| for (i = cutoff; i < sp->timecnt; i++) |
| { |
| ttisp = &sp->ttis[sp->types[i]]; |
| if (ttisp->tt_desigidx == abbrind) |
| { |
| *gmtoff = ttisp->tt_utoff; |
| *isdst = ttisp->tt_isdst; |
| return true; |
| } |
| } |
| |
| return false; /* hm, not actually used in any interval? */ |
| } |
| |
| /* |
| * If the given timezone uses only one GMT offset, store that offset |
| * into *gmtoff and return true, else return false. |
| */ |
| bool |
| pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff) |
| { |
| /* |
| * The zone could have more than one ttinfo, if it's historically used |
| * more than one abbreviation. We return true as long as they all have |
| * the same gmtoff. |
| */ |
| const struct state *sp; |
| int i; |
| |
| sp = &tz->state; |
| for (i = 1; i < sp->typecnt; i++) |
| { |
| if (sp->ttis[i].tt_utoff != sp->ttis[0].tt_utoff) |
| return false; |
| } |
| *gmtoff = sp->ttis[0].tt_utoff; |
| return true; |
| } |
| |
| /* |
| * Return the name of the current timezone |
| */ |
| const char * |
| pg_get_timezone_name(pg_tz *tz) |
| { |
| if (tz) |
| return tz->TZname; |
| return NULL; |
| } |
| |
| /* |
| * Check whether timezone is acceptable. |
| * |
| * What we are doing here is checking for leap-second-aware timekeeping. |
| * We need to reject such TZ settings because they'll wreak havoc with our |
| * date/time arithmetic. |
| */ |
| bool |
| pg_tz_acceptable(pg_tz *tz) |
| { |
| struct pg_tm *tt; |
| pg_time_t time2000; |
| |
| /* |
| * To detect leap-second timekeeping, run pg_localtime for what should be |
| * GMT midnight, 2000-01-01. Insist that the tm_sec value be zero; any |
| * other result has to be due to leap seconds. |
| */ |
| time2000 = (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY; |
| tt = pg_localtime(&time2000, tz); |
| if (!tt || tt->tm_sec != 0) |
| return false; |
| |
| return true; |
| } |