| /*------------------------------------------------------------------------- |
| * |
| * pg_list.h |
| * interface for PostgreSQL generic list package |
| * |
| * Once upon a time, parts of Postgres were written in Lisp and used real |
| * cons-cell lists for major data structures. When that code was rewritten |
| * in C, we initially had a faithful emulation of cons-cell lists, which |
| * unsurprisingly was a performance bottleneck. A couple of major rewrites |
| * later, these data structures are actually simple expansible arrays; |
| * but the "List" name and a lot of the notation survives. |
| * |
| * One important concession to the original implementation is that an empty |
| * list is always represented by a null pointer (preferentially written NIL). |
| * Non-empty lists have a header, which will not be relocated as long as the |
| * list remains non-empty, and an expansible data array. |
| * |
| * We support four types of lists: |
| * |
| * T_List: lists of pointers |
| * (in practice usually pointers to Nodes, but not always; |
| * declared as "void *" to minimize casting annoyances) |
| * T_IntList: lists of integers |
| * T_OidList: lists of Oids |
| * T_XidList: lists of TransactionIds |
| * (the XidList infrastructure is less complete than the other cases) |
| * |
| * (At the moment, ints, Oids, and XIDs are the same size, but they may not |
| * always be so; be careful to use the appropriate list type for your data.) |
| * |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * src/include/nodes/pg_list.h |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #ifndef PG_LIST_H |
| #define PG_LIST_H |
| |
| #include "nodes/nodes.h" |
| |
| |
| typedef union ListCell |
| { |
| void *ptr_value; |
| int int_value; |
| Oid oid_value; |
| TransactionId xid_value; |
| } ListCell; |
| |
| typedef struct List |
| { |
| NodeTag type; /* T_List, T_IntList, T_OidList, or T_XidList */ |
| int length; /* number of elements currently present */ |
| int max_length; /* allocated length of elements[] */ |
| ListCell *elements; /* re-allocatable array of cells */ |
| /* We may allocate some cells along with the List header: */ |
| ListCell initial_elements[FLEXIBLE_ARRAY_MEMBER]; |
| /* If elements == initial_elements, it's not a separate allocation */ |
| } List; |
| |
| /* |
| * The *only* valid representation of an empty list is NIL; in other |
| * words, a non-NIL list is guaranteed to have length >= 1. |
| */ |
| #define NIL ((List *) NULL) |
| |
| /* |
| * State structs for various looping macros below. |
| */ |
| typedef struct ForEachState |
| { |
| const List *l; /* list we're looping through */ |
| int i; /* current element index */ |
| } ForEachState; |
| |
| typedef struct ForBothState |
| { |
| const List *l1; /* lists we're looping through */ |
| const List *l2; |
| int i; /* common element index */ |
| } ForBothState; |
| |
| typedef struct ForBothCellState |
| { |
| const List *l1; /* lists we're looping through */ |
| const List *l2; |
| int i1; /* current element indexes */ |
| int i2; |
| } ForBothCellState; |
| |
| typedef struct ForThreeState |
| { |
| const List *l1; /* lists we're looping through */ |
| const List *l2; |
| const List *l3; |
| int i; /* common element index */ |
| } ForThreeState; |
| |
| typedef struct ForFourState |
| { |
| const List *l1; /* lists we're looping through */ |
| const List *l2; |
| const List *l3; |
| const List *l4; |
| int i; /* common element index */ |
| } ForFourState; |
| |
| typedef struct ForFiveState |
| { |
| const List *l1; /* lists we're looping through */ |
| const List *l2; |
| const List *l3; |
| const List *l4; |
| const List *l5; |
| int i; /* common element index */ |
| } ForFiveState; |
| |
| /* |
| * These routines are small enough, and used often enough, to justify being |
| * inline. |
| */ |
| |
| /* Fetch address of list's first cell; NULL if empty list */ |
| static inline ListCell * |
| list_head(const List *l) |
| { |
| return l ? &l->elements[0] : NULL; |
| } |
| |
| /* Fetch address of list's last cell; NULL if empty list */ |
| static inline ListCell * |
| list_tail(const List *l) |
| { |
| return l ? &l->elements[l->length - 1] : NULL; |
| } |
| |
| /* Fetch address of list's second cell, if it has one, else NULL */ |
| static inline ListCell * |
| list_second_cell(const List *l) |
| { |
| if (l && l->length >= 2) |
| return &l->elements[1]; |
| else |
| return NULL; |
| } |
| |
| /* Fetch list's length */ |
| static inline int |
| list_length(const List *l) |
| { |
| return l ? l->length : 0; |
| } |
| |
| /* |
| * Macros to access the data values within List cells. |
| * |
| * Note that with the exception of the "xxx_node" macros, these are |
| * lvalues and can be assigned to. |
| * |
| * NB: There is an unfortunate legacy from a previous incarnation of |
| * the List API: the macro lfirst() was used to mean "the data in this |
| * cons cell". To avoid changing every usage of lfirst(), that meaning |
| * has been kept. As a result, lfirst() takes a ListCell and returns |
| * the data it contains; to get the data in the first cell of a |
| * List, use linitial(). Worse, lsecond() is more closely related to |
| * linitial() than lfirst(): given a List, lsecond() returns the data |
| * in the second list cell. |
| */ |
| #define lfirst(lc) ((lc)->ptr_value) |
| #define lfirst_int(lc) ((lc)->int_value) |
| #define lfirst_oid(lc) ((lc)->oid_value) |
| #define lfirst_xid(lc) ((lc)->xid_value) |
| #define lfirst_node(type,lc) castNode(type, lfirst(lc)) |
| |
| #define linitial(l) lfirst(list_nth_cell(l, 0)) |
| #define linitial_int(l) lfirst_int(list_nth_cell(l, 0)) |
| #define linitial_oid(l) lfirst_oid(list_nth_cell(l, 0)) |
| #define linitial_node(type,l) castNode(type, linitial(l)) |
| |
| #define lsecond(l) lfirst(list_nth_cell(l, 1)) |
| #define lsecond_int(l) lfirst_int(list_nth_cell(l, 1)) |
| #define lsecond_oid(l) lfirst_oid(list_nth_cell(l, 1)) |
| #define lsecond_node(type,l) castNode(type, lsecond(l)) |
| |
| #define lthird(l) lfirst(list_nth_cell(l, 2)) |
| #define lthird_int(l) lfirst_int(list_nth_cell(l, 2)) |
| #define lthird_oid(l) lfirst_oid(list_nth_cell(l, 2)) |
| #define lthird_node(type,l) castNode(type, lthird(l)) |
| |
| #define lfourth(l) lfirst(list_nth_cell(l, 3)) |
| #define lfourth_int(l) lfirst_int(list_nth_cell(l, 3)) |
| #define lfourth_oid(l) lfirst_oid(list_nth_cell(l, 3)) |
| #define lfourth_node(type,l) castNode(type, lfourth(l)) |
| |
| #define llast(l) lfirst(list_last_cell(l)) |
| #define llast_int(l) lfirst_int(list_last_cell(l)) |
| #define llast_oid(l) lfirst_oid(list_last_cell(l)) |
| #define llast_xid(l) lfirst_xid(list_last_cell(l)) |
| #define llast_node(type,l) castNode(type, llast(l)) |
| |
| /* |
| * Convenience macros for building fixed-length lists |
| */ |
| #define list_make_ptr_cell(v) ((ListCell) {.ptr_value = (v)}) |
| #define list_make_int_cell(v) ((ListCell) {.int_value = (v)}) |
| #define list_make_oid_cell(v) ((ListCell) {.oid_value = (v)}) |
| #define list_make_xid_cell(v) ((ListCell) {.xid_value = (v)}) |
| |
| #define list_make1(x1) \ |
| list_make1_impl(T_List, list_make_ptr_cell(x1)) |
| #define list_make2(x1,x2) \ |
| list_make2_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2)) |
| #define list_make3(x1,x2,x3) \ |
| list_make3_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ |
| list_make_ptr_cell(x3)) |
| #define list_make4(x1,x2,x3,x4) \ |
| list_make4_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ |
| list_make_ptr_cell(x3), list_make_ptr_cell(x4)) |
| #define list_make5(x1,x2,x3,x4,x5) \ |
| list_make5_impl(T_List, list_make_ptr_cell(x1), list_make_ptr_cell(x2), \ |
| list_make_ptr_cell(x3), list_make_ptr_cell(x4), \ |
| list_make_ptr_cell(x5)) |
| |
| #define list_make1_int(x1) \ |
| list_make1_impl(T_IntList, list_make_int_cell(x1)) |
| #define list_make2_int(x1,x2) \ |
| list_make2_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2)) |
| #define list_make3_int(x1,x2,x3) \ |
| list_make3_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ |
| list_make_int_cell(x3)) |
| #define list_make4_int(x1,x2,x3,x4) \ |
| list_make4_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ |
| list_make_int_cell(x3), list_make_int_cell(x4)) |
| #define list_make5_int(x1,x2,x3,x4,x5) \ |
| list_make5_impl(T_IntList, list_make_int_cell(x1), list_make_int_cell(x2), \ |
| list_make_int_cell(x3), list_make_int_cell(x4), \ |
| list_make_int_cell(x5)) |
| |
| #define list_make1_oid(x1) \ |
| list_make1_impl(T_OidList, list_make_oid_cell(x1)) |
| #define list_make2_oid(x1,x2) \ |
| list_make2_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2)) |
| #define list_make3_oid(x1,x2,x3) \ |
| list_make3_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ |
| list_make_oid_cell(x3)) |
| #define list_make4_oid(x1,x2,x3,x4) \ |
| list_make4_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ |
| list_make_oid_cell(x3), list_make_oid_cell(x4)) |
| #define list_make5_oid(x1,x2,x3,x4,x5) \ |
| list_make5_impl(T_OidList, list_make_oid_cell(x1), list_make_oid_cell(x2), \ |
| list_make_oid_cell(x3), list_make_oid_cell(x4), \ |
| list_make_oid_cell(x5)) |
| |
| #define list_make1_xid(x1) \ |
| list_make1_impl(T_XidList, list_make_xid_cell(x1)) |
| #define list_make2_xid(x1,x2) \ |
| list_make2_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2)) |
| #define list_make3_xid(x1,x2,x3) \ |
| list_make3_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ |
| list_make_xid_cell(x3)) |
| #define list_make4_xid(x1,x2,x3,x4) \ |
| list_make4_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ |
| list_make_xid_cell(x3), list_make_xid_cell(x4)) |
| #define list_make5_xid(x1,x2,x3,x4,x5) \ |
| list_make5_impl(T_XidList, list_make_xid_cell(x1), list_make_xid_cell(x2), \ |
| list_make_xid_cell(x3), list_make_xid_cell(x4), \ |
| list_make_xid_cell(x5)) |
| |
| /* |
| * Locate the n'th cell (counting from 0) of the list. |
| * It is an assertion failure if there is no such cell. |
| */ |
| static inline ListCell * |
| list_nth_cell(const List *list, int n) |
| { |
| Assert(list != NIL); |
| Assert(n >= 0 && n < list->length); |
| return &list->elements[n]; |
| } |
| |
| /** |
| * Replace the n-th data pointer in the list with newvalue. |
| * Returns oldvalue. Assumes that n is a valid offset. |
| */ |
| static inline void * |
| list_nth_replace(List *list, int n, void *new_data) |
| { |
| ListCell *lc = NULL; |
| lc = list_nth_cell(list, n); |
| Assert(lc); |
| void *old_data = lc->ptr_value; |
| lc->ptr_value = new_data; |
| return old_data; |
| } |
| |
| /* |
| * Return the last cell in a non-NIL List. |
| */ |
| static inline ListCell * |
| list_last_cell(const List *list) |
| { |
| Assert(list != NIL); |
| return &list->elements[list->length - 1]; |
| } |
| |
| /* |
| * Return the pointer value contained in the n'th element of the |
| * specified list. (List elements begin at 0.) |
| */ |
| static inline void * |
| list_nth(const List *list, int n) |
| { |
| Assert(IsA(list, List)); |
| return lfirst(list_nth_cell(list, n)); |
| } |
| |
| /* |
| * Return the integer value contained in the n'th element of the |
| * specified list. |
| */ |
| static inline int |
| list_nth_int(const List *list, int n) |
| { |
| Assert(IsA(list, IntList)); |
| return lfirst_int(list_nth_cell(list, n)); |
| } |
| |
| /* |
| * Return the OID value contained in the n'th element of the specified |
| * list. |
| */ |
| static inline Oid |
| list_nth_oid(const List *list, int n) |
| { |
| Assert(IsA(list, OidList)); |
| return lfirst_oid(list_nth_cell(list, n)); |
| } |
| |
| #define list_nth_node(type,list,n) castNode(type, list_nth(list, n)) |
| |
| /* |
| * Get the given ListCell's index (from 0) in the given List. |
| */ |
| static inline int |
| list_cell_number(const List *l, const ListCell *c) |
| { |
| Assert(c >= &l->elements[0] && c < &l->elements[l->length]); |
| return c - l->elements; |
| } |
| |
| /* |
| * Get the address of the next cell after "c" within list "l", or NULL if none. |
| */ |
| static inline ListCell * |
| lnext(const List *l, const ListCell *c) |
| { |
| Assert(c >= &l->elements[0] && c < &l->elements[l->length]); |
| c++; |
| if (c < &l->elements[l->length]) |
| return (ListCell *) c; |
| else |
| return NULL; |
| } |
| |
| /* |
| * foreach - |
| * a convenience macro for looping through a list |
| * |
| * "cell" must be the name of a "ListCell *" variable; it's made to point |
| * to each List element in turn. "cell" will be NULL after normal exit from |
| * the loop, but an early "break" will leave it pointing at the current |
| * List element. |
| * |
| * Beware of changing the List object while the loop is iterating. |
| * The current semantics are that we examine successive list indices in |
| * each iteration, so that insertion or deletion of list elements could |
| * cause elements to be re-visited or skipped unexpectedly. Previous |
| * implementations of foreach() behaved differently. However, it's safe |
| * to append elements to the List (or in general, insert them after the |
| * current element); such new elements are guaranteed to be visited. |
| * Also, the current element of the List can be deleted, if you use |
| * foreach_delete_current() to do so. BUT: either of these actions will |
| * invalidate the "cell" pointer for the remainder of the current iteration. |
| */ |
| #define foreach(cell, lst) \ |
| for (ForEachState cell##__state = {(lst), 0}; \ |
| (cell##__state.l != NIL && \ |
| cell##__state.i < cell##__state.l->length) ? \ |
| (cell = &cell##__state.l->elements[cell##__state.i], true) : \ |
| (cell = NULL, false); \ |
| cell##__state.i++) |
| |
| /* |
| * foreach_delete_current - |
| * delete the current list element from the List associated with a |
| * surrounding foreach() loop, returning the new List pointer. |
| * |
| * This is equivalent to list_delete_cell(), but it also adjusts the foreach |
| * loop's state so that no list elements will be missed. Do not delete |
| * elements from an active foreach loop's list in any other way! |
| */ |
| #define foreach_delete_current(lst, cell) \ |
| (cell##__state.i--, \ |
| (List *) (cell##__state.l = list_delete_cell(lst, cell))) |
| |
| /* |
| * foreach_current_index - |
| * get the zero-based list index of a surrounding foreach() loop's |
| * current element; pass the name of the "ListCell *" iterator variable. |
| * |
| * Beware of using this after foreach_delete_current(); the value will be |
| * out of sync for the rest of the current loop iteration. Anyway, since |
| * you just deleted the current element, the value is pretty meaningless. |
| */ |
| #define foreach_current_index(cell) (cell##__state.i) |
| |
| /* |
| * for_each_from - |
| * Like foreach(), but start from the N'th (zero-based) list element, |
| * not necessarily the first one. |
| * |
| * It's okay for N to exceed the list length, but not for it to be negative. |
| * |
| * The caveats for foreach() apply equally here. |
| */ |
| #define for_each_from(cell, lst, N) \ |
| for (ForEachState cell##__state = for_each_from_setup(lst, N); \ |
| (cell##__state.l != NIL && \ |
| cell##__state.i < cell##__state.l->length) ? \ |
| (cell = &cell##__state.l->elements[cell##__state.i], true) : \ |
| (cell = NULL, false); \ |
| cell##__state.i++) |
| |
| static inline ForEachState |
| for_each_from_setup(const List *lst, int N) |
| { |
| ForEachState r = {lst, N}; |
| |
| Assert(N >= 0); |
| return r; |
| } |
| |
| /* |
| * for_each_cell - |
| * a convenience macro which loops through a list starting from a |
| * specified cell |
| * |
| * The caveats for foreach() apply equally here. |
| */ |
| #define for_each_cell(cell, lst, initcell) \ |
| for (ForEachState cell##__state = for_each_cell_setup(lst, initcell); \ |
| (cell##__state.l != NIL && \ |
| cell##__state.i < cell##__state.l->length) ? \ |
| (cell = &cell##__state.l->elements[cell##__state.i], true) : \ |
| (cell = NULL, false); \ |
| cell##__state.i++) |
| |
| static inline ForEachState |
| for_each_cell_setup(const List *lst, const ListCell *initcell) |
| { |
| ForEachState r = {lst, |
| initcell ? list_cell_number(lst, initcell) : list_length(lst)}; |
| |
| return r; |
| } |
| |
| #define foreach_with_count(cell, list, counter) \ |
| for ((cell) = list_head(list), (counter)=0; \ |
| (cell) != NULL; \ |
| (cell) = lnext(list, cell), ++(counter)) |
| |
| |
| /* |
| * forboth - |
| * a convenience macro for advancing through two linked lists |
| * simultaneously. This macro loops through both lists at the same |
| * time, stopping when either list runs out of elements. Depending |
| * on the requirements of the call site, it may also be wise to |
| * assert that the lengths of the two lists are equal. (But, if they |
| * are not, some callers rely on the ending cell values being separately |
| * NULL or non-NULL as defined here; don't try to optimize that.) |
| * |
| * The caveats for foreach() apply equally here. |
| */ |
| #define forboth(cell1, list1, cell2, list2) \ |
| for (ForBothState cell1##__state = {(list1), (list2), 0}; \ |
| multi_for_advance_cell(cell1, cell1##__state, l1, i), \ |
| multi_for_advance_cell(cell2, cell1##__state, l2, i), \ |
| (cell1 != NULL && cell2 != NULL); \ |
| cell1##__state.i++) |
| |
| #define multi_for_advance_cell(cell, state, l, i) \ |
| (cell = (state.l != NIL && state.i < state.l->length) ? \ |
| &state.l->elements[state.i] : NULL) |
| |
| /* |
| * for_both_cell - |
| * a convenience macro which loops through two lists starting from the |
| * specified cells of each. This macro loops through both lists at the same |
| * time, stopping when either list runs out of elements. Depending on the |
| * requirements of the call site, it may also be wise to assert that the |
| * lengths of the two lists are equal, and initcell1 and initcell2 are at |
| * the same position in the respective lists. |
| * |
| * The caveats for foreach() apply equally here. |
| */ |
| #define for_both_cell(cell1, list1, initcell1, cell2, list2, initcell2) \ |
| for (ForBothCellState cell1##__state = \ |
| for_both_cell_setup(list1, initcell1, list2, initcell2); \ |
| multi_for_advance_cell(cell1, cell1##__state, l1, i1), \ |
| multi_for_advance_cell(cell2, cell1##__state, l2, i2), \ |
| (cell1 != NULL && cell2 != NULL); \ |
| cell1##__state.i1++, cell1##__state.i2++) |
| |
| static inline ForBothCellState |
| for_both_cell_setup(const List *list1, const ListCell *initcell1, |
| const List *list2, const ListCell *initcell2) |
| { |
| ForBothCellState r = {list1, list2, |
| initcell1 ? list_cell_number(list1, initcell1) : list_length(list1), |
| initcell2 ? list_cell_number(list2, initcell2) : list_length(list2)}; |
| |
| return r; |
| } |
| |
| /* |
| * forthree - |
| * the same for three lists |
| */ |
| #define forthree(cell1, list1, cell2, list2, cell3, list3) \ |
| for (ForThreeState cell1##__state = {(list1), (list2), (list3), 0}; \ |
| multi_for_advance_cell(cell1, cell1##__state, l1, i), \ |
| multi_for_advance_cell(cell2, cell1##__state, l2, i), \ |
| multi_for_advance_cell(cell3, cell1##__state, l3, i), \ |
| (cell1 != NULL && cell2 != NULL && cell3 != NULL); \ |
| cell1##__state.i++) |
| |
| /* |
| * forfour - |
| * the same for four lists |
| */ |
| #define forfour(cell1, list1, cell2, list2, cell3, list3, cell4, list4) \ |
| for (ForFourState cell1##__state = {(list1), (list2), (list3), (list4), 0}; \ |
| multi_for_advance_cell(cell1, cell1##__state, l1, i), \ |
| multi_for_advance_cell(cell2, cell1##__state, l2, i), \ |
| multi_for_advance_cell(cell3, cell1##__state, l3, i), \ |
| multi_for_advance_cell(cell4, cell1##__state, l4, i), \ |
| (cell1 != NULL && cell2 != NULL && cell3 != NULL && cell4 != NULL); \ |
| cell1##__state.i++) |
| |
| /* |
| * forfive - |
| * the same for five lists |
| */ |
| #define forfive(cell1, list1, cell2, list2, cell3, list3, cell4, list4, cell5, list5) \ |
| for (ForFiveState cell1##__state = {(list1), (list2), (list3), (list4), (list5), 0}; \ |
| multi_for_advance_cell(cell1, cell1##__state, l1, i), \ |
| multi_for_advance_cell(cell2, cell1##__state, l2, i), \ |
| multi_for_advance_cell(cell3, cell1##__state, l3, i), \ |
| multi_for_advance_cell(cell4, cell1##__state, l4, i), \ |
| multi_for_advance_cell(cell5, cell1##__state, l5, i), \ |
| (cell1 != NULL && cell2 != NULL && cell3 != NULL && \ |
| cell4 != NULL && cell5 != NULL); \ |
| cell1##__state.i++) |
| |
| /* Functions in src/backend/nodes/list.c */ |
| |
| extern List *list_make1_impl(NodeTag t, ListCell datum1); |
| extern List *list_make2_impl(NodeTag t, ListCell datum1, ListCell datum2); |
| extern List *list_make3_impl(NodeTag t, ListCell datum1, ListCell datum2, |
| ListCell datum3); |
| extern List *list_make4_impl(NodeTag t, ListCell datum1, ListCell datum2, |
| ListCell datum3, ListCell datum4); |
| extern List *list_make5_impl(NodeTag t, ListCell datum1, ListCell datum2, |
| ListCell datum3, ListCell datum4, |
| ListCell datum5); |
| |
| extern pg_nodiscard List *lappend(List *list, void *datum); |
| extern pg_nodiscard List *lappend_int(List *list, int datum); |
| extern pg_nodiscard List *lappend_oid(List *list, Oid datum); |
| extern pg_nodiscard List *lappend_xid(List *list, TransactionId datum); |
| |
| extern pg_nodiscard List *list_insert_nth(List *list, int pos, void *datum); |
| extern pg_nodiscard List *list_insert_nth_int(List *list, int pos, int datum); |
| extern pg_nodiscard List *list_insert_nth_oid(List *list, int pos, Oid datum); |
| |
| extern pg_nodiscard List *lcons(void *datum, List *list); |
| extern pg_nodiscard List *lcons_int(int datum, List *list); |
| extern pg_nodiscard List *lcons_oid(Oid datum, List *list); |
| |
| extern pg_nodiscard List *list_concat(List *list1, const List *list2); |
| extern pg_nodiscard List *list_concat_copy(const List *list1, const List *list2); |
| |
| extern pg_nodiscard List *list_truncate(List *list, int new_size); |
| |
| extern bool list_member(const List *list, const void *datum); |
| extern bool list_member_ptr(const List *list, const void *datum); |
| extern bool list_member_int(const List *list, int datum); |
| extern bool list_member_oid(const List *list, Oid datum); |
| extern bool list_member_xid(const List *list, TransactionId datum); |
| |
| extern pg_nodiscard List *list_delete(List *list, void *datum); |
| extern pg_nodiscard List *list_delete_ptr(List *list, void *datum); |
| extern pg_nodiscard List *list_delete_int(List *list, int datum); |
| extern pg_nodiscard List *list_delete_oid(List *list, Oid datum); |
| extern pg_nodiscard List *list_delete_first(List *list); |
| extern pg_nodiscard List *list_delete_last(List *list); |
| extern pg_nodiscard List *list_delete_first_n(List *list, int n); |
| extern pg_nodiscard List *list_delete_nth_cell(List *list, int n); |
| extern pg_nodiscard List *list_delete_cell(List *list, ListCell *cell); |
| |
| extern List *list_union(const List *list1, const List *list2); |
| extern List *list_union_ptr(const List *list1, const List *list2); |
| extern List *list_union_int(const List *list1, const List *list2); |
| extern List *list_union_oid(const List *list1, const List *list2); |
| |
| extern List *list_intersection(const List *list1, const List *list2); |
| extern List *list_intersection_int(const List *list1, const List *list2); |
| |
| /* currently, there's no need for list_intersection_ptr etc */ |
| |
| extern List *list_difference(const List *list1, const List *list2); |
| extern List *list_difference_ptr(const List *list1, const List *list2); |
| extern List *list_difference_int(const List *list1, const List *list2); |
| extern List *list_difference_oid(const List *list1, const List *list2); |
| |
| extern pg_nodiscard List *list_append_unique(List *list, void *datum); |
| extern pg_nodiscard List *list_append_unique_ptr(List *list, void *datum); |
| extern pg_nodiscard List *list_append_unique_int(List *list, int datum); |
| extern pg_nodiscard List *list_append_unique_oid(List *list, Oid datum); |
| |
| extern pg_nodiscard List *list_concat_unique(List *list1, const List *list2); |
| extern pg_nodiscard List *list_concat_unique_ptr(List *list1, const List *list2); |
| extern pg_nodiscard List *list_concat_unique_int(List *list1, const List *list2); |
| extern pg_nodiscard List *list_concat_unique_oid(List *list1, const List *list2); |
| |
| extern void list_deduplicate_oid(List *list); |
| |
| extern void list_free(List *list); |
| extern void list_free_deep(List *list); |
| |
| extern pg_nodiscard List *list_copy(const List *oldlist); |
| extern pg_nodiscard List *list_copy_head(const List *oldlist, int len); |
| extern pg_nodiscard List *list_copy_tail(const List *oldlist, int nskip); |
| extern pg_nodiscard List *list_copy_deep(const List *oldlist); |
| |
| typedef int (*list_sort_comparator) (const ListCell *a, const ListCell *b); |
| extern void list_sort(List *list, list_sort_comparator cmp); |
| |
| typedef int (*list_sort_arg_comparator) (const ListCell *a, const ListCell *b, void *arg); |
| extern void list_sort_arg(List *list, list_sort_arg_comparator cmp, void *arg); |
| |
| extern int list_int_cmp(const ListCell *p1, const ListCell *p2); |
| extern int list_oid_cmp(const ListCell *p1, const ListCell *p2); |
| |
| #endif /* PG_LIST_H */ |