| /*------------------------------------------------------------------------- |
| * |
| * fe-exec.c |
| * functions related to sending a query down to the backend |
| * |
| * Portions Copyright (c) 2012-Present VMware, Inc. or its affiliates. |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/interfaces/libpq/fe-exec.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| |
| /* |
| * This file is compiled with both frontend and backend codes, symlinked by |
| * src/backend/Makefile, and use macro FRONTEND to switch. |
| * |
| * Include "c.h" to adopt Cloudberry C types. Don't include "postgres_fe.h", |
| * which only defines FRONTEND besides including "c.h" |
| */ |
| #include "c.h" |
| |
| #include <ctype.h> |
| #include <fcntl.h> |
| #include <limits.h> |
| |
| #ifdef WIN32 |
| #include "win32.h" |
| #else |
| #include <unistd.h> |
| #endif |
| |
| #include "libpq-fe.h" |
| #include "libpq-int.h" |
| #include "mb/pg_wchar.h" |
| |
| #include "cdb/cdbpq.h" |
| |
| /* keep this in same order as ExecStatusType in libpq-fe.h */ |
| char *const pgresStatus[] = { |
| "PGRES_EMPTY_QUERY", |
| "PGRES_COMMAND_OK", |
| "PGRES_TUPLES_OK", |
| "PGRES_COPY_OUT", |
| "PGRES_COPY_IN", |
| "PGRES_BAD_RESPONSE", |
| "PGRES_NONFATAL_ERROR", |
| "PGRES_FATAL_ERROR", |
| "PGRES_COPY_BOTH", |
| "PGRES_SINGLE_TUPLE", |
| "PGRES_PIPELINE_SYNC", |
| "PGRES_PIPELINE_ABORTED" |
| }; |
| |
| /* We return this if we're unable to make a PGresult at all */ |
| static const PGresult OOM_result = { |
| .resultStatus = PGRES_FATAL_ERROR, |
| .client_encoding = PG_SQL_ASCII, |
| .errMsg = "out of memory\n", |
| }; |
| |
| /* |
| * static state needed by PQescapeString and PQescapeBytea; initialize to |
| * values that result in backward-compatible behavior |
| */ |
| static int static_client_encoding = PG_SQL_ASCII; |
| static bool static_std_strings = false; |
| |
| |
| static PGEvent *dupEvents(PGEvent *events, int count, size_t *memSize); |
| static bool pqAddTuple(PGresult *res, PGresAttValue *tup, |
| const char **errmsgp); |
| |
| static int PQsendQueryInternal(PGconn *conn, const char *query, bool newQuery); |
| bool PQsendQueryStart(PGconn *conn, bool newQuery); |
| |
| static int PQsendQueryGuts(PGconn *conn, |
| const char *command, |
| const char *stmtName, |
| int nParams, |
| const Oid *paramTypes, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat); |
| static void parseInput(PGconn *conn); |
| static PGresult *getCopyResult(PGconn *conn, ExecStatusType copytype); |
| static bool PQexecStart(PGconn *conn); |
| static PGresult *PQexecFinish(PGconn *conn); |
| static int PQsendDescribe(PGconn *conn, char desc_type, |
| const char *desc_target); |
| static int check_field_number(const PGresult *res, int field_num); |
| static void pqPipelineProcessQueue(PGconn *conn); |
| static int pqPipelineFlush(PGconn *conn); |
| |
| |
| /* ---------------- |
| * Space management for PGresult. |
| * |
| * Formerly, libpq did a separate malloc() for each field of each tuple |
| * returned by a query. This was remarkably expensive --- malloc/free |
| * consumed a sizable part of the application's runtime. And there is |
| * no real need to keep track of the fields separately, since they will |
| * all be freed together when the PGresult is released. So now, we grab |
| * large blocks of storage from malloc and allocate space for query data |
| * within these blocks, using a trivially simple allocator. This reduces |
| * the number of malloc/free calls dramatically, and it also avoids |
| * fragmentation of the malloc storage arena. |
| * The PGresult structure itself is still malloc'd separately. We could |
| * combine it with the first allocation block, but that would waste space |
| * for the common case that no extra storage is actually needed (that is, |
| * the SQL command did not return tuples). |
| * |
| * We also malloc the top-level array of tuple pointers separately, because |
| * we need to be able to enlarge it via realloc, and our trivial space |
| * allocator doesn't handle that effectively. (Too bad the FE/BE protocol |
| * doesn't tell us up front how many tuples will be returned.) |
| * All other subsidiary storage for a PGresult is kept in PGresult_data blocks |
| * of size PGRESULT_DATA_BLOCKSIZE. The overhead at the start of each block |
| * is just a link to the next one, if any. Free-space management info is |
| * kept in the owning PGresult. |
| * A query returning a small amount of data will thus require three malloc |
| * calls: one for the PGresult, one for the tuples pointer array, and one |
| * PGresult_data block. |
| * |
| * Only the most recently allocated PGresult_data block is a candidate to |
| * have more stuff added to it --- any extra space left over in older blocks |
| * is wasted. We could be smarter and search the whole chain, but the point |
| * here is to be simple and fast. Typical applications do not keep a PGresult |
| * around very long anyway, so some wasted space within one is not a problem. |
| * |
| * Tuning constants for the space allocator are: |
| * PGRESULT_DATA_BLOCKSIZE: size of a standard allocation block, in bytes |
| * PGRESULT_ALIGN_BOUNDARY: assumed alignment requirement for binary data |
| * PGRESULT_SEP_ALLOC_THRESHOLD: objects bigger than this are given separate |
| * blocks, instead of being crammed into a regular allocation block. |
| * Requirements for correct function are: |
| * PGRESULT_ALIGN_BOUNDARY must be a multiple of the alignment requirements |
| * of all machine data types. (Currently this is set from configure |
| * tests, so it should be OK automatically.) |
| * PGRESULT_SEP_ALLOC_THRESHOLD + PGRESULT_BLOCK_OVERHEAD <= |
| * PGRESULT_DATA_BLOCKSIZE |
| * pqResultAlloc assumes an object smaller than the threshold will fit |
| * in a new block. |
| * The amount of space wasted at the end of a block could be as much as |
| * PGRESULT_SEP_ALLOC_THRESHOLD, so it doesn't pay to make that too large. |
| * ---------------- |
| */ |
| |
| #define PGRESULT_DATA_BLOCKSIZE 2048 |
| #define PGRESULT_ALIGN_BOUNDARY MAXIMUM_ALIGNOF /* from configure */ |
| #define PGRESULT_BLOCK_OVERHEAD Max(sizeof(PGresult_data), PGRESULT_ALIGN_BOUNDARY) |
| #define PGRESULT_SEP_ALLOC_THRESHOLD (PGRESULT_DATA_BLOCKSIZE / 2) |
| |
| |
| /* |
| * PQmakeEmptyPGresult |
| * returns a newly allocated, initialized PGresult with given status. |
| * If conn is not NULL and status indicates an error, the conn's |
| * errorMessage is copied. Also, any PGEvents are copied from the conn. |
| * |
| * Note: the logic to copy the conn's errorMessage is now vestigial; |
| * no internal caller uses it. However, that behavior is documented for |
| * outside callers, so we'd better keep it. |
| */ |
| PGresult * |
| PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status) |
| { |
| PGresult *result; |
| |
| result = (PGresult *) malloc(sizeof(PGresult)); |
| if (!result) |
| return NULL; |
| |
| result->ntups = 0; |
| result->numAttributes = 0; |
| result->attDescs = NULL; |
| result->tuples = NULL; |
| result->tupArrSize = 0; |
| result->numParameters = 0; |
| result->paramDescs = NULL; |
| result->resultStatus = status; |
| result->cmdStatus[0] = '\0'; |
| result->binary = 0; |
| result->events = NULL; |
| result->nEvents = 0; |
| result->errMsg = NULL; |
| result->errFields = NULL; |
| result->errQuery = NULL; |
| result->null_field[0] = '\0'; |
| result->curBlock = NULL; |
| result->curOffset = 0; |
| result->spaceLeft = 0; |
| result->memorySize = sizeof(PGresult); |
| |
| result->cdbstats = NULL; /*CDB*/ |
| |
| result->extras = NULL; |
| result->extraslen = 0; |
| result->extraType = PGExtraTypeNone; |
| |
| result->numRejected = 0; |
| result->numCompleted = 0; |
| result->nWaits = 0; |
| result->waitGxids = NULL; |
| |
| if (conn) |
| { |
| /* copy connection data we might need for operations on PGresult */ |
| result->noticeHooks = conn->noticeHooks; |
| result->client_encoding = conn->client_encoding; |
| |
| /* consider copying conn's errorMessage */ |
| switch (status) |
| { |
| case PGRES_EMPTY_QUERY: |
| case PGRES_COMMAND_OK: |
| case PGRES_TUPLES_OK: |
| case PGRES_COPY_OUT: |
| case PGRES_COPY_IN: |
| case PGRES_COPY_BOTH: |
| case PGRES_SINGLE_TUPLE: |
| /* non-error cases */ |
| break; |
| default: |
| /* we intentionally do not use or modify errorReported here */ |
| pqSetResultError(result, &conn->errorMessage, 0); |
| break; |
| } |
| |
| /* copy events last; result must be valid if we need to PQclear */ |
| if (conn->nEvents > 0) |
| { |
| result->events = dupEvents(conn->events, conn->nEvents, |
| &result->memorySize); |
| if (!result->events) |
| { |
| PQclear(result); |
| return NULL; |
| } |
| result->nEvents = conn->nEvents; |
| } |
| } |
| else |
| { |
| /* defaults... */ |
| result->noticeHooks.noticeRec = NULL; |
| result->noticeHooks.noticeRecArg = NULL; |
| result->noticeHooks.noticeProc = NULL; |
| result->noticeHooks.noticeProcArg = NULL; |
| result->client_encoding = PG_SQL_ASCII; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * PQsetResultAttrs |
| * |
| * Set the attributes for a given result. This function fails if there are |
| * already attributes contained in the provided result. The call is |
| * ignored if numAttributes is zero or attDescs is NULL. If the |
| * function fails, it returns zero. If the function succeeds, it |
| * returns a non-zero value. |
| */ |
| int |
| PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs) |
| { |
| int i; |
| |
| /* Fail if argument is NULL or OOM_result */ |
| if (!res || (const PGresult *) res == &OOM_result) |
| return false; |
| |
| /* If attrs already exist, they cannot be overwritten. */ |
| if (res->numAttributes > 0) |
| return false; |
| |
| /* ignore no-op request */ |
| if (numAttributes <= 0 || !attDescs) |
| return true; |
| |
| res->attDescs = (PGresAttDesc *) |
| PQresultAlloc(res, numAttributes * sizeof(PGresAttDesc)); |
| |
| if (!res->attDescs) |
| return false; |
| |
| res->numAttributes = numAttributes; |
| memcpy(res->attDescs, attDescs, numAttributes * sizeof(PGresAttDesc)); |
| |
| /* deep-copy the attribute names, and determine format */ |
| res->binary = 1; |
| for (i = 0; i < res->numAttributes; i++) |
| { |
| if (res->attDescs[i].name) |
| res->attDescs[i].name = pqResultStrdup(res, res->attDescs[i].name); |
| else |
| res->attDescs[i].name = res->null_field; |
| |
| if (!res->attDescs[i].name) |
| return false; |
| |
| if (res->attDescs[i].format == 0) |
| res->binary = 0; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * PQcopyResult |
| * |
| * Returns a deep copy of the provided 'src' PGresult, which cannot be NULL. |
| * The 'flags' argument controls which portions of the result will or will |
| * NOT be copied. The created result is always put into the |
| * PGRES_TUPLES_OK status. The source result error message is not copied, |
| * although cmdStatus is. |
| * |
| * To set custom attributes, use PQsetResultAttrs. That function requires |
| * that there are no attrs contained in the result, so to use that |
| * function you cannot use the PG_COPYRES_ATTRS or PG_COPYRES_TUPLES |
| * options with this function. |
| * |
| * Options: |
| * PG_COPYRES_ATTRS - Copy the source result's attributes |
| * |
| * PG_COPYRES_TUPLES - Copy the source result's tuples. This implies |
| * copying the attrs, seeing how the attrs are needed by the tuples. |
| * |
| * PG_COPYRES_EVENTS - Copy the source result's events. |
| * |
| * PG_COPYRES_NOTICEHOOKS - Copy the source result's notice hooks. |
| */ |
| PGresult * |
| PQcopyResult(const PGresult *src, int flags) |
| { |
| PGresult *dest; |
| int i; |
| |
| if (!src) |
| return NULL; |
| |
| dest = PQmakeEmptyPGresult(NULL, PGRES_TUPLES_OK); |
| if (!dest) |
| return NULL; |
| |
| /* Always copy these over. Is cmdStatus really useful here? */ |
| dest->client_encoding = src->client_encoding; |
| strcpy(dest->cmdStatus, src->cmdStatus); |
| |
| /* Wants attrs? */ |
| if (flags & (PG_COPYRES_ATTRS | PG_COPYRES_TUPLES)) |
| { |
| if (!PQsetResultAttrs(dest, src->numAttributes, src->attDescs)) |
| { |
| PQclear(dest); |
| return NULL; |
| } |
| } |
| |
| /* Wants to copy tuples? */ |
| if (flags & PG_COPYRES_TUPLES) |
| { |
| int tup, |
| field; |
| |
| for (tup = 0; tup < src->ntups; tup++) |
| { |
| for (field = 0; field < src->numAttributes; field++) |
| { |
| if (!PQsetvalue(dest, tup, field, |
| src->tuples[tup][field].value, |
| src->tuples[tup][field].len)) |
| { |
| PQclear(dest); |
| return NULL; |
| } |
| } |
| } |
| } |
| |
| /* Wants to copy notice hooks? */ |
| if (flags & PG_COPYRES_NOTICEHOOKS) |
| dest->noticeHooks = src->noticeHooks; |
| |
| /* Wants to copy PGEvents? */ |
| if ((flags & PG_COPYRES_EVENTS) && src->nEvents > 0) |
| { |
| dest->events = dupEvents(src->events, src->nEvents, |
| &dest->memorySize); |
| if (!dest->events) |
| { |
| PQclear(dest); |
| return NULL; |
| } |
| dest->nEvents = src->nEvents; |
| } |
| |
| /* Okay, trigger PGEVT_RESULTCOPY event */ |
| for (i = 0; i < dest->nEvents; i++) |
| { |
| /* We don't fire events that had some previous failure */ |
| if (src->events[i].resultInitialized) |
| { |
| PGEventResultCopy evt; |
| |
| evt.src = src; |
| evt.dest = dest; |
| if (dest->events[i].proc(PGEVT_RESULTCOPY, &evt, |
| dest->events[i].passThrough)) |
| dest->events[i].resultInitialized = true; |
| } |
| } |
| |
| return dest; |
| } |
| |
| /* |
| * Copy an array of PGEvents (with no extra space for more). |
| * Does not duplicate the event instance data, sets this to NULL. |
| * Also, the resultInitialized flags are all cleared. |
| * The total space allocated is added to *memSize. |
| */ |
| static PGEvent * |
| dupEvents(PGEvent *events, int count, size_t *memSize) |
| { |
| PGEvent *newEvents; |
| size_t msize; |
| int i; |
| |
| if (!events || count <= 0) |
| return NULL; |
| |
| msize = count * sizeof(PGEvent); |
| newEvents = (PGEvent *) malloc(msize); |
| if (!newEvents) |
| return NULL; |
| |
| for (i = 0; i < count; i++) |
| { |
| newEvents[i].proc = events[i].proc; |
| newEvents[i].passThrough = events[i].passThrough; |
| newEvents[i].data = NULL; |
| newEvents[i].resultInitialized = false; |
| newEvents[i].name = strdup(events[i].name); |
| if (!newEvents[i].name) |
| { |
| while (--i >= 0) |
| free(newEvents[i].name); |
| free(newEvents); |
| return NULL; |
| } |
| msize += strlen(events[i].name) + 1; |
| } |
| |
| *memSize += msize; |
| return newEvents; |
| } |
| |
| |
| /* |
| * Sets the value for a tuple field. The tup_num must be less than or |
| * equal to PQntuples(res). If it is equal, a new tuple is created and |
| * added to the result. |
| * Returns a non-zero value for success and zero for failure. |
| * (On failure, we report the specific problem via pqInternalNotice.) |
| */ |
| int |
| PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len) |
| { |
| PGresAttValue *attval; |
| const char *errmsg = NULL; |
| |
| /* Fail if argument is NULL or OOM_result */ |
| if (!res || (const PGresult *) res == &OOM_result) |
| return false; |
| |
| /* Invalid field_num? */ |
| if (!check_field_number(res, field_num)) |
| return false; |
| |
| /* Invalid tup_num, must be <= ntups */ |
| if (tup_num < 0 || tup_num > res->ntups) |
| { |
| pqInternalNotice(&res->noticeHooks, |
| "row number %d is out of range 0..%d", |
| tup_num, res->ntups); |
| return false; |
| } |
| |
| /* need to allocate a new tuple? */ |
| if (tup_num == res->ntups) |
| { |
| PGresAttValue *tup; |
| int i; |
| |
| tup = (PGresAttValue *) |
| pqResultAlloc(res, res->numAttributes * sizeof(PGresAttValue), |
| true); |
| |
| if (!tup) |
| goto fail; |
| |
| /* initialize each column to NULL */ |
| for (i = 0; i < res->numAttributes; i++) |
| { |
| tup[i].len = NULL_LEN; |
| tup[i].value = res->null_field; |
| } |
| |
| /* add it to the array */ |
| if (!pqAddTuple(res, tup, &errmsg)) |
| goto fail; |
| } |
| |
| attval = &res->tuples[tup_num][field_num]; |
| |
| /* treat either NULL_LEN or NULL value pointer as a NULL field */ |
| if (len == NULL_LEN || value == NULL) |
| { |
| attval->len = NULL_LEN; |
| attval->value = res->null_field; |
| } |
| else if (len <= 0) |
| { |
| attval->len = 0; |
| attval->value = res->null_field; |
| } |
| else |
| { |
| attval->value = (char *) pqResultAlloc(res, len + 1, true); |
| if (!attval->value) |
| goto fail; |
| attval->len = len; |
| memcpy(attval->value, value, len); |
| attval->value[len] = '\0'; |
| } |
| |
| return true; |
| |
| /* |
| * Report failure via pqInternalNotice. If preceding code didn't provide |
| * an error message, assume "out of memory" was meant. |
| */ |
| fail: |
| if (!errmsg) |
| errmsg = libpq_gettext("out of memory"); |
| pqInternalNotice(&res->noticeHooks, "%s", errmsg); |
| |
| return false; |
| } |
| |
| /* |
| * pqResultAlloc - exported routine to allocate local storage in a PGresult. |
| * |
| * We force all such allocations to be maxaligned, since we don't know |
| * whether the value might be binary. |
| */ |
| void * |
| PQresultAlloc(PGresult *res, size_t nBytes) |
| { |
| /* Fail if argument is NULL or OOM_result */ |
| if (!res || (const PGresult *) res == &OOM_result) |
| return NULL; |
| |
| return pqResultAlloc(res, nBytes, true); |
| } |
| |
| /* |
| * pqResultAlloc - |
| * Allocate subsidiary storage for a PGresult. |
| * |
| * nBytes is the amount of space needed for the object. |
| * If isBinary is true, we assume that we need to align the object on |
| * a machine allocation boundary. |
| * If isBinary is false, we assume the object is a char string and can |
| * be allocated on any byte boundary. |
| */ |
| void * |
| pqResultAlloc(PGresult *res, size_t nBytes, bool isBinary) |
| { |
| char *space; |
| PGresult_data *block; |
| |
| if (!res) |
| return NULL; |
| |
| if (nBytes <= 0) |
| return res->null_field; |
| |
| /* |
| * If alignment is needed, round up the current position to an alignment |
| * boundary. |
| */ |
| if (isBinary) |
| { |
| int offset = res->curOffset % PGRESULT_ALIGN_BOUNDARY; |
| |
| if (offset) |
| { |
| res->curOffset += PGRESULT_ALIGN_BOUNDARY - offset; |
| res->spaceLeft -= PGRESULT_ALIGN_BOUNDARY - offset; |
| } |
| } |
| |
| /* If there's enough space in the current block, no problem. */ |
| if (nBytes <= (size_t) res->spaceLeft) |
| { |
| space = res->curBlock->space + res->curOffset; |
| res->curOffset += nBytes; |
| res->spaceLeft -= nBytes; |
| return space; |
| } |
| |
| /* |
| * If the requested object is very large, give it its own block; this |
| * avoids wasting what might be most of the current block to start a new |
| * block. (We'd have to special-case requests bigger than the block size |
| * anyway.) The object is always given binary alignment in this case. |
| */ |
| if (nBytes >= PGRESULT_SEP_ALLOC_THRESHOLD) |
| { |
| size_t alloc_size = nBytes + PGRESULT_BLOCK_OVERHEAD; |
| |
| block = (PGresult_data *) malloc(alloc_size); |
| if (!block) |
| return NULL; |
| res->memorySize += alloc_size; |
| space = block->space + PGRESULT_BLOCK_OVERHEAD; |
| if (res->curBlock) |
| { |
| /* |
| * Tuck special block below the active block, so that we don't |
| * have to waste the free space in the active block. |
| */ |
| block->next = res->curBlock->next; |
| res->curBlock->next = block; |
| } |
| else |
| { |
| /* Must set up the new block as the first active block. */ |
| block->next = NULL; |
| res->curBlock = block; |
| res->spaceLeft = 0; /* be sure it's marked full */ |
| } |
| return space; |
| } |
| |
| /* Otherwise, start a new block. */ |
| block = (PGresult_data *) malloc(PGRESULT_DATA_BLOCKSIZE); |
| if (!block) |
| return NULL; |
| res->memorySize += PGRESULT_DATA_BLOCKSIZE; |
| block->next = res->curBlock; |
| res->curBlock = block; |
| if (isBinary) |
| { |
| /* object needs full alignment */ |
| res->curOffset = PGRESULT_BLOCK_OVERHEAD; |
| res->spaceLeft = PGRESULT_DATA_BLOCKSIZE - PGRESULT_BLOCK_OVERHEAD; |
| } |
| else |
| { |
| /* we can cram it right after the overhead pointer */ |
| res->curOffset = sizeof(PGresult_data); |
| res->spaceLeft = PGRESULT_DATA_BLOCKSIZE - sizeof(PGresult_data); |
| } |
| |
| space = block->space + res->curOffset; |
| res->curOffset += nBytes; |
| res->spaceLeft -= nBytes; |
| return space; |
| } |
| |
| /* |
| * PQresultMemorySize - |
| * Returns total space allocated for the PGresult. |
| */ |
| size_t |
| PQresultMemorySize(const PGresult *res) |
| { |
| if (!res) |
| return 0; |
| return res->memorySize; |
| } |
| |
| /* |
| * pqResultStrdup - |
| * Like strdup, but the space is subsidiary PGresult space. |
| */ |
| char * |
| pqResultStrdup(PGresult *res, const char *str) |
| { |
| char *space = (char *) pqResultAlloc(res, strlen(str) + 1, false); |
| |
| if (space) |
| strcpy(space, str); |
| return space; |
| } |
| |
| /* |
| * pqSetResultError - |
| * assign a new error message to a PGresult |
| * |
| * Copy text from errorMessage buffer beginning at given offset |
| * (it's caller's responsibility that offset is valid) |
| */ |
| void |
| pqSetResultError(PGresult *res, PQExpBuffer errorMessage, int offset) |
| { |
| char *msg; |
| |
| if (!res) |
| return; |
| |
| /* |
| * We handle two OOM scenarios here. The errorMessage buffer might be |
| * marked "broken" due to having previously failed to allocate enough |
| * memory for the message, or it might be fine but pqResultStrdup fails |
| * and returns NULL. In either case, just make res->errMsg point directly |
| * at a constant "out of memory" string. |
| */ |
| if (!PQExpBufferBroken(errorMessage)) |
| msg = pqResultStrdup(res, errorMessage->data + offset); |
| else |
| msg = NULL; |
| if (msg) |
| res->errMsg = msg; |
| else |
| res->errMsg = libpq_gettext("out of memory\n"); |
| } |
| |
| /* |
| * PQclear - |
| * free's the memory associated with a PGresult |
| */ |
| void |
| PQclear(PGresult *res) |
| { |
| PGresult_data *block; |
| int i; |
| |
| /* As a convenience, do nothing for a NULL pointer */ |
| if (!res) |
| return; |
| /* Also, do nothing if the argument is OOM_result */ |
| if ((const PGresult *) res == &OOM_result) |
| return; |
| |
| /* Close down any events we may have */ |
| for (i = 0; i < res->nEvents; i++) |
| { |
| /* only send DESTROY to successfully-initialized event procs */ |
| if (res->events[i].resultInitialized) |
| { |
| PGEventResultDestroy evt; |
| |
| evt.result = res; |
| (void) res->events[i].proc(PGEVT_RESULTDESTROY, &evt, |
| res->events[i].passThrough); |
| } |
| free(res->events[i].name); |
| } |
| |
| free(res->events); |
| |
| /* Free all the subsidiary blocks */ |
| while ((block = res->curBlock) != NULL) |
| { |
| res->curBlock = block->next; |
| free(block); |
| } |
| |
| /* Free the top-level tuple pointer array */ |
| free(res->tuples); |
| |
| /* zero out the pointer fields to catch programming errors */ |
| res->attDescs = NULL; |
| res->tuples = NULL; |
| res->paramDescs = NULL; |
| res->errFields = NULL; |
| res->events = NULL; |
| res->nEvents = 0; |
| /* res->curBlock was zeroed out earlier */ |
| |
| if (res->extras) |
| free(res->extras); |
| res->extraslen = 0; |
| res->extras = NULL; |
| res->extraType = PGExtraTypeNone; |
| |
| if (res->waitGxids) |
| free(res->waitGxids); |
| res->waitGxids = NULL; |
| res->nWaits = 0; |
| |
| /* Free the PGresult structure itself */ |
| free(res); |
| } |
| |
| /* |
| * Handy subroutine to deallocate any partially constructed async result. |
| * |
| * Any "next" result gets cleared too. |
| */ |
| void |
| pqClearAsyncResult(PGconn *conn) |
| { |
| PQclear(conn->result); |
| conn->result = NULL; |
| conn->error_result = false; |
| PQclear(conn->next_result); |
| conn->next_result = NULL; |
| } |
| |
| /* |
| * pqSaveErrorResult - |
| * remember that we have an error condition |
| * |
| * In much of libpq, reporting an error just requires appending text to |
| * conn->errorMessage and returning a failure code to one's caller. |
| * Where returning a failure code is impractical, instead call this |
| * function to remember that an error needs to be reported. |
| * |
| * (It might seem that appending text to conn->errorMessage should be |
| * sufficient, but we can't rely on that working under out-of-memory |
| * conditions. The OOM hazard is also why we don't try to make a new |
| * PGresult right here.) |
| */ |
| void |
| pqSaveErrorResult(PGconn *conn) |
| { |
| /* Drop any pending result ... */ |
| pqClearAsyncResult(conn); |
| /* ... and set flag to remember to make an error result later */ |
| conn->error_result = true; |
| } |
| |
| /* |
| * pqSaveWriteError - |
| * report a write failure |
| * |
| * As above, after appending conn->write_err_msg to whatever other error we |
| * have. This is used when we've detected a write failure and have exhausted |
| * our chances of reporting something else instead. |
| */ |
| static void |
| pqSaveWriteError(PGconn *conn) |
| { |
| /* |
| * If write_err_msg is null because of previous strdup failure, do what we |
| * can. (It's likely our machinations here will get OOM failures as well, |
| * but might as well try.) |
| */ |
| if (conn->write_err_msg) |
| { |
| appendPQExpBufferStr(&conn->errorMessage, conn->write_err_msg); |
| /* Avoid possibly appending the same message twice */ |
| conn->write_err_msg[0] = '\0'; |
| } |
| else |
| libpq_append_conn_error(conn, "write to server failed"); |
| |
| pqSaveErrorResult(conn); |
| } |
| |
| /* |
| * pqPrepareAsyncResult - |
| * prepare the current async result object for return to the caller |
| * |
| * If there is not already an async result object, build an error object |
| * using whatever is in conn->errorMessage. In any case, clear the async |
| * result storage, and update our notion of how much error text has been |
| * returned to the application. |
| * |
| * Note that in no case (not even OOM) do we return NULL. |
| */ |
| PGresult * |
| pqPrepareAsyncResult(PGconn *conn) |
| { |
| PGresult *res; |
| |
| res = conn->result; |
| if (res) |
| { |
| /* |
| * If the pre-existing result is an ERROR (presumably something |
| * received from the server), assume that it represents whatever is in |
| * conn->errorMessage, and advance errorReported. |
| */ |
| if (res->resultStatus == PGRES_FATAL_ERROR) |
| conn->errorReported = conn->errorMessage.len; |
| } |
| else |
| { |
| /* |
| * We get here after internal-to-libpq errors. We should probably |
| * always have error_result = true, but if we don't, gin up some error |
| * text. |
| */ |
| if (!conn->error_result) |
| libpq_append_conn_error(conn, "no error text available"); |
| |
| /* Paranoia: be sure errorReported offset is sane */ |
| if (conn->errorReported < 0 || |
| conn->errorReported >= conn->errorMessage.len) |
| conn->errorReported = 0; |
| |
| /* |
| * Make a PGresult struct for the error. We temporarily lie about the |
| * result status, so that PQmakeEmptyPGresult doesn't uselessly copy |
| * all of conn->errorMessage. |
| */ |
| res = PQmakeEmptyPGresult(conn, PGRES_EMPTY_QUERY); |
| if (res) |
| { |
| /* |
| * Report whatever new error text we have, and advance |
| * errorReported. |
| */ |
| res->resultStatus = PGRES_FATAL_ERROR; |
| pqSetResultError(res, &conn->errorMessage, conn->errorReported); |
| conn->errorReported = conn->errorMessage.len; |
| } |
| else |
| { |
| /* |
| * Ouch, not enough memory for a PGresult. Fortunately, we have a |
| * card up our sleeve: we can use the static OOM_result. Casting |
| * away const here is a bit ugly, but it seems best to declare |
| * OOM_result as const, in hopes it will be allocated in read-only |
| * storage. |
| */ |
| res = unconstify(PGresult *, &OOM_result); |
| |
| /* |
| * Don't advance errorReported. Perhaps we'll be able to report |
| * the text later. |
| */ |
| } |
| } |
| |
| /* |
| * Replace conn->result with next_result, if any. In the normal case |
| * there isn't a next result and we're just dropping ownership of the |
| * current result. In single-row mode this restores the situation to what |
| * it was before we created the current single-row result. |
| */ |
| conn->result = conn->next_result; |
| conn->error_result = false; /* next_result is never an error */ |
| conn->next_result = NULL; |
| |
| return res; |
| } |
| |
| /* |
| * pqInternalNotice - produce an internally-generated notice message |
| * |
| * A format string and optional arguments can be passed. Note that we do |
| * libpq_gettext() here, so callers need not. |
| * |
| * The supplied text is taken as primary message (ie., it should not include |
| * a trailing newline, and should not be more than one line). |
| */ |
| void |
| pqInternalNotice(const PGNoticeHooks *hooks, const char *fmt,...) |
| { |
| char msgBuf[1024]; |
| va_list args; |
| PGresult *res; |
| |
| if (hooks->noticeRec == NULL) |
| return; /* nobody home to receive notice? */ |
| |
| /* Format the message */ |
| va_start(args, fmt); |
| vsnprintf(msgBuf, sizeof(msgBuf), libpq_gettext(fmt), args); |
| va_end(args); |
| msgBuf[sizeof(msgBuf) - 1] = '\0'; /* make real sure it's terminated */ |
| |
| /* Make a PGresult to pass to the notice receiver */ |
| res = PQmakeEmptyPGresult(NULL, PGRES_NONFATAL_ERROR); |
| if (!res) |
| return; |
| res->noticeHooks = *hooks; |
| |
| /* |
| * Set up fields of notice. |
| */ |
| pqSaveMessageField(res, PG_DIAG_MESSAGE_PRIMARY, msgBuf); |
| pqSaveMessageField(res, PG_DIAG_SEVERITY, libpq_gettext("NOTICE")); |
| pqSaveMessageField(res, PG_DIAG_SEVERITY_NONLOCALIZED, "NOTICE"); |
| /* XXX should provide a SQLSTATE too? */ |
| |
| /* |
| * Result text is always just the primary message + newline. If we can't |
| * allocate it, substitute "out of memory", as in pqSetResultError. |
| */ |
| res->errMsg = (char *) pqResultAlloc(res, strlen(msgBuf) + 2, false); |
| if (res->errMsg) |
| sprintf(res->errMsg, "%s\n", msgBuf); |
| else |
| res->errMsg = libpq_gettext("out of memory\n"); |
| |
| /* |
| * Pass to receiver, then free it. |
| */ |
| res->noticeHooks.noticeRec(res->noticeHooks.noticeRecArg, res); |
| PQclear(res); |
| } |
| |
| /* |
| * pqAddTuple |
| * add a row pointer to the PGresult structure, growing it if necessary |
| * Returns true if OK, false if an error prevented adding the row |
| * |
| * On error, *errmsgp can be set to an error string to be returned. |
| * If it is left NULL, the error is presumed to be "out of memory". |
| */ |
| static bool |
| pqAddTuple(PGresult *res, PGresAttValue *tup, const char **errmsgp) |
| { |
| if (res->ntups >= res->tupArrSize) |
| { |
| /* |
| * Try to grow the array. |
| * |
| * We can use realloc because shallow copying of the structure is |
| * okay. Note that the first time through, res->tuples is NULL. While |
| * ANSI says that realloc() should act like malloc() in that case, |
| * some old C libraries (like SunOS 4.1.x) coredump instead. On |
| * failure realloc is supposed to return NULL without damaging the |
| * existing allocation. Note that the positions beyond res->ntups are |
| * garbage, not necessarily NULL. |
| */ |
| int newSize; |
| PGresAttValue **newTuples; |
| |
| /* |
| * Since we use integers for row numbers, we can't support more than |
| * INT_MAX rows. Make sure we allow that many, though. |
| */ |
| if (res->tupArrSize <= INT_MAX / 2) |
| newSize = (res->tupArrSize > 0) ? res->tupArrSize * 2 : 128; |
| else if (res->tupArrSize < INT_MAX) |
| newSize = INT_MAX; |
| else |
| { |
| *errmsgp = libpq_gettext("PGresult cannot support more than INT_MAX tuples"); |
| return false; |
| } |
| |
| /* |
| * Also, on 32-bit platforms we could, in theory, overflow size_t even |
| * before newSize gets to INT_MAX. (In practice we'd doubtless hit |
| * OOM long before that, but let's check.) |
| */ |
| #if INT_MAX >= (SIZE_MAX / 2) |
| if (newSize > SIZE_MAX / sizeof(PGresAttValue *)) |
| { |
| *errmsgp = libpq_gettext("size_t overflow"); |
| return false; |
| } |
| #endif |
| |
| if (res->tuples == NULL) |
| newTuples = (PGresAttValue **) |
| malloc(newSize * sizeof(PGresAttValue *)); |
| else |
| newTuples = (PGresAttValue **) |
| realloc(res->tuples, newSize * sizeof(PGresAttValue *)); |
| if (!newTuples) |
| return false; /* malloc or realloc failed */ |
| res->memorySize += |
| (newSize - res->tupArrSize) * sizeof(PGresAttValue *); |
| res->tupArrSize = newSize; |
| res->tuples = newTuples; |
| } |
| res->tuples[res->ntups] = tup; |
| res->ntups++; |
| return true; |
| } |
| |
| /* |
| * pqSaveMessageField - save one field of an error or notice message |
| */ |
| void |
| pqSaveMessageField(PGresult *res, char code, const char *value) |
| { |
| PGMessageField *pfield; |
| |
| pfield = (PGMessageField *) |
| pqResultAlloc(res, |
| offsetof(PGMessageField, contents) + |
| strlen(value) + 1, |
| true); |
| if (!pfield) |
| return; /* out of memory? */ |
| pfield->code = code; |
| strcpy(pfield->contents, value); |
| pfield->next = res->errFields; |
| res->errFields = pfield; |
| } |
| |
| /* |
| * pqSaveParameterStatus - remember parameter status sent by backend |
| */ |
| void |
| pqSaveParameterStatus(PGconn *conn, const char *name, const char *value) |
| { |
| pgParameterStatus *pstatus; |
| pgParameterStatus *prev; |
| |
| /* |
| * Forget any old information about the parameter |
| */ |
| for (pstatus = conn->pstatus, prev = NULL; |
| pstatus != NULL; |
| prev = pstatus, pstatus = pstatus->next) |
| { |
| if (strcmp(pstatus->name, name) == 0) |
| { |
| if (prev) |
| prev->next = pstatus->next; |
| else |
| conn->pstatus = pstatus->next; |
| free(pstatus); /* frees name and value strings too */ |
| break; |
| } |
| } |
| |
| /* |
| * Store new info as a single malloc block |
| */ |
| pstatus = (pgParameterStatus *) malloc(sizeof(pgParameterStatus) + |
| strlen(name) + strlen(value) + 2); |
| if (pstatus) |
| { |
| char *ptr; |
| |
| ptr = ((char *) pstatus) + sizeof(pgParameterStatus); |
| pstatus->name = ptr; |
| strcpy(ptr, name); |
| ptr += strlen(name) + 1; |
| pstatus->value = ptr; |
| strcpy(ptr, value); |
| pstatus->next = conn->pstatus; |
| conn->pstatus = pstatus; |
| } |
| |
| /* |
| * Save values of settings that are of interest to libpq in fields of the |
| * PGconn object. We keep client_encoding and standard_conforming_strings |
| * in static variables as well, so that PQescapeString and PQescapeBytea |
| * can behave somewhat sanely (at least in single-connection-using |
| * programs). |
| */ |
| if (strcmp(name, "client_encoding") == 0) |
| { |
| conn->client_encoding = pg_char_to_encoding(value); |
| /* if we don't recognize the encoding name, fall back to SQL_ASCII */ |
| if (conn->client_encoding < 0) |
| conn->client_encoding = PG_SQL_ASCII; |
| static_client_encoding = conn->client_encoding; |
| } |
| else if (strcmp(name, "standard_conforming_strings") == 0) |
| { |
| conn->std_strings = (strcmp(value, "on") == 0); |
| static_std_strings = conn->std_strings; |
| } |
| else if (strcmp(name, "server_version") == 0) |
| { |
| /* We convert the server version to numeric form. */ |
| int cnt; |
| int vmaj, |
| vmin, |
| vrev; |
| |
| cnt = sscanf(value, "%d.%d.%d", &vmaj, &vmin, &vrev); |
| |
| if (cnt == 3) |
| { |
| /* old style, e.g. 9.6.1 */ |
| conn->sversion = (100 * vmaj + vmin) * 100 + vrev; |
| } |
| else if (cnt == 2) |
| { |
| if (vmaj >= 10) |
| { |
| /* new style, e.g. 10.1 */ |
| conn->sversion = 100 * 100 * vmaj + vmin; |
| } |
| else |
| { |
| /* old style without minor version, e.g. 9.6devel */ |
| conn->sversion = (100 * vmaj + vmin) * 100; |
| } |
| } |
| else if (cnt == 1) |
| { |
| /* new style without minor version, e.g. 10devel */ |
| conn->sversion = 100 * 100 * vmaj; |
| } |
| else |
| conn->sversion = 0; /* unknown */ |
| } |
| else if (strcmp(name, "default_transaction_read_only") == 0) |
| { |
| conn->default_transaction_read_only = |
| (strcmp(value, "on") == 0) ? PG_BOOL_YES : PG_BOOL_NO; |
| } |
| else if (strcmp(name, "in_hot_standby") == 0) |
| { |
| conn->in_hot_standby = |
| (strcmp(value, "on") == 0) ? PG_BOOL_YES : PG_BOOL_NO; |
| } |
| else if (strcmp(name, "scram_iterations") == 0) |
| { |
| conn->scram_sha_256_iterations = atoi(value); |
| } |
| } |
| |
| |
| /* |
| * pqRowProcessor |
| * Add the received row to the current async result (conn->result). |
| * Returns 1 if OK, 0 if error occurred. |
| * |
| * On error, *errmsgp can be set to an error string to be returned. |
| * (Such a string should already be translated via libpq_gettext().) |
| * If it is left NULL, the error is presumed to be "out of memory". |
| * |
| * In single-row mode, we create a new result holding just the current row, |
| * stashing the previous result in conn->next_result so that it becomes |
| * active again after pqPrepareAsyncResult(). This allows the result metadata |
| * (column descriptions) to be carried forward to each result row. |
| */ |
| int |
| pqRowProcessor(PGconn *conn, const char **errmsgp) |
| { |
| PGresult *res = conn->result; |
| int nfields = res->numAttributes; |
| const PGdataValue *columns = conn->rowBuf; |
| PGresAttValue *tup; |
| int i; |
| |
| /* |
| * In single-row mode, make a new PGresult that will hold just this one |
| * row; the original conn->result is left unchanged so that it can be used |
| * again as the template for future rows. |
| */ |
| if (conn->singleRowMode) |
| { |
| /* Copy everything that should be in the result at this point */ |
| res = PQcopyResult(res, |
| PG_COPYRES_ATTRS | PG_COPYRES_EVENTS | |
| PG_COPYRES_NOTICEHOOKS); |
| if (!res) |
| return 0; |
| } |
| |
| /* |
| * Basically we just allocate space in the PGresult for each field and |
| * copy the data over. |
| * |
| * Note: on malloc failure, we return 0 leaving *errmsgp still NULL, which |
| * caller will take to mean "out of memory". This is preferable to trying |
| * to set up such a message here, because evidently there's not enough |
| * memory for gettext() to do anything. |
| */ |
| tup = (PGresAttValue *) |
| pqResultAlloc(res, nfields * sizeof(PGresAttValue), true); |
| if (tup == NULL) |
| goto fail; |
| |
| for (i = 0; i < nfields; i++) |
| { |
| int clen = columns[i].len; |
| |
| if (clen < 0) |
| { |
| /* null field */ |
| tup[i].len = NULL_LEN; |
| tup[i].value = res->null_field; |
| } |
| else |
| { |
| bool isbinary = (res->attDescs[i].format != 0); |
| char *val; |
| |
| val = (char *) pqResultAlloc(res, clen + 1, isbinary); |
| if (val == NULL) |
| goto fail; |
| |
| /* copy and zero-terminate the data (even if it's binary) */ |
| memcpy(val, columns[i].value, clen); |
| val[clen] = '\0'; |
| |
| tup[i].len = clen; |
| tup[i].value = val; |
| } |
| } |
| |
| /* And add the tuple to the PGresult's tuple array */ |
| if (!pqAddTuple(res, tup, errmsgp)) |
| goto fail; |
| |
| /* |
| * Success. In single-row mode, make the result available to the client |
| * immediately. |
| */ |
| if (conn->singleRowMode) |
| { |
| /* Change result status to special single-row value */ |
| res->resultStatus = PGRES_SINGLE_TUPLE; |
| /* Stash old result for re-use later */ |
| conn->next_result = conn->result; |
| conn->result = res; |
| /* And mark the result ready to return */ |
| conn->asyncStatus = PGASYNC_READY_MORE; |
| } |
| |
| return 1; |
| |
| fail: |
| /* release locally allocated PGresult, if we made one */ |
| if (res != conn->result) |
| PQclear(res); |
| return 0; |
| } |
| |
| /* |
| * pqAllocCmdQueueEntry |
| * Get a command queue entry for caller to fill. |
| * |
| * If the recycle queue has a free element, that is returned; if not, a |
| * fresh one is allocated. Caller is responsible for adding it to the |
| * command queue (pqAppendCmdQueueEntry) once the struct is filled in, or |
| * releasing the memory (pqRecycleCmdQueueEntry) if an error occurs. |
| * |
| * If allocation fails, sets the error message and returns NULL. |
| */ |
| PGcmdQueueEntry * |
| pqAllocCmdQueueEntry(PGconn *conn) |
| { |
| PGcmdQueueEntry *entry; |
| |
| if (conn->cmd_queue_recycle == NULL) |
| { |
| entry = (PGcmdQueueEntry *) malloc(sizeof(PGcmdQueueEntry)); |
| if (entry == NULL) |
| { |
| libpq_append_conn_error(conn, "out of memory"); |
| return NULL; |
| } |
| } |
| else |
| { |
| entry = conn->cmd_queue_recycle; |
| conn->cmd_queue_recycle = entry->next; |
| } |
| entry->next = NULL; |
| entry->query = NULL; |
| |
| return entry; |
| } |
| |
| /* |
| * pqAppendCmdQueueEntry |
| * Append a caller-allocated entry to the command queue, and update |
| * conn->asyncStatus to account for it. |
| * |
| * The query itself must already have been put in the output buffer by the |
| * caller. |
| */ |
| void |
| pqAppendCmdQueueEntry(PGconn *conn, PGcmdQueueEntry *entry) |
| { |
| Assert(entry->next == NULL); |
| |
| if (conn->cmd_queue_head == NULL) |
| conn->cmd_queue_head = entry; |
| else |
| conn->cmd_queue_tail->next = entry; |
| |
| conn->cmd_queue_tail = entry; |
| |
| switch (conn->pipelineStatus) |
| { |
| case PQ_PIPELINE_OFF: |
| case PQ_PIPELINE_ON: |
| |
| /* |
| * When not in pipeline aborted state, if there's a result ready |
| * to be consumed, let it be so (that is, don't change away from |
| * READY or READY_MORE); otherwise set us busy to wait for |
| * something to arrive from the server. |
| */ |
| if (conn->asyncStatus == PGASYNC_IDLE) |
| conn->asyncStatus = PGASYNC_BUSY; |
| break; |
| |
| case PQ_PIPELINE_ABORTED: |
| |
| /* |
| * In aborted pipeline state, we don't expect anything from the |
| * server (since we don't send any queries that are queued). |
| * Therefore, if IDLE then do what PQgetResult would do to let |
| * itself consume commands from the queue; if we're in any other |
| * state, we don't have to do anything. |
| */ |
| if (conn->asyncStatus == PGASYNC_IDLE || |
| conn->asyncStatus == PGASYNC_PIPELINE_IDLE) |
| pqPipelineProcessQueue(conn); |
| break; |
| } |
| } |
| |
| /* |
| * pqRecycleCmdQueueEntry |
| * Push a command queue entry onto the freelist. |
| */ |
| void |
| pqRecycleCmdQueueEntry(PGconn *conn, PGcmdQueueEntry *entry) |
| { |
| if (entry == NULL) |
| return; |
| |
| /* recyclable entries should not have a follow-on command */ |
| Assert(entry->next == NULL); |
| |
| if (entry->query) |
| { |
| free(entry->query); |
| entry->query = NULL; |
| } |
| |
| entry->next = conn->cmd_queue_recycle; |
| conn->cmd_queue_recycle = entry; |
| } |
| |
| |
| /* |
| * PQsendQuery |
| * Submit a query, but don't wait for it to finish |
| * |
| * Returns: 1 if successfully submitted |
| * 0 if error (conn->errorMessage is set) |
| * |
| * PQsendQueryContinue is a non-exported version that behaves identically |
| * except that it doesn't reset conn->errorMessage. |
| */ |
| int |
| PQsendQuery(PGconn *conn, const char *query) |
| { |
| return PQsendQueryInternal(conn, query, true); |
| } |
| |
| int |
| PQsendQueryContinue(PGconn *conn, const char *query) |
| { |
| return PQsendQueryInternal(conn, query, false); |
| } |
| |
| int |
| PQsendQueryInternal(PGconn *conn, const char *query, bool newQuery) |
| { |
| PGcmdQueueEntry *entry = NULL; |
| |
| if (!PQsendQueryStart(conn, newQuery)) |
| return 0; |
| |
| /* check the argument */ |
| if (!query) |
| { |
| libpq_append_conn_error(conn, "command string is a null pointer"); |
| return 0; |
| } |
| |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "%s not allowed in pipeline mode", |
| "PQsendQuery"); |
| return 0; |
| } |
| |
| entry = pqAllocCmdQueueEntry(conn); |
| if (entry == NULL) |
| return 0; /* error msg already set */ |
| |
| /* Send the query message(s) */ |
| /* construct the outgoing Query message */ |
| if (pqPutMsgStart('Q', conn) < 0 || |
| pqPuts(query, conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| { |
| /* error message should be set up already */ |
| pqRecycleCmdQueueEntry(conn, entry); |
| return 0; |
| } |
| |
| /* remember we are using simple query protocol */ |
| entry->queryclass = PGQUERY_SIMPLE; |
| /* and remember the query text too, if possible */ |
| entry->query = strdup(query); |
| |
| /* |
| * Give the data a push. In nonblock mode, don't complain if we're unable |
| * to send it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (pqFlush(conn) < 0) |
| goto sendFailed; |
| |
| /* OK, it's launched! */ |
| pqAppendCmdQueueEntry(conn, entry); |
| |
| return 1; |
| |
| sendFailed: |
| pqRecycleCmdQueueEntry(conn, entry); |
| /* error message should be set up already */ |
| return 0; |
| } |
| |
| /* |
| * PQsendQueryParams |
| * Like PQsendQuery, but use extended query protocol so we can pass parameters |
| */ |
| int |
| PQsendQueryParams(PGconn *conn, |
| const char *command, |
| int nParams, |
| const Oid *paramTypes, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat) |
| { |
| if (!PQsendQueryStart(conn, true)) |
| return 0; |
| |
| /* check the arguments */ |
| if (!command) |
| { |
| libpq_append_conn_error(conn, "command string is a null pointer"); |
| return 0; |
| } |
| if (nParams < 0 || nParams > PQ_QUERY_PARAM_MAX_LIMIT) |
| { |
| libpq_append_conn_error(conn, "number of parameters must be between 0 and %d", |
| PQ_QUERY_PARAM_MAX_LIMIT); |
| return 0; |
| } |
| |
| return PQsendQueryGuts(conn, |
| command, |
| "", /* use unnamed statement */ |
| nParams, |
| paramTypes, |
| paramValues, |
| paramLengths, |
| paramFormats, |
| resultFormat); |
| } |
| |
| /* |
| * PQsendPrepare |
| * Submit a Parse message, but don't wait for it to finish |
| * |
| * Returns: 1 if successfully submitted |
| * 0 if error (conn->errorMessage is set) |
| */ |
| int |
| PQsendPrepare(PGconn *conn, |
| const char *stmtName, const char *query, |
| int nParams, const Oid *paramTypes) |
| { |
| PGcmdQueueEntry *entry = NULL; |
| |
| if (!PQsendQueryStart(conn, true)) |
| return 0; |
| |
| /* check the arguments */ |
| if (!stmtName) |
| { |
| libpq_append_conn_error(conn, "statement name is a null pointer"); |
| return 0; |
| } |
| if (!query) |
| { |
| libpq_append_conn_error(conn, "command string is a null pointer"); |
| return 0; |
| } |
| if (nParams < 0 || nParams > PQ_QUERY_PARAM_MAX_LIMIT) |
| { |
| libpq_append_conn_error(conn, "number of parameters must be between 0 and %d", |
| PQ_QUERY_PARAM_MAX_LIMIT); |
| return 0; |
| } |
| |
| entry = pqAllocCmdQueueEntry(conn); |
| if (entry == NULL) |
| return 0; /* error msg already set */ |
| |
| /* construct the Parse message */ |
| if (pqPutMsgStart('P', conn) < 0 || |
| pqPuts(stmtName, conn) < 0 || |
| pqPuts(query, conn) < 0) |
| goto sendFailed; |
| |
| if (nParams > 0 && paramTypes) |
| { |
| int i; |
| |
| if (pqPutInt(nParams, 2, conn) < 0) |
| goto sendFailed; |
| for (i = 0; i < nParams; i++) |
| { |
| if (pqPutInt(paramTypes[i], 4, conn) < 0) |
| goto sendFailed; |
| } |
| } |
| else |
| { |
| if (pqPutInt(0, 2, conn) < 0) |
| goto sendFailed; |
| } |
| if (pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* Add a Sync, unless in pipeline mode. */ |
| if (conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| if (pqPutMsgStart('S', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| } |
| |
| /* remember we are doing just a Parse */ |
| entry->queryclass = PGQUERY_PREPARE; |
| |
| /* and remember the query text too, if possible */ |
| /* if insufficient memory, query just winds up NULL */ |
| entry->query = strdup(query); |
| |
| /* |
| * Give the data a push (in pipeline mode, only if we're past the size |
| * threshold). In nonblock mode, don't complain if we're unable to send |
| * it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (pqPipelineFlush(conn) < 0) |
| goto sendFailed; |
| |
| /* OK, it's launched! */ |
| pqAppendCmdQueueEntry(conn, entry); |
| |
| return 1; |
| |
| sendFailed: |
| pqRecycleCmdQueueEntry(conn, entry); |
| /* error message should be set up already */ |
| return 0; |
| } |
| |
| /* |
| * PQsendQueryPrepared |
| * Like PQsendQuery, but execute a previously prepared statement, |
| * using extended query protocol so we can pass parameters |
| */ |
| int |
| PQsendQueryPrepared(PGconn *conn, |
| const char *stmtName, |
| int nParams, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat) |
| { |
| if (!PQsendQueryStart(conn, true)) |
| return 0; |
| |
| /* check the arguments */ |
| if (!stmtName) |
| { |
| libpq_append_conn_error(conn, "statement name is a null pointer"); |
| return 0; |
| } |
| if (nParams < 0 || nParams > PQ_QUERY_PARAM_MAX_LIMIT) |
| { |
| libpq_append_conn_error(conn, "number of parameters must be between 0 and %d", |
| PQ_QUERY_PARAM_MAX_LIMIT); |
| return 0; |
| } |
| |
| return PQsendQueryGuts(conn, |
| NULL, /* no command to parse */ |
| stmtName, |
| nParams, |
| NULL, /* no param types */ |
| paramValues, |
| paramLengths, |
| paramFormats, |
| resultFormat); |
| } |
| |
| /* |
| * PQsendQueryStart |
| * Common startup code for PQsendQuery and sibling routines |
| */ |
| |
| bool |
| PQsendQueryStart(PGconn *conn, bool newQuery) |
| { |
| if (!conn) |
| return false; |
| |
| /* |
| * If this is the beginning of a query cycle, reset the error state. |
| * However, in pipeline mode with something already queued, the error |
| * buffer belongs to that command and we shouldn't clear it. |
| */ |
| if (newQuery && conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| /* Don't try to send if we know there's no live connection. */ |
| if (conn->status != CONNECTION_OK) |
| { |
| libpq_append_conn_error(conn, "no connection to the server"); |
| return false; |
| } |
| |
| /* Can't send while already busy, either, unless enqueuing for later */ |
| if (conn->asyncStatus != PGASYNC_IDLE && |
| conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "another command is already in progress"); |
| return false; |
| } |
| |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| { |
| /* |
| * When enqueuing commands we don't change much of the connection |
| * state since it's already in use for the current command. The |
| * connection state will get updated when pqPipelineProcessQueue() |
| * advances to start processing the queued message. |
| * |
| * Just make sure we can safely enqueue given the current connection |
| * state. We can enqueue behind another queue item, or behind a |
| * non-queue command (one that sends its own sync), but we can't |
| * enqueue if the connection is in a copy state. |
| */ |
| switch (conn->asyncStatus) |
| { |
| case PGASYNC_IDLE: |
| case PGASYNC_PIPELINE_IDLE: |
| case PGASYNC_READY: |
| case PGASYNC_READY_MORE: |
| case PGASYNC_BUSY: |
| /* ok to queue */ |
| break; |
| |
| case PGASYNC_COPY_IN: |
| case PGASYNC_COPY_OUT: |
| case PGASYNC_COPY_BOTH: |
| libpq_append_conn_error(conn, "cannot queue commands during COPY"); |
| return false; |
| } |
| } |
| else |
| { |
| /* |
| * This command's results will come in immediately. Initialize async |
| * result-accumulation state |
| */ |
| pqClearAsyncResult(conn); |
| |
| /* reset single-row processing mode */ |
| conn->singleRowMode = false; |
| } |
| |
| /* ready to send command message */ |
| return true; |
| } |
| |
| /* |
| * PQsendQueryGuts |
| * Common code for sending a query with extended query protocol |
| * PQsendQueryStart should be done already |
| * |
| * command may be NULL to indicate we use an already-prepared statement |
| */ |
| static int |
| PQsendQueryGuts(PGconn *conn, |
| const char *command, |
| const char *stmtName, |
| int nParams, |
| const Oid *paramTypes, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat) |
| { |
| int i; |
| PGcmdQueueEntry *entry; |
| |
| entry = pqAllocCmdQueueEntry(conn); |
| if (entry == NULL) |
| return 0; /* error msg already set */ |
| |
| /* |
| * We will send Parse (if needed), Bind, Describe Portal, Execute, Sync |
| * (if not in pipeline mode), using specified statement name and the |
| * unnamed portal. |
| */ |
| |
| if (command) |
| { |
| /* construct the Parse message */ |
| if (pqPutMsgStart('P', conn) < 0 || |
| pqPuts(stmtName, conn) < 0 || |
| pqPuts(command, conn) < 0) |
| goto sendFailed; |
| if (nParams > 0 && paramTypes) |
| { |
| if (pqPutInt(nParams, 2, conn) < 0) |
| goto sendFailed; |
| for (i = 0; i < nParams; i++) |
| { |
| if (pqPutInt(paramTypes[i], 4, conn) < 0) |
| goto sendFailed; |
| } |
| } |
| else |
| { |
| if (pqPutInt(0, 2, conn) < 0) |
| goto sendFailed; |
| } |
| if (pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| } |
| |
| /* Construct the Bind message */ |
| if (pqPutMsgStart('B', conn) < 0 || |
| pqPuts("", conn) < 0 || |
| pqPuts(stmtName, conn) < 0) |
| goto sendFailed; |
| |
| /* Send parameter formats */ |
| if (nParams > 0 && paramFormats) |
| { |
| if (pqPutInt(nParams, 2, conn) < 0) |
| goto sendFailed; |
| for (i = 0; i < nParams; i++) |
| { |
| if (pqPutInt(paramFormats[i], 2, conn) < 0) |
| goto sendFailed; |
| } |
| } |
| else |
| { |
| if (pqPutInt(0, 2, conn) < 0) |
| goto sendFailed; |
| } |
| |
| if (pqPutInt(nParams, 2, conn) < 0) |
| goto sendFailed; |
| |
| /* Send parameters */ |
| for (i = 0; i < nParams; i++) |
| { |
| if (paramValues && paramValues[i]) |
| { |
| int nbytes; |
| |
| if (paramFormats && paramFormats[i] != 0) |
| { |
| /* binary parameter */ |
| if (paramLengths) |
| nbytes = paramLengths[i]; |
| else |
| { |
| libpq_append_conn_error(conn, "length must be given for binary parameter"); |
| goto sendFailed; |
| } |
| } |
| else |
| { |
| /* text parameter, do not use paramLengths */ |
| nbytes = strlen(paramValues[i]); |
| } |
| if (pqPutInt(nbytes, 4, conn) < 0 || |
| pqPutnchar(paramValues[i], nbytes, conn) < 0) |
| goto sendFailed; |
| } |
| else |
| { |
| /* take the param as NULL */ |
| if (pqPutInt(-1, 4, conn) < 0) |
| goto sendFailed; |
| } |
| } |
| if (pqPutInt(1, 2, conn) < 0 || |
| pqPutInt(resultFormat, 2, conn)) |
| goto sendFailed; |
| if (pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* construct the Describe Portal message */ |
| if (pqPutMsgStart('D', conn) < 0 || |
| pqPutc('P', conn) < 0 || |
| pqPuts("", conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* construct the Execute message */ |
| if (pqPutMsgStart('E', conn) < 0 || |
| pqPuts("", conn) < 0 || |
| pqPutInt(0, 4, conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* construct the Sync message if not in pipeline mode */ |
| if (conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| if (pqPutMsgStart('S', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| } |
| |
| /* remember we are using extended query protocol */ |
| entry->queryclass = PGQUERY_EXTENDED; |
| |
| /* and remember the query text too, if possible */ |
| /* if insufficient memory, query just winds up NULL */ |
| if (command) |
| entry->query = strdup(command); |
| |
| /* |
| * Give the data a push (in pipeline mode, only if we're past the size |
| * threshold). In nonblock mode, don't complain if we're unable to send |
| * it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (pqPipelineFlush(conn) < 0) |
| goto sendFailed; |
| |
| /* OK, it's launched! */ |
| pqAppendCmdQueueEntry(conn, entry); |
| |
| return 1; |
| |
| sendFailed: |
| pqRecycleCmdQueueEntry(conn, entry); |
| /* error message should be set up already */ |
| return 0; |
| } |
| |
| /* |
| * Select row-by-row processing mode |
| */ |
| int |
| PQsetSingleRowMode(PGconn *conn) |
| { |
| /* |
| * Only allow setting the flag when we have launched a query and not yet |
| * received any results. |
| */ |
| if (!conn) |
| return 0; |
| if (conn->asyncStatus != PGASYNC_BUSY) |
| return 0; |
| if (!conn->cmd_queue_head || |
| (conn->cmd_queue_head->queryclass != PGQUERY_SIMPLE && |
| conn->cmd_queue_head->queryclass != PGQUERY_EXTENDED)) |
| return 0; |
| if (pgHavePendingResult(conn)) |
| return 0; |
| |
| /* OK, set flag */ |
| conn->singleRowMode = true; |
| return 1; |
| } |
| |
| /* |
| * Consume any available input from the backend |
| * 0 return: some kind of trouble |
| * 1 return: no problem |
| */ |
| int |
| PQconsumeInput(PGconn *conn) |
| { |
| if (!conn) |
| return 0; |
| |
| /* |
| * for non-blocking connections try to flush the send-queue, otherwise we |
| * may never get a response for something that may not have already been |
| * sent because it's in our write buffer! |
| */ |
| if (pqIsnonblocking(conn)) |
| { |
| if (pqFlush(conn) < 0) |
| return 0; |
| } |
| |
| /* |
| * Load more data, if available. We do this no matter what state we are |
| * in, since we are probably getting called because the application wants |
| * to get rid of a read-select condition. Note that we will NOT block |
| * waiting for more input. |
| */ |
| if (pqReadData(conn) < 0) |
| return 0; |
| |
| /* Parsing of the data waits till later. */ |
| return 1; |
| } |
| |
| |
| /* |
| * parseInput: if appropriate, parse input data from backend |
| * until input is exhausted or a stopping state is reached. |
| * Note that this function will NOT attempt to read more data from the backend. |
| */ |
| static void |
| parseInput(PGconn *conn) |
| { |
| pqParseInput3(conn); |
| } |
| |
| /* |
| * PQisBusy |
| * Return true if PQgetResult would block waiting for input. |
| */ |
| |
| int |
| PQisBusy(PGconn *conn) |
| { |
| if (!conn) |
| return false; |
| |
| /* Parse any available data, if our state permits. */ |
| parseInput(conn); |
| |
| /* |
| * PQgetResult will return immediately in all states except BUSY. Also, |
| * if we've detected read EOF and dropped the connection, we can expect |
| * that PQgetResult will fail immediately. Note that we do *not* check |
| * conn->write_failed here --- once that's become set, we know we have |
| * trouble, but we need to keep trying to read until we have a complete |
| * server message or detect read EOF. |
| */ |
| return conn->asyncStatus == PGASYNC_BUSY && conn->status != CONNECTION_BAD; |
| } |
| |
| /* |
| * PQgetResult |
| * Get the next PGresult produced by a query. Returns NULL if no |
| * query work remains or an error has occurred (e.g. out of |
| * memory). |
| * |
| * In pipeline mode, once all the result of a query have been returned, |
| * PQgetResult returns NULL to let the user know that the next |
| * query is being processed. At the end of the pipeline, returns a |
| * result with PQresultStatus(result) == PGRES_PIPELINE_SYNC. |
| */ |
| PGresult * |
| PQgetResult(PGconn *conn) |
| { |
| PGresult *res; |
| |
| if (!conn) |
| return NULL; |
| |
| /* Parse any available data, if our state permits. */ |
| parseInput(conn); |
| |
| /* If not ready to return something, block until we are. */ |
| while (conn->asyncStatus == PGASYNC_BUSY) |
| { |
| int flushResult; |
| |
| /* |
| * If data remains unsent, send it. Else we might be waiting for the |
| * result of a command the backend hasn't even got yet. |
| */ |
| while ((flushResult = pqFlush(conn)) > 0) |
| { |
| if (pqWait(false, true, conn)) |
| { |
| flushResult = -1; |
| break; |
| } |
| } |
| |
| /* |
| * Wait for some more data, and load it. (Note: if the connection has |
| * been lost, pqWait should return immediately because the socket |
| * should be read-ready, either with the last server data or with an |
| * EOF indication. We expect therefore that this won't result in any |
| * undue delay in reporting a previous write failure.) |
| */ |
| if (flushResult || |
| pqWait(true, false, conn) || |
| pqReadData(conn) < 0) |
| { |
| /* Report the error saved by pqWait or pqReadData */ |
| pqSaveErrorResult(conn); |
| conn->asyncStatus = PGASYNC_IDLE; |
| return pqPrepareAsyncResult(conn); |
| } |
| |
| /* Parse it. */ |
| parseInput(conn); |
| |
| /* |
| * If we had a write error, but nothing above obtained a query result |
| * or detected a read error, report the write error. |
| */ |
| if (conn->write_failed && conn->asyncStatus == PGASYNC_BUSY) |
| { |
| pqSaveWriteError(conn); |
| conn->asyncStatus = PGASYNC_IDLE; |
| return pqPrepareAsyncResult(conn); |
| } |
| } |
| |
| /* Return the appropriate thing. */ |
| switch (conn->asyncStatus) |
| { |
| case PGASYNC_IDLE: |
| res = NULL; /* query is complete */ |
| break; |
| case PGASYNC_PIPELINE_IDLE: |
| Assert(conn->pipelineStatus != PQ_PIPELINE_OFF); |
| |
| /* |
| * We're about to return the NULL that terminates the round of |
| * results from the current query; prepare to send the results of |
| * the next query, if any, when we're called next. If there's no |
| * next element in the command queue, this gets us in IDLE state. |
| */ |
| pqPipelineProcessQueue(conn); |
| res = NULL; /* query is complete */ |
| break; |
| |
| case PGASYNC_READY: |
| res = pqPrepareAsyncResult(conn); |
| |
| /* Advance the queue as appropriate */ |
| pqCommandQueueAdvance(conn, false, |
| res->resultStatus == PGRES_PIPELINE_SYNC); |
| |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| { |
| /* |
| * We're about to send the results of the current query. Set |
| * us idle now, and ... |
| */ |
| conn->asyncStatus = PGASYNC_PIPELINE_IDLE; |
| |
| /* |
| * ... in cases when we're sending a pipeline-sync result, |
| * move queue processing forwards immediately, so that next |
| * time we're called, we're prepared to return the next result |
| * received from the server. In all other cases, leave the |
| * queue state change for next time, so that a terminating |
| * NULL result is sent. |
| * |
| * (In other words: we don't return a NULL after a pipeline |
| * sync.) |
| */ |
| if (res->resultStatus == PGRES_PIPELINE_SYNC) |
| pqPipelineProcessQueue(conn); |
| } |
| else |
| { |
| /* Set the state back to BUSY, allowing parsing to proceed. */ |
| conn->asyncStatus = PGASYNC_BUSY; |
| } |
| break; |
| case PGASYNC_READY_MORE: |
| res = pqPrepareAsyncResult(conn); |
| /* Set the state back to BUSY, allowing parsing to proceed. */ |
| conn->asyncStatus = PGASYNC_BUSY; |
| break; |
| case PGASYNC_COPY_IN: |
| res = getCopyResult(conn, PGRES_COPY_IN); |
| break; |
| case PGASYNC_COPY_OUT: |
| res = getCopyResult(conn, PGRES_COPY_OUT); |
| break; |
| case PGASYNC_COPY_BOTH: |
| res = getCopyResult(conn, PGRES_COPY_BOTH); |
| break; |
| default: |
| libpq_append_conn_error(conn, "unexpected asyncStatus: %d", (int) conn->asyncStatus); |
| pqSaveErrorResult(conn); |
| conn->asyncStatus = PGASYNC_IDLE; /* try to restore valid state */ |
| res = pqPrepareAsyncResult(conn); |
| break; |
| } |
| |
| /* Time to fire PGEVT_RESULTCREATE events, if there are any */ |
| if (res && res->nEvents > 0) |
| (void) PQfireResultCreateEvents(conn, res); |
| |
| return res; |
| } |
| |
| /* |
| * getCopyResult |
| * Helper for PQgetResult: generate result for COPY-in-progress cases |
| */ |
| static PGresult * |
| getCopyResult(PGconn *conn, ExecStatusType copytype) |
| { |
| /* |
| * If the server connection has been lost, don't pretend everything is |
| * hunky-dory; instead return a PGRES_FATAL_ERROR result, and reset the |
| * asyncStatus to idle (corresponding to what we'd do if we'd detected I/O |
| * error in the earlier steps in PQgetResult). The text returned in the |
| * result is whatever is in conn->errorMessage; we hope that was filled |
| * with something relevant when the lost connection was detected. |
| */ |
| if (conn->status != CONNECTION_OK) |
| { |
| pqSaveErrorResult(conn); |
| conn->asyncStatus = PGASYNC_IDLE; |
| return pqPrepareAsyncResult(conn); |
| } |
| |
| /* If we have an async result for the COPY, return that */ |
| if (conn->result && conn->result->resultStatus == copytype) |
| return pqPrepareAsyncResult(conn); |
| |
| /* Otherwise, invent a suitable PGresult */ |
| return PQmakeEmptyPGresult(conn, copytype); |
| } |
| |
| |
| /* |
| * PQexec |
| * send a query to the backend and package up the result in a PGresult |
| * |
| * If the query was not even sent, return NULL; conn->errorMessage is set to |
| * a relevant message. |
| * If the query was sent, a new PGresult is returned (which could indicate |
| * either success or failure). |
| * The user is responsible for freeing the PGresult via PQclear() |
| * when done with it. |
| */ |
| PGresult * |
| PQexec(PGconn *conn, const char *query) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendQuery(conn, query)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * PQexecParams |
| * Like PQexec, but use extended query protocol so we can pass parameters |
| */ |
| PGresult * |
| PQexecParams(PGconn *conn, |
| const char *command, |
| int nParams, |
| const Oid *paramTypes, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendQueryParams(conn, command, |
| nParams, paramTypes, paramValues, paramLengths, |
| paramFormats, resultFormat)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * PQprepare |
| * Creates a prepared statement by issuing a Parse message. |
| * |
| * If the query was not even sent, return NULL; conn->errorMessage is set to |
| * a relevant message. |
| * If the query was sent, a new PGresult is returned (which could indicate |
| * either success or failure). |
| * The user is responsible for freeing the PGresult via PQclear() |
| * when done with it. |
| */ |
| PGresult * |
| PQprepare(PGconn *conn, |
| const char *stmtName, const char *query, |
| int nParams, const Oid *paramTypes) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendPrepare(conn, stmtName, query, nParams, paramTypes)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * PQexecPrepared |
| * Like PQexec, but execute a previously prepared statement, |
| * using extended query protocol so we can pass parameters |
| */ |
| PGresult * |
| PQexecPrepared(PGconn *conn, |
| const char *stmtName, |
| int nParams, |
| const char *const *paramValues, |
| const int *paramLengths, |
| const int *paramFormats, |
| int resultFormat) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendQueryPrepared(conn, stmtName, |
| nParams, paramValues, paramLengths, |
| paramFormats, resultFormat)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * Common code for PQexec and sibling routines: prepare to send command |
| */ |
| static bool |
| PQexecStart(PGconn *conn) |
| { |
| PGresult *result; |
| |
| if (!conn) |
| return false; |
| |
| /* |
| * Since this is the beginning of a query cycle, reset the error state. |
| * However, in pipeline mode with something already queued, the error |
| * buffer belongs to that command and we shouldn't clear it. |
| */ |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "synchronous command execution functions are not allowed in pipeline mode"); |
| return false; |
| } |
| |
| /* |
| * Silently discard any prior query result that application didn't eat. |
| * This is probably poor design, but it's here for backward compatibility. |
| */ |
| while ((result = PQgetResult(conn)) != NULL) |
| { |
| ExecStatusType resultStatus = result->resultStatus; |
| |
| PQclear(result); /* only need its status */ |
| if (resultStatus == PGRES_COPY_IN) |
| { |
| /* get out of a COPY IN state */ |
| if (PQputCopyEnd(conn, |
| libpq_gettext("COPY terminated by new PQexec")) < 0) |
| return false; |
| /* keep waiting to swallow the copy's failure message */ |
| } |
| else if (resultStatus == PGRES_COPY_OUT) |
| { |
| /* |
| * Get out of a COPY OUT state: we just switch back to BUSY and |
| * allow the remaining COPY data to be dropped on the floor. |
| */ |
| conn->asyncStatus = PGASYNC_BUSY; |
| /* keep waiting to swallow the copy's completion message */ |
| } |
| else if (resultStatus == PGRES_COPY_BOTH) |
| { |
| /* We don't allow PQexec during COPY BOTH */ |
| libpq_append_conn_error(conn, "PQexec not allowed during COPY BOTH"); |
| return false; |
| } |
| /* check for loss of connection, too */ |
| if (conn->status == CONNECTION_BAD) |
| return false; |
| } |
| |
| /* OK to send a command */ |
| return true; |
| } |
| |
| /* |
| * Common code for PQexec and sibling routines: wait for command result |
| */ |
| static PGresult * |
| PQexecFinish(PGconn *conn) |
| { |
| PGresult *result; |
| PGresult *lastResult; |
| |
| /* |
| * For backwards compatibility, return the last result if there are more |
| * than one. (We used to have logic here to concatenate successive error |
| * messages, but now that happens automatically, since conn->errorMessage |
| * will continue to accumulate errors throughout this loop.) |
| * |
| * We have to stop if we see copy in/out/both, however. We will resume |
| * parsing after application performs the data transfer. |
| * |
| * Also stop if the connection is lost (else we'll loop infinitely). |
| */ |
| lastResult = NULL; |
| while ((result = PQgetResult(conn)) != NULL) |
| { |
| PQclear(lastResult); |
| lastResult = result; |
| if (result->resultStatus == PGRES_COPY_IN || |
| result->resultStatus == PGRES_COPY_OUT || |
| result->resultStatus == PGRES_COPY_BOTH || |
| conn->status == CONNECTION_BAD) |
| break; |
| } |
| |
| return lastResult; |
| } |
| |
| /* |
| * PQdescribePrepared |
| * Obtain information about a previously prepared statement |
| * |
| * If the query was not even sent, return NULL; conn->errorMessage is set to |
| * a relevant message. |
| * If the query was sent, a new PGresult is returned (which could indicate |
| * either success or failure). On success, the PGresult contains status |
| * PGRES_COMMAND_OK, and its parameter and column-heading fields describe |
| * the statement's inputs and outputs respectively. |
| * The user is responsible for freeing the PGresult via PQclear() |
| * when done with it. |
| */ |
| PGresult * |
| PQdescribePrepared(PGconn *conn, const char *stmt) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendDescribe(conn, 'S', stmt)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * PQdescribePortal |
| * Obtain information about a previously created portal |
| * |
| * This is much like PQdescribePrepared, except that no parameter info is |
| * returned. Note that at the moment, libpq doesn't really expose portals |
| * to the client; but this can be used with a portal created by a SQL |
| * DECLARE CURSOR command. |
| */ |
| PGresult * |
| PQdescribePortal(PGconn *conn, const char *portal) |
| { |
| if (!PQexecStart(conn)) |
| return NULL; |
| if (!PQsendDescribe(conn, 'P', portal)) |
| return NULL; |
| return PQexecFinish(conn); |
| } |
| |
| /* |
| * PQsendDescribePrepared |
| * Submit a Describe Statement command, but don't wait for it to finish |
| * |
| * Returns: 1 if successfully submitted |
| * 0 if error (conn->errorMessage is set) |
| */ |
| int |
| PQsendDescribePrepared(PGconn *conn, const char *stmt) |
| { |
| return PQsendDescribe(conn, 'S', stmt); |
| } |
| |
| /* |
| * PQsendDescribePortal |
| * Submit a Describe Portal command, but don't wait for it to finish |
| * |
| * Returns: 1 if successfully submitted |
| * 0 if error (conn->errorMessage is set) |
| */ |
| int |
| PQsendDescribePortal(PGconn *conn, const char *portal) |
| { |
| return PQsendDescribe(conn, 'P', portal); |
| } |
| |
| /* |
| * PQsendDescribe |
| * Common code to send a Describe command |
| * |
| * Available options for desc_type are |
| * 'S' to describe a prepared statement; or |
| * 'P' to describe a portal. |
| * Returns 1 on success and 0 on failure. |
| */ |
| static int |
| PQsendDescribe(PGconn *conn, char desc_type, const char *desc_target) |
| { |
| PGcmdQueueEntry *entry = NULL; |
| |
| /* Treat null desc_target as empty string */ |
| if (!desc_target) |
| desc_target = ""; |
| |
| if (!PQsendQueryStart(conn, true)) |
| return 0; |
| |
| entry = pqAllocCmdQueueEntry(conn); |
| if (entry == NULL) |
| return 0; /* error msg already set */ |
| |
| /* construct the Describe message */ |
| if (pqPutMsgStart('D', conn) < 0 || |
| pqPutc(desc_type, conn) < 0 || |
| pqPuts(desc_target, conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* construct the Sync message */ |
| if (conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| if (pqPutMsgStart('S', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| } |
| |
| /* remember we are doing a Describe */ |
| entry->queryclass = PGQUERY_DESCRIBE; |
| |
| /* |
| * Give the data a push (in pipeline mode, only if we're past the size |
| * threshold). In nonblock mode, don't complain if we're unable to send |
| * it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (pqPipelineFlush(conn) < 0) |
| goto sendFailed; |
| |
| /* OK, it's launched! */ |
| pqAppendCmdQueueEntry(conn, entry); |
| |
| return 1; |
| |
| sendFailed: |
| pqRecycleCmdQueueEntry(conn, entry); |
| /* error message should be set up already */ |
| return 0; |
| } |
| |
| /* |
| * PQnotifies |
| * returns a PGnotify* structure of the latest async notification |
| * that has not yet been handled |
| * |
| * returns NULL, if there is currently |
| * no unhandled async notification from the backend |
| * |
| * the CALLER is responsible for FREE'ing the structure returned |
| * |
| * Note that this function does not read any new data from the socket; |
| * so usually, caller should call PQconsumeInput() first. |
| */ |
| PGnotify * |
| PQnotifies(PGconn *conn) |
| { |
| PGnotify *event; |
| |
| if (!conn) |
| return NULL; |
| |
| /* Parse any available data to see if we can extract NOTIFY messages. */ |
| parseInput(conn); |
| |
| event = conn->notifyHead; |
| if (event) |
| { |
| conn->notifyHead = event->next; |
| if (!conn->notifyHead) |
| conn->notifyTail = NULL; |
| event->next = NULL; /* don't let app see the internal state */ |
| } |
| return event; |
| } |
| |
| /* |
| * PQputCopyData - send some data to the backend during COPY IN or COPY BOTH |
| * |
| * Returns 1 if successful, 0 if data could not be sent (only possible |
| * in nonblock mode), or -1 if an error occurs. |
| */ |
| int |
| PQputCopyData(PGconn *conn, const char *buffer, int nbytes) |
| { |
| if (!conn) |
| return -1; |
| if (conn->asyncStatus != PGASYNC_COPY_IN && |
| conn->asyncStatus != PGASYNC_COPY_BOTH) |
| { |
| libpq_append_conn_error(conn, "no COPY in progress"); |
| return -1; |
| } |
| |
| /* |
| * Process any NOTICE or NOTIFY messages that might be pending in the |
| * input buffer. Since the server might generate many notices during the |
| * COPY, we want to clean those out reasonably promptly to prevent |
| * indefinite expansion of the input buffer. (Note: the actual read of |
| * input data into the input buffer happens down inside pqSendSome, but |
| * it's not authorized to get rid of the data again.) |
| */ |
| parseInput(conn); |
| |
| if (nbytes > 0) |
| { |
| /* |
| * Try to flush any previously sent data in preference to growing the |
| * output buffer. If we can't enlarge the buffer enough to hold the |
| * data, return 0 in the nonblock case, else hard error. (For |
| * simplicity, always assume 5 bytes of overhead.) |
| */ |
| if ((conn->outBufSize - conn->outCount - 5) < nbytes) |
| { |
| if (pqFlush(conn) < 0) |
| return -1; |
| if (pqCheckOutBufferSpace(conn->outCount + 5 + (size_t) nbytes, |
| conn)) |
| return pqIsnonblocking(conn) ? 0 : -1; |
| } |
| /* Send the data (too simple to delegate to fe-protocol files) */ |
| if (pqPutMsgStart('d', conn) < 0 || |
| pqPutnchar(buffer, nbytes, conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| return -1; |
| } |
| return 1; |
| } |
| |
| /* |
| * PQputCopyEnd - send EOF indication to the backend during COPY IN |
| * |
| * After calling this, use PQgetResult() to check command completion status. |
| * |
| * Returns 1 if successful, 0 if data could not be sent (only possible |
| * in nonblock mode), or -1 if an error occurs. |
| */ |
| int |
| PQputCopyEnd(PGconn *conn, const char *errormsg) |
| { |
| if (!conn) |
| return -1; |
| if (conn->asyncStatus != PGASYNC_COPY_IN && |
| conn->asyncStatus != PGASYNC_COPY_BOTH) |
| { |
| libpq_append_conn_error(conn, "no COPY in progress"); |
| return -1; |
| } |
| |
| /* |
| * Send the COPY END indicator. This is simple enough that we don't |
| * bother delegating it to the fe-protocol files. |
| */ |
| if (errormsg) |
| { |
| /* Send COPY FAIL */ |
| if (pqPutMsgStart('f', conn) < 0 || |
| pqPuts(errormsg, conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| return -1; |
| } |
| else |
| { |
| /* Send COPY DONE */ |
| if (pqPutMsgStart('c', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| return -1; |
| } |
| |
| /* |
| * If we sent the COPY command in extended-query mode, we must issue a |
| * Sync as well. |
| */ |
| if (conn->cmd_queue_head && |
| conn->cmd_queue_head->queryclass != PGQUERY_SIMPLE) |
| { |
| if (pqPutMsgStart('S', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| return -1; |
| } |
| |
| /* Return to active duty */ |
| if (conn->asyncStatus == PGASYNC_COPY_BOTH) |
| conn->asyncStatus = PGASYNC_COPY_OUT; |
| else |
| conn->asyncStatus = PGASYNC_BUSY; |
| |
| /* Try to flush data */ |
| if (pqFlush(conn) < 0) |
| return -1; |
| |
| return 1; |
| } |
| |
| /* |
| * PQgetCopyData - read a row of data from the backend during COPY OUT |
| * or COPY BOTH |
| * |
| * If successful, sets *buffer to point to a malloc'd row of data, and |
| * returns row length (always > 0) as result. |
| * Returns 0 if no row available yet (only possible if async is true), |
| * -1 if end of copy (consult PQgetResult), or -2 if error (consult |
| * PQerrorMessage). |
| */ |
| int |
| PQgetCopyData(PGconn *conn, char **buffer, int async) |
| { |
| *buffer = NULL; /* for all failure cases */ |
| if (!conn) |
| return -2; |
| if (conn->asyncStatus != PGASYNC_COPY_OUT && |
| conn->asyncStatus != PGASYNC_COPY_BOTH) |
| { |
| libpq_append_conn_error(conn, "no COPY in progress"); |
| return -2; |
| } |
| return pqGetCopyData3(conn, buffer, async); |
| } |
| |
| /* |
| * PQgetline - gets a newline-terminated string from the backend. |
| * |
| * Chiefly here so that applications can use "COPY <rel> to stdout" |
| * and read the output string. Returns a null-terminated string in `buffer`. |
| * |
| * XXX this routine is now deprecated, because it can't handle binary data. |
| * If called during a COPY BINARY we return EOF. |
| * |
| * PQgetline reads up to `length`-1 characters (like fgets(3)) but strips |
| * the terminating \n (like gets(3)). |
| * |
| * CAUTION: the caller is responsible for detecting the end-of-copy signal |
| * (a line containing just "\.") when using this routine. |
| * |
| * RETURNS: |
| * EOF if error (eg, invalid arguments are given) |
| * 0 if EOL is reached (i.e., \n has been read) |
| * (this is required for backward-compatibility -- this |
| * routine used to always return EOF or 0, assuming that |
| * the line ended within `length` bytes.) |
| * 1 in other cases (i.e., the buffer was filled before \n is reached) |
| */ |
| int |
| PQgetline(PGconn *conn, char *buffer, int length) |
| { |
| if (!buffer || length <= 0) |
| return EOF; |
| *buffer = '\0'; |
| /* length must be at least 3 to hold the \. terminator! */ |
| if (length < 3) |
| return EOF; |
| |
| if (!conn) |
| return EOF; |
| |
| return pqGetline3(conn, buffer, length); |
| } |
| |
| /* |
| * PQgetlineAsync - gets a COPY data row without blocking. |
| * |
| * This routine is for applications that want to do "COPY <rel> to stdout" |
| * asynchronously, that is without blocking. Having issued the COPY command |
| * and gotten a PGRES_COPY_OUT response, the app should call PQconsumeInput |
| * and this routine until the end-of-data signal is detected. Unlike |
| * PQgetline, this routine takes responsibility for detecting end-of-data. |
| * |
| * On each call, PQgetlineAsync will return data if a complete data row |
| * is available in libpq's input buffer. Otherwise, no data is returned |
| * until the rest of the row arrives. |
| * |
| * If -1 is returned, the end-of-data signal has been recognized (and removed |
| * from libpq's input buffer). The caller *must* next call PQendcopy and |
| * then return to normal processing. |
| * |
| * RETURNS: |
| * -1 if the end-of-copy-data marker has been recognized |
| * 0 if no data is available |
| * >0 the number of bytes returned. |
| * |
| * The data returned will not extend beyond a data-row boundary. If possible |
| * a whole row will be returned at one time. But if the buffer offered by |
| * the caller is too small to hold a row sent by the backend, then a partial |
| * data row will be returned. In text mode this can be detected by testing |
| * whether the last returned byte is '\n' or not. |
| * |
| * The returned data is *not* null-terminated. |
| */ |
| |
| int |
| PQgetlineAsync(PGconn *conn, char *buffer, int bufsize) |
| { |
| if (!conn) |
| return -1; |
| |
| return pqGetlineAsync3(conn, buffer, bufsize); |
| } |
| |
| /* |
| * PQputline -- sends a string to the backend during COPY IN. |
| * Returns 0 if OK, EOF if not. |
| * |
| * This is deprecated primarily because the return convention doesn't allow |
| * caller to tell the difference between a hard error and a nonblock-mode |
| * send failure. |
| */ |
| int |
| PQputline(PGconn *conn, const char *string) |
| { |
| return PQputnbytes(conn, string, strlen(string)); |
| } |
| |
| /* |
| * PQputnbytes -- like PQputline, but buffer need not be null-terminated. |
| * Returns 0 if OK, EOF if not. |
| */ |
| int |
| PQputnbytes(PGconn *conn, const char *buffer, int nbytes) |
| { |
| if (PQputCopyData(conn, buffer, nbytes) > 0) |
| return 0; |
| else |
| return EOF; |
| } |
| |
| /* |
| * PQendcopy |
| * After completing the data transfer portion of a copy in/out, |
| * the application must call this routine to finish the command protocol. |
| * |
| * This is deprecated; it's cleaner to use PQgetResult to get the transfer |
| * status. |
| * |
| * RETURNS: |
| * 0 on success |
| * 1 on failure |
| */ |
| int |
| PQendcopy(PGconn *conn) |
| { |
| if (!conn) |
| return 0; |
| |
| return pqEndcopy3(conn); |
| } |
| |
| |
| /* ---------------- |
| * PQfn - Send a function call to the POSTGRES backend. |
| * |
| * conn : backend connection |
| * fnid : OID of function to be called |
| * result_buf : pointer to result buffer |
| * result_len : actual length of result is returned here |
| * result_is_int : If the result is an integer, this must be 1, |
| * otherwise this should be 0 |
| * args : pointer to an array of function arguments |
| * (each has length, if integer, and value/pointer) |
| * nargs : # of arguments in args array. |
| * |
| * RETURNS |
| * PGresult with status = PGRES_COMMAND_OK if successful. |
| * *result_len is > 0 if there is a return value, 0 if not. |
| * PGresult with status = PGRES_FATAL_ERROR if backend returns an error. |
| * NULL on communications failure. conn->errorMessage will be set. |
| * ---------------- |
| */ |
| |
| PGresult * |
| PQfn(PGconn *conn, |
| int fnid, |
| int *result_buf, |
| int *result_len, |
| int result_is_int, |
| const PQArgBlock *args, |
| int nargs) |
| { |
| *result_len = 0; |
| |
| if (!conn) |
| return NULL; |
| |
| /* |
| * Since this is the beginning of a query cycle, reset the error state. |
| * However, in pipeline mode with something already queued, the error |
| * buffer belongs to that command and we shouldn't clear it. |
| */ |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "%s not allowed in pipeline mode", "PQfn"); |
| return NULL; |
| } |
| |
| if (conn->sock == PGINVALID_SOCKET || conn->asyncStatus != PGASYNC_IDLE || |
| pgHavePendingResult(conn)) |
| { |
| libpq_append_conn_error(conn, "connection in wrong state"); |
| return NULL; |
| } |
| |
| return pqFunctionCall3(conn, fnid, |
| result_buf, result_len, |
| result_is_int, |
| args, nargs); |
| } |
| |
| /* ====== Pipeline mode support ======== */ |
| |
| /* |
| * PQenterPipelineMode |
| * Put an idle connection in pipeline mode. |
| * |
| * Returns 1 on success. On failure, errorMessage is set and 0 is returned. |
| * |
| * Commands submitted after this can be pipelined on the connection; |
| * there's no requirement to wait for one to finish before the next is |
| * dispatched. |
| * |
| * Queuing of a new query or syncing during COPY is not allowed. |
| * |
| * A set of commands is terminated by a PQpipelineSync. Multiple sync |
| * points can be established while in pipeline mode. Pipeline mode can |
| * be exited by calling PQexitPipelineMode() once all results are processed. |
| * |
| * This doesn't actually send anything on the wire, it just puts libpq |
| * into a state where it can pipeline work. |
| */ |
| int |
| PQenterPipelineMode(PGconn *conn) |
| { |
| if (!conn) |
| return 0; |
| |
| /* succeed with no action if already in pipeline mode */ |
| if (conn->pipelineStatus != PQ_PIPELINE_OFF) |
| return 1; |
| |
| if (conn->asyncStatus != PGASYNC_IDLE) |
| { |
| libpq_append_conn_error(conn, "cannot enter pipeline mode, connection not idle"); |
| return 0; |
| } |
| |
| conn->pipelineStatus = PQ_PIPELINE_ON; |
| |
| return 1; |
| } |
| |
| /* |
| * PQexitPipelineMode |
| * End pipeline mode and return to normal command mode. |
| * |
| * Returns 1 in success (pipeline mode successfully ended, or not in pipeline |
| * mode). |
| * |
| * Returns 0 if in pipeline mode and cannot be ended yet. Error message will |
| * be set. |
| */ |
| int |
| PQexitPipelineMode(PGconn *conn) |
| { |
| if (!conn) |
| return 0; |
| |
| if (conn->pipelineStatus == PQ_PIPELINE_OFF && |
| (conn->asyncStatus == PGASYNC_IDLE || |
| conn->asyncStatus == PGASYNC_PIPELINE_IDLE) && |
| conn->cmd_queue_head == NULL) |
| return 1; |
| |
| switch (conn->asyncStatus) |
| { |
| case PGASYNC_READY: |
| case PGASYNC_READY_MORE: |
| /* there are some uncollected results */ |
| libpq_append_conn_error(conn, "cannot exit pipeline mode with uncollected results"); |
| return 0; |
| |
| case PGASYNC_BUSY: |
| libpq_append_conn_error(conn, "cannot exit pipeline mode while busy"); |
| return 0; |
| |
| case PGASYNC_IDLE: |
| case PGASYNC_PIPELINE_IDLE: |
| /* OK */ |
| break; |
| |
| case PGASYNC_COPY_IN: |
| case PGASYNC_COPY_OUT: |
| case PGASYNC_COPY_BOTH: |
| libpq_append_conn_error(conn, "cannot exit pipeline mode while in COPY"); |
| } |
| |
| /* still work to process */ |
| if (conn->cmd_queue_head != NULL) |
| { |
| libpq_append_conn_error(conn, "cannot exit pipeline mode with uncollected results"); |
| return 0; |
| } |
| |
| conn->pipelineStatus = PQ_PIPELINE_OFF; |
| conn->asyncStatus = PGASYNC_IDLE; |
| |
| /* Flush any pending data in out buffer */ |
| if (pqFlush(conn) < 0) |
| return 0; /* error message is setup already */ |
| return 1; |
| } |
| |
| /* |
| * pqCommandQueueAdvance |
| * Remove one query from the command queue, if appropriate. |
| * |
| * If we have received all results corresponding to the head element |
| * in the command queue, remove it. |
| * |
| * In simple query protocol we must not advance the command queue until the |
| * ReadyForQuery message has been received. This is because in simple mode a |
| * command can have multiple queries, and we must process result for all of |
| * them before moving on to the next command. |
| * |
| * Another consideration is synchronization during error processing in |
| * extended query protocol: we refuse to advance the queue past a SYNC queue |
| * element, unless the result we've received is also a SYNC. In particular |
| * this protects us from advancing when an error is received at an |
| * inappropriate moment. |
| */ |
| void |
| pqCommandQueueAdvance(PGconn *conn, bool isReadyForQuery, bool gotSync) |
| { |
| PGcmdQueueEntry *prevquery; |
| |
| if (conn->cmd_queue_head == NULL) |
| return; |
| |
| /* |
| * If processing a query of simple query protocol, we only advance the |
| * queue when we receive the ReadyForQuery message for it. |
| */ |
| if (conn->cmd_queue_head->queryclass == PGQUERY_SIMPLE && !isReadyForQuery) |
| return; |
| |
| /* |
| * If we're waiting for a SYNC, don't advance the queue until we get one. |
| */ |
| if (conn->cmd_queue_head->queryclass == PGQUERY_SYNC && !gotSync) |
| return; |
| |
| /* delink element from queue */ |
| prevquery = conn->cmd_queue_head; |
| conn->cmd_queue_head = conn->cmd_queue_head->next; |
| |
| /* If the queue is now empty, reset the tail too */ |
| if (conn->cmd_queue_head == NULL) |
| conn->cmd_queue_tail = NULL; |
| |
| /* and make the queue element recyclable */ |
| prevquery->next = NULL; |
| pqRecycleCmdQueueEntry(conn, prevquery); |
| } |
| |
| /* |
| * pqPipelineProcessQueue: subroutine for PQgetResult |
| * In pipeline mode, start processing the results of the next query in the queue. |
| */ |
| static void |
| pqPipelineProcessQueue(PGconn *conn) |
| { |
| switch (conn->asyncStatus) |
| { |
| case PGASYNC_COPY_IN: |
| case PGASYNC_COPY_OUT: |
| case PGASYNC_COPY_BOTH: |
| case PGASYNC_READY: |
| case PGASYNC_READY_MORE: |
| case PGASYNC_BUSY: |
| /* client still has to process current query or results */ |
| return; |
| |
| case PGASYNC_IDLE: |
| |
| /* |
| * If we're in IDLE mode and there's some command in the queue, |
| * get us into PIPELINE_IDLE mode and process normally. Otherwise |
| * there's nothing for us to do. |
| */ |
| if (conn->cmd_queue_head != NULL) |
| { |
| conn->asyncStatus = PGASYNC_PIPELINE_IDLE; |
| break; |
| } |
| return; |
| |
| case PGASYNC_PIPELINE_IDLE: |
| Assert(conn->pipelineStatus != PQ_PIPELINE_OFF); |
| /* next query please */ |
| break; |
| } |
| |
| /* |
| * Reset single-row processing mode. (Client has to set it up for each |
| * query, if desired.) |
| */ |
| conn->singleRowMode = false; |
| |
| /* |
| * If there are no further commands to process in the queue, get us in |
| * "real idle" mode now. |
| */ |
| if (conn->cmd_queue_head == NULL) |
| { |
| conn->asyncStatus = PGASYNC_IDLE; |
| return; |
| } |
| |
| /* |
| * Reset the error state. This and the next couple of steps correspond to |
| * what PQsendQueryStart didn't do for this query. |
| */ |
| pqClearConnErrorState(conn); |
| |
| /* Initialize async result-accumulation state */ |
| pqClearAsyncResult(conn); |
| |
| if (conn->pipelineStatus == PQ_PIPELINE_ABORTED && |
| conn->cmd_queue_head->queryclass != PGQUERY_SYNC) |
| { |
| /* |
| * In an aborted pipeline we don't get anything from the server for |
| * each result; we're just discarding commands from the queue until we |
| * get to the next sync from the server. |
| * |
| * The PGRES_PIPELINE_ABORTED results tell the client that its queries |
| * got aborted. |
| */ |
| conn->result = PQmakeEmptyPGresult(conn, PGRES_PIPELINE_ABORTED); |
| if (!conn->result) |
| { |
| libpq_append_conn_error(conn, "out of memory"); |
| pqSaveErrorResult(conn); |
| return; |
| } |
| conn->asyncStatus = PGASYNC_READY; |
| } |
| else |
| { |
| /* allow parsing to continue */ |
| conn->asyncStatus = PGASYNC_BUSY; |
| } |
| } |
| |
| /* |
| * PQpipelineSync |
| * Send a Sync message as part of a pipeline, and flush to server |
| * |
| * It's legal to start submitting more commands in the pipeline immediately, |
| * without waiting for the results of the current pipeline. There's no need to |
| * end pipeline mode and start it again. |
| * |
| * If a command in a pipeline fails, every subsequent command up to and including |
| * the result to the Sync message sent by PQpipelineSync gets set to |
| * PGRES_PIPELINE_ABORTED state. If the whole pipeline is processed without |
| * error, a PGresult with PGRES_PIPELINE_SYNC is produced. |
| * |
| * Queries can already have been sent before PQpipelineSync is called, but |
| * PQpipelineSync need to be called before retrieving command results. |
| * |
| * The connection will remain in pipeline mode and unavailable for new |
| * synchronous command execution functions until all results from the pipeline |
| * are processed by the client. |
| */ |
| int |
| PQpipelineSync(PGconn *conn) |
| { |
| PGcmdQueueEntry *entry; |
| |
| if (!conn) |
| return 0; |
| |
| if (conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "cannot send pipeline when not in pipeline mode"); |
| return 0; |
| } |
| |
| switch (conn->asyncStatus) |
| { |
| case PGASYNC_COPY_IN: |
| case PGASYNC_COPY_OUT: |
| case PGASYNC_COPY_BOTH: |
| /* should be unreachable */ |
| appendPQExpBufferStr(&conn->errorMessage, |
| "internal error: cannot send pipeline while in COPY\n"); |
| return 0; |
| case PGASYNC_READY: |
| case PGASYNC_READY_MORE: |
| case PGASYNC_BUSY: |
| case PGASYNC_IDLE: |
| case PGASYNC_PIPELINE_IDLE: |
| /* OK to send sync */ |
| break; |
| } |
| |
| entry = pqAllocCmdQueueEntry(conn); |
| if (entry == NULL) |
| return 0; /* error msg already set */ |
| |
| entry->queryclass = PGQUERY_SYNC; |
| entry->query = NULL; |
| |
| /* construct the Sync message */ |
| if (pqPutMsgStart('S', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| goto sendFailed; |
| |
| /* |
| * Give the data a push. In nonblock mode, don't complain if we're unable |
| * to send it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (PQflush(conn) < 0) |
| goto sendFailed; |
| |
| /* OK, it's launched! */ |
| pqAppendCmdQueueEntry(conn, entry); |
| |
| return 1; |
| |
| sendFailed: |
| pqRecycleCmdQueueEntry(conn, entry); |
| /* error message should be set up already */ |
| return 0; |
| } |
| |
| /* |
| * PQsendFlushRequest |
| * Send request for server to flush its buffer. Useful in pipeline |
| * mode when a sync point is not desired. |
| */ |
| int |
| PQsendFlushRequest(PGconn *conn) |
| { |
| if (!conn) |
| return 0; |
| |
| /* Don't try to send if we know there's no live connection. */ |
| if (conn->status != CONNECTION_OK) |
| { |
| libpq_append_conn_error(conn, "no connection to the server"); |
| return 0; |
| } |
| |
| /* Can't send while already busy, either, unless enqueuing for later */ |
| if (conn->asyncStatus != PGASYNC_IDLE && |
| conn->pipelineStatus == PQ_PIPELINE_OFF) |
| { |
| libpq_append_conn_error(conn, "another command is already in progress"); |
| return 0; |
| } |
| |
| if (pqPutMsgStart('H', conn) < 0 || |
| pqPutMsgEnd(conn) < 0) |
| { |
| return 0; |
| } |
| |
| /* |
| * Give the data a push (in pipeline mode, only if we're past the size |
| * threshold). In nonblock mode, don't complain if we're unable to send |
| * it all; PQgetResult() will do any additional flushing needed. |
| */ |
| if (pqPipelineFlush(conn) < 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* ====== accessor funcs for PGresult ======== */ |
| |
| ExecStatusType |
| PQresultStatus(const PGresult *res) |
| { |
| if (!res) |
| return PGRES_FATAL_ERROR; |
| return res->resultStatus; |
| } |
| |
| char * |
| PQresStatus(ExecStatusType status) |
| { |
| if ((unsigned int) status >= lengthof(pgresStatus)) |
| return libpq_gettext("invalid ExecStatusType code"); |
| return pgresStatus[status]; |
| } |
| |
| char * |
| PQresultErrorMessage(const PGresult *res) |
| { |
| if (!res || !res->errMsg) |
| return ""; |
| return res->errMsg; |
| } |
| |
| char * |
| PQresultVerboseErrorMessage(const PGresult *res, |
| PGVerbosity verbosity, |
| PGContextVisibility show_context) |
| { |
| PQExpBufferData workBuf; |
| |
| /* |
| * Because the caller is expected to free the result string, we must |
| * strdup any constant result. We use plain strdup and document that |
| * callers should expect NULL if out-of-memory. |
| */ |
| if (!res || |
| (res->resultStatus != PGRES_FATAL_ERROR && |
| res->resultStatus != PGRES_NONFATAL_ERROR)) |
| return strdup(libpq_gettext("PGresult is not an error result\n")); |
| |
| initPQExpBuffer(&workBuf); |
| |
| pqBuildErrorMessage3(&workBuf, res, verbosity, show_context); |
| |
| /* If insufficient memory to format the message, fail cleanly */ |
| if (PQExpBufferDataBroken(workBuf)) |
| { |
| termPQExpBuffer(&workBuf); |
| return strdup(libpq_gettext("out of memory\n")); |
| } |
| |
| return workBuf.data; |
| } |
| |
| char * |
| PQresultErrorField(const PGresult *res, int fieldcode) |
| { |
| PGMessageField *pfield; |
| |
| if (!res) |
| return NULL; |
| for (pfield = res->errFields; pfield != NULL; pfield = pfield->next) |
| { |
| if (pfield->code == fieldcode) |
| return pfield->contents; |
| } |
| return NULL; |
| } |
| |
| int |
| PQntuples(const PGresult *res) |
| { |
| if (!res) |
| return 0; |
| return res->ntups; |
| } |
| |
| int |
| PQnfields(const PGresult *res) |
| { |
| if (!res) |
| return 0; |
| return res->numAttributes; |
| } |
| |
| int |
| PQbinaryTuples(const PGresult *res) |
| { |
| if (!res) |
| return 0; |
| return res->binary; |
| } |
| |
| /* |
| * Helper routines to range-check field numbers and tuple numbers. |
| * Return true if OK, false if not |
| */ |
| |
| static int |
| check_field_number(const PGresult *res, int field_num) |
| { |
| if (!res) |
| return false; /* no way to display error message... */ |
| if (field_num < 0 || field_num >= res->numAttributes) |
| { |
| pqInternalNotice(&res->noticeHooks, |
| "column number %d is out of range 0..%d", |
| field_num, res->numAttributes - 1); |
| return false; |
| } |
| return true; |
| } |
| |
| static int |
| check_tuple_field_number(const PGresult *res, |
| int tup_num, int field_num) |
| { |
| if (!res) |
| return false; /* no way to display error message... */ |
| if (tup_num < 0 || tup_num >= res->ntups) |
| { |
| pqInternalNotice(&res->noticeHooks, |
| "row number %d is out of range 0..%d", |
| tup_num, res->ntups - 1); |
| return false; |
| } |
| if (field_num < 0 || field_num >= res->numAttributes) |
| { |
| pqInternalNotice(&res->noticeHooks, |
| "column number %d is out of range 0..%d", |
| field_num, res->numAttributes - 1); |
| return false; |
| } |
| return true; |
| } |
| |
| static int |
| check_param_number(const PGresult *res, int param_num) |
| { |
| if (!res) |
| return false; /* no way to display error message... */ |
| if (param_num < 0 || param_num >= res->numParameters) |
| { |
| pqInternalNotice(&res->noticeHooks, |
| "parameter number %d is out of range 0..%d", |
| param_num, res->numParameters - 1); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * returns NULL if the field_num is invalid |
| */ |
| char * |
| PQfname(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return NULL; |
| if (res->attDescs) |
| return res->attDescs[field_num].name; |
| else |
| return NULL; |
| } |
| |
| /* |
| * PQfnumber: find column number given column name |
| * |
| * The column name is parsed as if it were in a SQL statement, including |
| * case-folding and double-quote processing. But note a possible gotcha: |
| * downcasing in the frontend might follow different locale rules than |
| * downcasing in the backend... |
| * |
| * Returns -1 if no match. In the present backend it is also possible |
| * to have multiple matches, in which case the first one is found. |
| */ |
| int |
| PQfnumber(const PGresult *res, const char *field_name) |
| { |
| char *field_case; |
| bool in_quotes; |
| bool all_lower = true; |
| const char *iptr; |
| char *optr; |
| int i; |
| |
| if (!res) |
| return -1; |
| |
| /* |
| * Note: it is correct to reject a zero-length input string; the proper |
| * input to match a zero-length field name would be "". |
| */ |
| if (field_name == NULL || |
| field_name[0] == '\0' || |
| res->attDescs == NULL) |
| return -1; |
| |
| /* |
| * Check if we can avoid the strdup() and related work because the |
| * passed-in string wouldn't be changed before we do the check anyway. |
| */ |
| for (iptr = field_name; *iptr; iptr++) |
| { |
| char c = *iptr; |
| |
| if (c == '"' || c != pg_tolower((unsigned char) c)) |
| { |
| all_lower = false; |
| break; |
| } |
| } |
| |
| if (all_lower) |
| for (i = 0; i < res->numAttributes; i++) |
| if (strcmp(field_name, res->attDescs[i].name) == 0) |
| return i; |
| |
| /* Fall through to the normal check if that didn't work out. */ |
| |
| /* |
| * Note: this code will not reject partially quoted strings, eg |
| * foo"BAR"foo will become fooBARfoo when it probably ought to be an error |
| * condition. |
| */ |
| field_case = strdup(field_name); |
| if (field_case == NULL) |
| return -1; /* grotty */ |
| |
| in_quotes = false; |
| optr = field_case; |
| for (iptr = field_case; *iptr; iptr++) |
| { |
| char c = *iptr; |
| |
| if (in_quotes) |
| { |
| if (c == '"') |
| { |
| if (iptr[1] == '"') |
| { |
| /* doubled quotes become a single quote */ |
| *optr++ = '"'; |
| iptr++; |
| } |
| else |
| in_quotes = false; |
| } |
| else |
| *optr++ = c; |
| } |
| else if (c == '"') |
| in_quotes = true; |
| else |
| { |
| c = pg_tolower((unsigned char) c); |
| *optr++ = c; |
| } |
| } |
| *optr = '\0'; |
| |
| for (i = 0; i < res->numAttributes; i++) |
| { |
| if (strcmp(field_case, res->attDescs[i].name) == 0) |
| { |
| free(field_case); |
| return i; |
| } |
| } |
| free(field_case); |
| return -1; |
| } |
| |
| Oid |
| PQftable(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return InvalidOid; |
| if (res->attDescs) |
| return res->attDescs[field_num].tableid; |
| else |
| return InvalidOid; |
| } |
| |
| int |
| PQftablecol(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return 0; |
| if (res->attDescs) |
| return res->attDescs[field_num].columnid; |
| else |
| return 0; |
| } |
| |
| int |
| PQfformat(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return 0; |
| if (res->attDescs) |
| return res->attDescs[field_num].format; |
| else |
| return 0; |
| } |
| |
| Oid |
| PQftype(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return InvalidOid; |
| if (res->attDescs) |
| return res->attDescs[field_num].typid; |
| else |
| return InvalidOid; |
| } |
| |
| int |
| PQfsize(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return 0; |
| if (res->attDescs) |
| return res->attDescs[field_num].typlen; |
| else |
| return 0; |
| } |
| |
| int |
| PQfmod(const PGresult *res, int field_num) |
| { |
| if (!check_field_number(res, field_num)) |
| return 0; |
| if (res->attDescs) |
| return res->attDescs[field_num].atttypmod; |
| else |
| return 0; |
| } |
| |
| char * |
| PQcmdStatus(PGresult *res) |
| { |
| if (!res) |
| return NULL; |
| return res->cmdStatus; |
| } |
| |
| /* |
| * PQoidStatus - |
| * if the last command was an INSERT, return the oid string |
| * if not, return "" |
| */ |
| char * |
| PQoidStatus(const PGresult *res) |
| { |
| /* |
| * This must be enough to hold the result. Don't laugh, this is better |
| * than what this function used to do. |
| */ |
| static char buf[24]; |
| |
| size_t len; |
| |
| if (!res || strncmp(res->cmdStatus, "INSERT ", 7) != 0) |
| return ""; |
| |
| len = strspn(res->cmdStatus + 7, "0123456789"); |
| if (len > sizeof(buf) - 1) |
| len = sizeof(buf) - 1; |
| memcpy(buf, res->cmdStatus + 7, len); |
| buf[len] = '\0'; |
| |
| return buf; |
| } |
| |
| /* |
| * PQoidValue - |
| * a perhaps preferable form of the above which just returns |
| * an Oid type |
| */ |
| Oid |
| PQoidValue(const PGresult *res) |
| { |
| char *endptr = NULL; |
| unsigned long result; |
| |
| if (!res || |
| strncmp(res->cmdStatus, "INSERT ", 7) != 0 || |
| res->cmdStatus[7] < '0' || |
| res->cmdStatus[7] > '9') |
| return InvalidOid; |
| |
| result = strtoul(res->cmdStatus + 7, &endptr, 10); |
| |
| if (!endptr || (*endptr != ' ' && *endptr != '\0')) |
| return InvalidOid; |
| else |
| return (Oid) result; |
| } |
| |
| |
| /* |
| * PQcmdTuples - |
| * If the last command was INSERT/UPDATE/DELETE/MERGE/MOVE/FETCH/COPY, |
| * return a string containing the number of inserted/affected tuples. |
| * If not, return "". |
| * |
| * XXX: this should probably return an int |
| */ |
| char * |
| PQcmdTuples(PGresult *res) |
| { |
| char *p, |
| *c; |
| |
| if (!res) |
| return ""; |
| |
| if (strncmp(res->cmdStatus, "INSERT ", 7) == 0) |
| { |
| p = res->cmdStatus + 7; |
| /* INSERT: skip oid and space */ |
| while (*p && *p != ' ') |
| p++; |
| if (*p == 0) |
| goto interpret_error; /* no space? */ |
| p++; |
| } |
| else if (strncmp(res->cmdStatus, "SELECT ", 7) == 0 || |
| strncmp(res->cmdStatus, "DELETE ", 7) == 0 || |
| strncmp(res->cmdStatus, "UPDATE ", 7) == 0) |
| p = res->cmdStatus + 7; |
| else if (strncmp(res->cmdStatus, "FETCH ", 6) == 0 || |
| strncmp(res->cmdStatus, "MERGE ", 6) == 0) |
| p = res->cmdStatus + 6; |
| else if (strncmp(res->cmdStatus, "MOVE ", 5) == 0 || |
| strncmp(res->cmdStatus, "COPY ", 5) == 0) |
| p = res->cmdStatus + 5; |
| else |
| return ""; |
| |
| /* check that we have an integer (at least one digit, nothing else) */ |
| for (c = p; *c; c++) |
| { |
| if (!isdigit((unsigned char) *c)) |
| goto interpret_error; |
| } |
| if (c == p) |
| goto interpret_error; |
| |
| return p; |
| |
| interpret_error: |
| pqInternalNotice(&res->noticeHooks, |
| "could not interpret result from server: %s", |
| res->cmdStatus); |
| return ""; |
| } |
| |
| /* |
| * PQgetvalue: |
| * return the value of field 'field_num' of row 'tup_num' |
| */ |
| char * |
| PQgetvalue(const PGresult *res, int tup_num, int field_num) |
| { |
| if (!check_tuple_field_number(res, tup_num, field_num)) |
| return NULL; |
| return res->tuples[tup_num][field_num].value; |
| } |
| |
| /* PQgetlength: |
| * returns the actual length of a field value in bytes. |
| */ |
| int |
| PQgetlength(const PGresult *res, int tup_num, int field_num) |
| { |
| if (!check_tuple_field_number(res, tup_num, field_num)) |
| return 0; |
| if (res->tuples[tup_num][field_num].len != NULL_LEN) |
| return res->tuples[tup_num][field_num].len; |
| else |
| return 0; |
| } |
| |
| /* PQgetisnull: |
| * returns the null status of a field value. |
| */ |
| int |
| PQgetisnull(const PGresult *res, int tup_num, int field_num) |
| { |
| if (!check_tuple_field_number(res, tup_num, field_num)) |
| return 1; /* pretend it is null */ |
| if (res->tuples[tup_num][field_num].len == NULL_LEN) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* PQnparams: |
| * returns the number of input parameters of a prepared statement. |
| */ |
| int |
| PQnparams(const PGresult *res) |
| { |
| if (!res) |
| return 0; |
| return res->numParameters; |
| } |
| |
| /* PQparamtype: |
| * returns type Oid of the specified statement parameter. |
| */ |
| Oid |
| PQparamtype(const PGresult *res, int param_num) |
| { |
| if (!check_param_number(res, param_num)) |
| return InvalidOid; |
| if (res->paramDescs) |
| return res->paramDescs[param_num].typid; |
| else |
| return InvalidOid; |
| } |
| |
| |
| /* PQsetnonblocking: |
| * sets the PGconn's database connection non-blocking if the arg is true |
| * or makes it blocking if the arg is false, this will not protect |
| * you from PQexec(), you'll only be safe when using the non-blocking API. |
| * Needs to be called only on a connected database connection. |
| */ |
| int |
| PQsetnonblocking(PGconn *conn, int arg) |
| { |
| bool barg; |
| |
| if (!conn || conn->status == CONNECTION_BAD) |
| return -1; |
| |
| barg = (arg ? true : false); |
| |
| /* early out if the socket is already in the state requested */ |
| if (barg == conn->nonblocking) |
| return 0; |
| |
| /* |
| * to guarantee constancy for flushing/query/result-polling behavior we |
| * need to flush the send queue at this point in order to guarantee proper |
| * behavior. this is ok because either they are making a transition _from_ |
| * or _to_ blocking mode, either way we can block them. |
| * |
| * Clear error state in case pqFlush adds to it, unless we're actively |
| * pipelining, in which case it seems best not to. |
| */ |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| /* if we are going from blocking to non-blocking flush here */ |
| if (pqFlush(conn)) |
| return -1; |
| |
| conn->nonblocking = barg; |
| |
| return 0; |
| } |
| |
| /* |
| * return the blocking status of the database connection |
| * true == nonblocking, false == blocking |
| */ |
| int |
| PQisnonblocking(const PGconn *conn) |
| { |
| if (!conn || conn->status == CONNECTION_BAD) |
| return false; |
| return pqIsnonblocking(conn); |
| } |
| |
| /* libpq is thread-safe? */ |
| int |
| PQisthreadsafe(void) |
| { |
| #ifdef ENABLE_THREAD_SAFETY |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| |
| /* try to force data out, really only useful for non-blocking users */ |
| int |
| PQflush(PGconn *conn) |
| { |
| if (!conn || conn->status == CONNECTION_BAD) |
| return -1; |
| return pqFlush(conn); |
| } |
| |
| /* |
| * pqPipelineFlush |
| * |
| * In pipeline mode, data will be flushed only when the out buffer reaches the |
| * threshold value. In non-pipeline mode, it behaves as stock pqFlush. |
| * |
| * Returns 0 on success. |
| */ |
| static int |
| pqPipelineFlush(PGconn *conn) |
| { |
| if ((conn->pipelineStatus != PQ_PIPELINE_ON) || |
| (conn->outCount >= OUTBUFFER_THRESHOLD)) |
| return pqFlush(conn); |
| return 0; |
| } |
| |
| |
| /* |
| * PQfreemem - safely frees memory allocated |
| * |
| * Needed mostly by Win32, unless multithreaded DLL (/MD in VC6) |
| * Used for freeing memory from PQescapeBytea()/PQunescapeBytea() |
| */ |
| void |
| PQfreemem(void *ptr) |
| { |
| free(ptr); |
| } |
| |
| /* |
| * PQfreeNotify - free's the memory associated with a PGnotify |
| * |
| * This function is here only for binary backward compatibility. |
| * New code should use PQfreemem(). A macro will automatically map |
| * calls to PQfreemem. It should be removed in the future. bjm 2003-03-24 |
| */ |
| |
| #undef PQfreeNotify |
| void PQfreeNotify(PGnotify *notify); |
| |
| void |
| PQfreeNotify(PGnotify *notify) |
| { |
| PQfreemem(notify); |
| } |
| |
| |
| /* |
| * Escaping arbitrary strings to get valid SQL literal strings. |
| * |
| * Replaces "'" with "''", and if not std_strings, replaces "\" with "\\". |
| * |
| * length is the length of the source string. (Note: if a terminating NUL |
| * is encountered sooner, PQescapeString stops short of "length"; the behavior |
| * is thus rather like strncpy.) |
| * |
| * For safety the buffer at "to" must be at least 2*length + 1 bytes long. |
| * A terminating NUL character is added to the output string, whether the |
| * input is NUL-terminated or not. |
| * |
| * Returns the actual length of the output (not counting the terminating NUL). |
| */ |
| static size_t |
| PQescapeStringInternal(PGconn *conn, |
| char *to, const char *from, size_t length, |
| int *error, |
| int encoding, bool std_strings) |
| { |
| const char *source = from; |
| char *target = to; |
| size_t remaining = strnlen(from, length); |
| |
| if (error) |
| *error = 0; |
| |
| while (remaining > 0) |
| { |
| char c = *source; |
| int charlen; |
| int i; |
| |
| /* Fast path for plain ASCII */ |
| if (!IS_HIGHBIT_SET(c)) |
| { |
| /* Apply quoting if needed */ |
| if (SQL_STR_DOUBLE(c, !std_strings)) |
| *target++ = c; |
| /* Copy the character */ |
| *target++ = c; |
| source++; |
| remaining--; |
| continue; |
| } |
| |
| /* Slow path for possible multibyte characters */ |
| charlen = pg_encoding_mblen(encoding, source); |
| |
| if (remaining < charlen) |
| { |
| /* |
| * If the character is longer than the available input, report an |
| * error if possible, and replace the string with an invalid |
| * sequence. The invalid sequence ensures that the escaped string |
| * will trigger an error on the server-side, even if we can't |
| * directly report an error here. |
| * |
| * This isn't *that* crucial when we can report an error to the |
| * caller, but if we can't, the caller will use this string |
| * unmodified and it needs to be safe for parsing. |
| * |
| * We know there's enough space for the invalid sequence because |
| * the "to" buffer needs to be at least 2 * length + 1 long, and |
| * at worst we're replacing a single input byte with two invalid |
| * bytes. |
| */ |
| if (error) |
| *error = 1; |
| if (conn) |
| appendPQExpBufferStr(&conn->errorMessage, |
| libpq_gettext("incomplete multibyte character\n")); |
| |
| pg_encoding_set_invalid(encoding, target); |
| target += 2; |
| |
| /* there's no more input data, so we can stop */ |
| break; |
| } |
| else if (pg_encoding_verifymbchar(encoding, source, charlen) == -1) |
| { |
| /* |
| * Multibyte character is invalid. It's important to verify that |
| * as invalid multi-byte characters could e.g. be used to "skip" |
| * over quote characters, e.g. when parsing |
| * character-by-character. |
| * |
| * Replace the bytes corresponding to the invalid character with |
| * an invalid sequence, for the same reason as above. |
| * |
| * It would be a bit faster to verify the whole string the first |
| * time we encounter a set highbit, but this way we can replace |
| * just the invalid characters, which probably makes it easier for |
| * users to find the invalidly encoded portion of a larger string. |
| */ |
| if (error) |
| *error = 1; |
| if (conn) |
| appendPQExpBufferStr(&conn->errorMessage, |
| libpq_gettext("invalid multibyte character\n")); |
| |
| pg_encoding_set_invalid(encoding, target); |
| target += 2; |
| remaining -= charlen; |
| |
| /* |
| * Copy the rest of the string after the invalid multi-byte |
| * character. |
| */ |
| source += charlen; |
| } |
| else |
| { |
| /* Copy the character */ |
| for (i = 0; i < charlen; i++) |
| { |
| *target++ = *source++; |
| remaining--; |
| } |
| } |
| } |
| |
| /* Write the terminating NUL character. */ |
| *target = '\0'; |
| |
| return target - to; |
| } |
| |
| size_t |
| PQescapeStringConn(PGconn *conn, |
| char *to, const char *from, size_t length, |
| int *error) |
| { |
| if (!conn) |
| { |
| /* force empty-string result */ |
| *to = '\0'; |
| if (error) |
| *error = 1; |
| return 0; |
| } |
| |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| return PQescapeStringInternal(conn, to, from, length, error, |
| conn->client_encoding, |
| conn->std_strings); |
| } |
| |
| size_t |
| PQescapeString(char *to, const char *from, size_t length) |
| { |
| return PQescapeStringInternal(NULL, to, from, length, NULL, |
| static_client_encoding, |
| static_std_strings); |
| } |
| |
| |
| /* |
| * Escape arbitrary strings. If as_ident is true, we escape the result |
| * as an identifier; if false, as a literal. The result is returned in |
| * a newly allocated buffer. If we fail due to an encoding violation or out |
| * of memory condition, we return NULL, storing an error message into conn. |
| */ |
| static char * |
| PQescapeInternal(PGconn *conn, const char *str, size_t len, bool as_ident) |
| { |
| const char *s; |
| char *result; |
| char *rp; |
| int num_quotes = 0; /* single or double, depending on as_ident */ |
| int num_backslashes = 0; |
| size_t input_len = strlen(str); |
| size_t result_size; |
| char quote_char = as_ident ? '"' : '\''; |
| bool validated_mb = false; |
| |
| /* We must have a connection, else fail immediately. */ |
| if (!conn) |
| return NULL; |
| |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| /* |
| * Scan the string for characters that must be escaped and for invalidly |
| * encoded data. |
| */ |
| s = str; |
| for (size_t remaining = input_len; remaining > 0; remaining--, s++) |
| { |
| if (*s == quote_char) |
| ++num_quotes; |
| else if (*s == '\\') |
| ++num_backslashes; |
| else if (IS_HIGHBIT_SET(*s)) |
| { |
| int charlen; |
| |
| /* Slow path for possible multibyte characters */ |
| charlen = pg_encoding_mblen_or_incomplete(conn->client_encoding, |
| s, remaining); |
| |
| if (charlen > remaining) |
| { |
| /* Multibyte character overruns allowable length. */ |
| libpq_append_conn_error(conn, "incomplete multibyte character"); |
| return NULL; |
| } |
| |
| /* |
| * If we haven't already, check that multibyte characters are |
| * valid. It's important to verify that as invalid multi-byte |
| * characters could e.g. be used to "skip" over quote characters, |
| * e.g. when parsing character-by-character. |
| * |
| * We check validity once, for the whole remainder of the string, |
| * when we first encounter any multi-byte character. Some |
| * encodings have optimized implementations for longer strings. |
| */ |
| if (!validated_mb) |
| { |
| if (pg_encoding_verifymbstr(conn->client_encoding, s, remaining) |
| != strlen(s)) |
| { |
| libpq_append_conn_error(conn, "invalid multibyte character"); |
| return NULL; |
| } |
| validated_mb = true; |
| } |
| |
| /* Adjust s, bearing in mind that for loop will increment it. */ |
| s += charlen - 1; |
| remaining -= charlen - 1; |
| } |
| } |
| |
| /* Allocate output buffer. */ |
| result_size = input_len + num_quotes + 3; /* two quotes, plus a NUL */ |
| if (!as_ident && num_backslashes > 0) |
| result_size += num_backslashes + 2; |
| result = rp = (char *) malloc(result_size); |
| if (rp == NULL) |
| { |
| libpq_append_conn_error(conn, "out of memory"); |
| return NULL; |
| } |
| |
| /* |
| * If we are escaping a literal that contains backslashes, we use the |
| * escape string syntax so that the result is correct under either value |
| * of standard_conforming_strings. We also emit a leading space in this |
| * case, to guard against the possibility that the result might be |
| * interpolated immediately following an identifier. |
| */ |
| if (!as_ident && num_backslashes > 0) |
| { |
| *rp++ = ' '; |
| *rp++ = 'E'; |
| } |
| |
| /* Opening quote. */ |
| *rp++ = quote_char; |
| |
| /* |
| * Use fast path if possible. |
| * |
| * We've already verified that the input string is well-formed in the |
| * current encoding. If it contains no quotes and, in the case of |
| * literal-escaping, no backslashes, then we can just copy it directly to |
| * the output buffer, adding the necessary quotes. |
| * |
| * If not, we must rescan the input and process each character |
| * individually. |
| */ |
| if (num_quotes == 0 && (num_backslashes == 0 || as_ident)) |
| { |
| memcpy(rp, str, input_len); |
| rp += input_len; |
| } |
| else |
| { |
| s = str; |
| for (size_t remaining = input_len; remaining > 0; remaining--, s++) |
| { |
| if (*s == quote_char || (!as_ident && *s == '\\')) |
| { |
| *rp++ = *s; |
| *rp++ = *s; |
| } |
| else if (!IS_HIGHBIT_SET(*s)) |
| *rp++ = *s; |
| else |
| { |
| int i = pg_encoding_mblen(conn->client_encoding, s); |
| |
| while (1) |
| { |
| *rp++ = *s; |
| if (--i == 0) |
| break; |
| remaining--; |
| ++s; /* for loop will provide the final increment */ |
| } |
| } |
| } |
| } |
| |
| /* Closing quote and terminating NUL. */ |
| *rp++ = quote_char; |
| *rp = '\0'; |
| |
| return result; |
| } |
| |
| char * |
| PQescapeLiteral(PGconn *conn, const char *str, size_t len) |
| { |
| return PQescapeInternal(conn, str, len, false); |
| } |
| |
| char * |
| PQescapeIdentifier(PGconn *conn, const char *str, size_t len) |
| { |
| return PQescapeInternal(conn, str, len, true); |
| } |
| |
| /* HEX encoding support for bytea */ |
| static const char hextbl[] = "0123456789abcdef"; |
| |
| static const int8 hexlookup[128] = { |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| }; |
| |
| static inline char |
| get_hex(char c) |
| { |
| int res = -1; |
| |
| if (c > 0 && c < 127) |
| res = hexlookup[(unsigned char) c]; |
| |
| return (char) res; |
| } |
| |
| |
| /* |
| * PQescapeBytea - converts from binary string to the |
| * minimal encoding necessary to include the string in an SQL |
| * INSERT statement with a bytea type column as the target. |
| * |
| * We can use either hex or escape (traditional) encoding. |
| * In escape mode, the following transformations are applied: |
| * '\0' == ASCII 0 == \000 |
| * '\'' == ASCII 39 == '' |
| * '\\' == ASCII 92 == \\ |
| * anything < 0x20, or > 0x7e ---> \ooo |
| * (where ooo is an octal expression) |
| * |
| * If not std_strings, all backslashes sent to the output are doubled. |
| */ |
| static unsigned char * |
| PQescapeByteaInternal(PGconn *conn, |
| const unsigned char *from, size_t from_length, |
| size_t *to_length, bool std_strings, bool use_hex) |
| { |
| const unsigned char *vp; |
| unsigned char *rp; |
| unsigned char *result; |
| size_t i; |
| size_t len; |
| size_t bslash_len = (std_strings ? 1 : 2); |
| |
| /* |
| * empty string has 1 char ('\0') |
| */ |
| len = 1; |
| |
| if (use_hex) |
| { |
| len += bslash_len + 1 + 2 * from_length; |
| } |
| else |
| { |
| vp = from; |
| for (i = from_length; i > 0; i--, vp++) |
| { |
| if (*vp < 0x20 || *vp > 0x7e) |
| len += bslash_len + 3; |
| else if (*vp == '\'') |
| len += 2; |
| else if (*vp == '\\') |
| len += bslash_len + bslash_len; |
| else |
| len++; |
| } |
| } |
| |
| *to_length = len; |
| rp = result = (unsigned char *) malloc(len); |
| if (rp == NULL) |
| { |
| if (conn) |
| libpq_append_conn_error(conn, "out of memory"); |
| return NULL; |
| } |
| |
| if (use_hex) |
| { |
| if (!std_strings) |
| *rp++ = '\\'; |
| *rp++ = '\\'; |
| *rp++ = 'x'; |
| } |
| |
| vp = from; |
| for (i = from_length; i > 0; i--, vp++) |
| { |
| unsigned char c = *vp; |
| |
| if (use_hex) |
| { |
| *rp++ = hextbl[(c >> 4) & 0xF]; |
| *rp++ = hextbl[c & 0xF]; |
| } |
| else if (c < 0x20 || c > 0x7e) |
| { |
| if (!std_strings) |
| *rp++ = '\\'; |
| *rp++ = '\\'; |
| *rp++ = (c >> 6) + '0'; |
| *rp++ = ((c >> 3) & 07) + '0'; |
| *rp++ = (c & 07) + '0'; |
| } |
| else if (c == '\'') |
| { |
| *rp++ = '\''; |
| *rp++ = '\''; |
| } |
| else if (c == '\\') |
| { |
| if (!std_strings) |
| { |
| *rp++ = '\\'; |
| *rp++ = '\\'; |
| } |
| *rp++ = '\\'; |
| *rp++ = '\\'; |
| } |
| else |
| *rp++ = c; |
| } |
| *rp = '\0'; |
| |
| return result; |
| } |
| |
| unsigned char * |
| PQescapeByteaConn(PGconn *conn, |
| const unsigned char *from, size_t from_length, |
| size_t *to_length) |
| { |
| if (!conn) |
| return NULL; |
| |
| if (conn->cmd_queue_head == NULL) |
| pqClearConnErrorState(conn); |
| |
| return PQescapeByteaInternal(conn, from, from_length, to_length, |
| conn->std_strings, |
| (conn->sversion >= 90000)); |
| } |
| |
| unsigned char * |
| PQescapeBytea(const unsigned char *from, size_t from_length, size_t *to_length) |
| { |
| return PQescapeByteaInternal(NULL, from, from_length, to_length, |
| static_std_strings, |
| false /* can't use hex */ ); |
| } |
| |
| |
| #define ISFIRSTOCTDIGIT(CH) ((CH) >= '0' && (CH) <= '3') |
| #define ISOCTDIGIT(CH) ((CH) >= '0' && (CH) <= '7') |
| #define OCTVAL(CH) ((CH) - '0') |
| |
| /* |
| * PQunescapeBytea - converts the null terminated string representation |
| * of a bytea, strtext, into binary, filling a buffer. It returns a |
| * pointer to the buffer (or NULL on error), and the size of the |
| * buffer in retbuflen. The pointer may subsequently be used as an |
| * argument to the function PQfreemem. |
| * |
| * The following transformations are made: |
| * \\ == ASCII 92 == \ |
| * \ooo == a byte whose value = ooo (ooo is an octal number) |
| * \x == x (x is any character not matched by the above transformations) |
| */ |
| unsigned char * |
| PQunescapeBytea(const unsigned char *strtext, size_t *retbuflen) |
| { |
| size_t strtextlen, |
| buflen; |
| unsigned char *buffer, |
| *tmpbuf; |
| size_t i, |
| j; |
| |
| if (strtext == NULL) |
| return NULL; |
| |
| strtextlen = strlen((const char *) strtext); |
| |
| if (strtext[0] == '\\' && strtext[1] == 'x') |
| { |
| const unsigned char *s; |
| unsigned char *p; |
| |
| buflen = (strtextlen - 2) / 2; |
| /* Avoid unportable malloc(0) */ |
| buffer = (unsigned char *) malloc(buflen > 0 ? buflen : 1); |
| if (buffer == NULL) |
| return NULL; |
| |
| s = strtext + 2; |
| p = buffer; |
| while (*s) |
| { |
| char v1, |
| v2; |
| |
| /* |
| * Bad input is silently ignored. Note that this includes |
| * whitespace between hex pairs, which is allowed by byteain. |
| */ |
| v1 = get_hex(*s++); |
| if (!*s || v1 == (char) -1) |
| continue; |
| v2 = get_hex(*s++); |
| if (v2 != (char) -1) |
| *p++ = (v1 << 4) | v2; |
| } |
| |
| buflen = p - buffer; |
| } |
| else |
| { |
| /* |
| * Length of input is max length of output, but add one to avoid |
| * unportable malloc(0) if input is zero-length. |
| */ |
| buffer = (unsigned char *) malloc(strtextlen + 1); |
| if (buffer == NULL) |
| return NULL; |
| |
| for (i = j = 0; i < strtextlen;) |
| { |
| switch (strtext[i]) |
| { |
| case '\\': |
| i++; |
| if (strtext[i] == '\\') |
| buffer[j++] = strtext[i++]; |
| else |
| { |
| if ((ISFIRSTOCTDIGIT(strtext[i])) && |
| (ISOCTDIGIT(strtext[i + 1])) && |
| (ISOCTDIGIT(strtext[i + 2]))) |
| { |
| int byte; |
| |
| byte = OCTVAL(strtext[i++]); |
| byte = (byte << 3) + OCTVAL(strtext[i++]); |
| byte = (byte << 3) + OCTVAL(strtext[i++]); |
| buffer[j++] = byte; |
| } |
| } |
| |
| /* |
| * Note: if we see '\' followed by something that isn't a |
| * recognized escape sequence, we loop around having done |
| * nothing except advance i. Therefore the something will |
| * be emitted as ordinary data on the next cycle. Corner |
| * case: '\' at end of string will just be discarded. |
| */ |
| break; |
| |
| default: |
| buffer[j++] = strtext[i++]; |
| break; |
| } |
| } |
| buflen = j; /* buflen is the length of the dequoted data */ |
| } |
| |
| /* Shrink the buffer to be no larger than necessary */ |
| /* +1 avoids unportable behavior when buflen==0 */ |
| tmpbuf = realloc(buffer, buflen + 1); |
| |
| /* It would only be a very brain-dead realloc that could fail, but... */ |
| if (!tmpbuf) |
| { |
| free(buffer); |
| return NULL; |
| } |
| |
| *retbuflen = buflen; |
| return tmpbuf; |
| } |