blob: 1829cfe61bc461558f9418c3a0b99896bfbe16c7 [file] [log] [blame]
-- Perform tests on the Memoize node.
-- GPDB_14_MERGE_FIXME:
-- 1.test memoize in CBDB as enable_nestloop is false by default
-- 2.enable memoize in orca
-- The cache hits/misses/evictions from the Memoize node can vary between
-- machines. Let's just replace the number with an 'N'. In order to allow us
-- to perform validation when the measure was zero, we replace a zero value
-- with "Zero". All other numbers are replaced with 'N'.
create function explain_memoize(query text, hide_hitmiss bool) returns setof text
language plpgsql as
$$
declare
ln text;
begin
for ln in
execute format('explain (analyze, costs off, summary off, timing off) %s',
query)
loop
if hide_hitmiss = true then
ln := regexp_replace(ln, 'Hits: 0', 'Hits: Zero');
ln := regexp_replace(ln, 'Hits: \d+', 'Hits: N');
ln := regexp_replace(ln, 'Misses: 0', 'Misses: Zero');
ln := regexp_replace(ln, 'Misses: \d+', 'Misses: N');
end if;
ln := regexp_replace(ln, 'Evictions: 0', 'Evictions: Zero');
ln := regexp_replace(ln, 'Evictions: \d+', 'Evictions: N');
ln := regexp_replace(ln, 'Memory Usage: \d+', 'Memory Usage: N');
ln := regexp_replace(ln, 'Memory: \d+', 'Memory: N');
ln := regexp_replace(ln, 'Heap Fetches: \d+', 'Heap Fetches: N');
ln := regexp_replace(ln, 'loops=\d+', 'loops=N');
return next ln;
end loop;
end;
$$;
-- Ensure we get a memoize node on the inner side of the nested loop
SET optimizer_enable_hashjoin TO off;
SET optimizer_enable_bitmapscan TO off;
SET enable_hashjoin TO off;
SET enable_bitmapscan TO off;
SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;', false);
explain_memoize
----------------------------------------------------------------------------------------------------
Finalize Aggregate (actual rows=1 loops=N)
-> Gather Motion 3:1 (slice1; segments: 3) (actual rows=3 loops=N)
-> Partial Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=400 loops=N)
Join Filter: true
-> Redistribute Motion 3:3 (slice2; segments: 3) (actual rows=400 loops=N)
Hash Key: t2.twenty
-> Index Scan using tenk1_unique1 on tenk1 t2 (actual rows=340 loops=N)
Index Cond: (unique1 < 1000)
-> Index Only Scan using tenk1_unique1 on tenk1 t1 (actual rows=1 loops=N)
Index Cond: (unique1 = t2.twenty)
Heap Fetches: N
Optimizer: GPORCA
(13 rows)
-- And check we get the expected results.
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.twenty
WHERE t2.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
-- Try with LATERAL joins
SELECT explain_memoize('
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;', false);
explain_memoize
-------------------------------------------------------------------------------------------------------
Finalize Aggregate (actual rows=1 loops=N)
-> Gather Motion 3:1 (slice1; segments: 3) (actual rows=3 loops=N)
-> Partial Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=400 loops=N)
-> Redistribute Motion 3:3 (slice2; segments: 3) (actual rows=400 loops=N)
Hash Key: t1.twenty
-> Seq Scan on tenk1 t1 (actual rows=340 loops=N)
Filter: (unique1 < 1000)
Rows Removed by Filter: 2906
-> Memoize (actual rows=1 loops=N)
Cache Key: t1.twenty
Cache Mode: logical
-> Index Only Scan using tenk1_unique1 on tenk1 t2 (actual rows=1 loops=N)
Index Cond: (unique1 = t1.twenty)
Heap Fetches: N
Optimizer: Postgres query optimizer
(16 rows)
-- And check we get the expected results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
-- Reduce work_mem so that we see some cache evictions
SET work_mem TO '64kB';
SET enable_mergejoin TO off;
-- Ensure we get some evictions. We're unable to validate the hits and misses
-- here as the number of entries that fit in the cache at once will vary
-- between different machines.
SELECT explain_memoize('
SELECT COUNT(*),AVG(t1.unique1) FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.thousand
WHERE t2.unique1 < 1200;', true);
explain_memoize
----------------------------------------------------------------------------------------------------
Finalize Aggregate (actual rows=1 loops=N)
-> Gather Motion 3:1 (slice1; segments: 3) (actual rows=3 loops=N)
-> Partial Aggregate (actual rows=1 loops=N)
-> Nested Loop (actual rows=407 loops=N)
Join Filter: true
-> Redistribute Motion 3:3 (slice2; segments: 3) (actual rows=407 loops=N)
Hash Key: t2.thousand
-> Index Scan using tenk1_unique1 on tenk1 t2 (actual rows=407 loops=N)
Index Cond: (unique1 < 1200)
-> Index Only Scan using tenk1_unique1 on tenk1 t1 (actual rows=1 loops=N)
Index Cond: (unique1 = t2.thousand)
Heap Fetches: N
Optimizer: GPORCA
(13 rows)
CREATE TABLE flt (f float);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'f' as the Apache Cloudberry data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE INDEX flt_f_idx ON flt (f);
INSERT INTO flt VALUES('-0.0'::float),('+0.0'::float);
ANALYZE flt;
SET enable_seqscan TO off;
-- Ensure memoize operates in logical mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f = f2.f;', false);
explain_memoize
--------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (actual rows=4 loops=N)
-> Nested Loop (actual rows=4 loops=N)
Join Filter: true
-> Seq Scan on flt f1 (actual rows=2 loops=N)
-> Index Scan using flt_f_idx on flt f2 (actual rows=2 loops=N)
Index Cond: (f = f1.f)
Optimizer: GPORCA
(7 rows)
-- Ensure memoize operates in binary mode
SELECT explain_memoize('
SELECT * FROM flt f1 INNER JOIN flt f2 ON f1.f >= f2.f;', false);
explain_memoize
---------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (actual rows=4 loops=N)
-> Nested Loop (actual rows=4 loops=N)
Join Filter: true
-> Broadcast Motion 3:3 (slice2; segments: 3) (actual rows=2 loops=N)
-> Seq Scan on flt f1 (actual rows=2 loops=N)
-> Index Scan using flt_f_idx on flt f2 (actual rows=2 loops=N)
Index Cond: (f <= f1.f)
Optimizer: GPORCA
(8 rows)
DROP TABLE flt;
-- Exercise Memoize in binary mode with a large fixed width type and a
-- varlena type.
CREATE TABLE strtest (n name, t text);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'n' as the Apache Cloudberry data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
CREATE INDEX strtest_n_idx ON strtest (n);
CREATE INDEX strtest_t_idx ON strtest (t);
INSERT INTO strtest VALUES('one','one'),('two','two'),('three',repeat(md5('three'),100));
-- duplicate rows so we get some cache hits
INSERT INTO strtest SELECT * FROM strtest;
ANALYZE strtest;
-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.n >= s2.n;', false);
explain_memoize
----------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (actual rows=24 loops=N)
-> Nested Loop (actual rows=12 loops=N)
Join Filter: true
-> Broadcast Motion 3:3 (slice2; segments: 3) (actual rows=6 loops=N)
-> Seq Scan on strtest s1 (actual rows=4 loops=N)
-> Index Scan using strtest_n_idx on strtest s2 (actual rows=2 loops=N)
Index Cond: (n <= s1.n)
Optimizer: GPORCA
(8 rows)
-- Ensure we get 3 hits and 3 misses
SELECT explain_memoize('
SELECT * FROM strtest s1 INNER JOIN strtest s2 ON s1.t >= s2.t;', false);
explain_memoize
----------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3) (actual rows=24 loops=N)
-> Nested Loop (actual rows=16 loops=N)
Join Filter: true
-> Broadcast Motion 3:3 (slice2; segments: 3) (actual rows=6 loops=N)
-> Seq Scan on strtest s1 (actual rows=4 loops=N)
-> Index Scan using strtest_t_idx on strtest s2 (actual rows=3 loops=N)
Index Cond: (t <= s1.t)
Optimizer: GPORCA
(8 rows)
DROP TABLE strtest;
-- Exercise Memoize code that flushes the cache when a parameter changes which
-- is not part of the cache key.
-- Ensure we get a Memoize plan
EXPLAIN (COSTS OFF)
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
AND EXISTS (
SELECT 1 FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);
QUERY PLAN
------------------------------------------------------------------------------------------------
Gather Motion 3:1 (slice1; segments: 3)
-> GroupAggregate
Group Key: t0.unique1, t0.ctid, t0.gp_segment_id
-> Sort
Sort Key: t0.ctid, t0.gp_segment_id
-> Redistribute Motion 3:3 (slice2; segments: 3)
Hash Key: t0.ctid, t0.gp_segment_id
-> Streaming HashAggregate
Group Key: t0.unique1, t0.ctid, t0.gp_segment_id
-> Nested Loop
Join Filter: ((t0.ten = t1.twenty) AND (t0.two <> t2.four))
-> Broadcast Motion 3:3 (slice4; segments: 3)
-> Index Scan using tenk1_unique1 on tenk1 t0
Index Cond: (unique1 < 3)
-> Materialize
-> Nested Loop
Join Filter: true
-> Redistribute Motion 3:3 (slice3; segments: 3)
Hash Key: t2.hundred
-> Seq Scan on tenk1 t2
-> Index Scan using tenk1_unique1 on tenk1 t1
Index Cond: (unique1 = t2.hundred)
Optimizer: GPORCA
(23 rows)
-- Ensure the above query returns the correct result
SELECT unique1 FROM tenk1 t0
WHERE unique1 < 3
AND EXISTS (
SELECT 1 FROM tenk1 t1
INNER JOIN tenk1 t2 ON t1.unique1 = t2.hundred
WHERE t0.ten = t1.twenty AND t0.two <> t2.four OFFSET 0);
unique1
---------
2
(1 row)
RESET enable_seqscan;
RESET enable_mergejoin;
RESET work_mem;
RESET enable_bitmapscan;
RESET enable_hashjoin;
RESET optimizer_enable_hashjoin;
RESET optimizer_enable_bitmapscan;
-- Test parallel plans with Memoize
SET min_parallel_table_scan_size TO 0;
SET parallel_setup_cost TO 0;
SET parallel_tuple_cost TO 0;
SET max_parallel_workers_per_gather TO 2;
-- Ensure we get a parallel plan.
EXPLAIN (COSTS OFF)
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
QUERY PLAN
------------------------------------------------------------------------------
Finalize Aggregate
-> Gather Motion 3:1 (slice1; segments: 3)
-> Partial Aggregate
-> Hash Join
Hash Cond: (t2.unique1 = t1.twenty)
-> Seq Scan on tenk1 t2
-> Hash
-> Redistribute Motion 3:3 (slice2; segments: 3)
Hash Key: t1.twenty
-> Bitmap Heap Scan on tenk1 t1
Recheck Cond: (unique1 < 1000)
-> Bitmap Index Scan on tenk1_unique1
Index Cond: (unique1 < 1000)
Optimizer: Postgres query optimizer
(14 rows)
-- And ensure the parallel plan gives us the correct results.
SELECT COUNT(*),AVG(t2.unique1) FROM tenk1 t1,
LATERAL (SELECT t2.unique1 FROM tenk1 t2 WHERE t1.twenty = t2.unique1) t2
WHERE t1.unique1 < 1000;
count | avg
-------+--------------------
1000 | 9.5000000000000000
(1 row)
RESET max_parallel_workers_per_gather;
RESET parallel_tuple_cost;
RESET parallel_setup_cost;
RESET min_parallel_table_scan_size;