| /*------------------------------------------------------------------------- |
| * |
| * network_spgist.c |
| * SP-GiST support for network types. |
| * |
| * We split inet index entries first by address family (IPv4 or IPv6). |
| * If the entries below a given inner tuple are all of the same family, |
| * we identify their common prefix and split by the next bit of the address, |
| * and by whether their masklens exceed the length of the common prefix. |
| * |
| * An inner tuple that has both IPv4 and IPv6 children has a null prefix |
| * and exactly two nodes, the first being for IPv4 and the second for IPv6. |
| * |
| * Otherwise, the prefix is a CIDR value representing the common prefix, |
| * and there are exactly four nodes. Node numbers 0 and 1 are for addresses |
| * with the same masklen as the prefix, while node numbers 2 and 3 are for |
| * addresses with larger masklen. (We do not allow a tuple to contain |
| * entries with masklen smaller than its prefix's.) Node numbers 0 and 1 |
| * are distinguished by the next bit of the address after the common prefix, |
| * and likewise for node numbers 2 and 3. If there are no more bits in |
| * the address family, everything goes into node 0 (which will probably |
| * lead to creating an allTheSame tuple). |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * IDENTIFICATION |
| * src/backend/utils/adt/network_spgist.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include <sys/socket.h> |
| |
| #include "access/spgist.h" |
| #include "catalog/pg_type.h" |
| #include "utils/builtins.h" |
| #include "utils/inet.h" |
| #include "varatt.h" |
| |
| |
| static int inet_spg_node_number(const inet *val, int commonbits); |
| static int inet_spg_consistent_bitmap(const inet *prefix, int nkeys, |
| ScanKey scankeys, bool leaf); |
| |
| /* |
| * The SP-GiST configuration function |
| */ |
| Datum |
| inet_spg_config(PG_FUNCTION_ARGS) |
| { |
| /* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */ |
| spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1); |
| |
| cfg->prefixType = CIDROID; |
| cfg->labelType = VOIDOID; |
| cfg->canReturnData = true; |
| cfg->longValuesOK = false; |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * The SP-GiST choose function |
| */ |
| Datum |
| inet_spg_choose(PG_FUNCTION_ARGS) |
| { |
| spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0); |
| spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1); |
| inet *val = DatumGetInetPP(in->datum), |
| *prefix; |
| int commonbits; |
| |
| /* |
| * If we're looking at a tuple that splits by address family, choose the |
| * appropriate subnode. |
| */ |
| if (!in->hasPrefix) |
| { |
| /* allTheSame isn't possible for such a tuple */ |
| Assert(!in->allTheSame); |
| Assert(in->nNodes == 2); |
| |
| out->resultType = spgMatchNode; |
| out->result.matchNode.nodeN = (ip_family(val) == PGSQL_AF_INET) ? 0 : 1; |
| out->result.matchNode.restDatum = InetPGetDatum(val); |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* Else it must split by prefix */ |
| Assert(in->nNodes == 4 || in->allTheSame); |
| |
| prefix = DatumGetInetPP(in->prefixDatum); |
| commonbits = ip_bits(prefix); |
| |
| /* |
| * We cannot put addresses from different families under the same inner |
| * node, so we have to split if the new value's family is different. |
| */ |
| if (ip_family(val) != ip_family(prefix)) |
| { |
| /* Set up 2-node tuple */ |
| out->resultType = spgSplitTuple; |
| out->result.splitTuple.prefixHasPrefix = false; |
| out->result.splitTuple.prefixNNodes = 2; |
| out->result.splitTuple.prefixNodeLabels = NULL; |
| |
| /* Identify which node the existing data goes into */ |
| out->result.splitTuple.childNodeN = |
| (ip_family(prefix) == PGSQL_AF_INET) ? 0 : 1; |
| |
| out->result.splitTuple.postfixHasPrefix = true; |
| out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix); |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * If the new value does not match the existing prefix, we have to split. |
| */ |
| if (ip_bits(val) < commonbits || |
| bitncmp(ip_addr(prefix), ip_addr(val), commonbits) != 0) |
| { |
| /* Determine new prefix length for the split tuple */ |
| commonbits = bitncommon(ip_addr(prefix), ip_addr(val), |
| Min(ip_bits(val), commonbits)); |
| |
| /* Set up 4-node tuple */ |
| out->resultType = spgSplitTuple; |
| out->result.splitTuple.prefixHasPrefix = true; |
| out->result.splitTuple.prefixPrefixDatum = |
| InetPGetDatum(cidr_set_masklen_internal(val, commonbits)); |
| out->result.splitTuple.prefixNNodes = 4; |
| out->result.splitTuple.prefixNodeLabels = NULL; |
| |
| /* Identify which node the existing data goes into */ |
| out->result.splitTuple.childNodeN = |
| inet_spg_node_number(prefix, commonbits); |
| |
| out->result.splitTuple.postfixHasPrefix = true; |
| out->result.splitTuple.postfixPrefixDatum = InetPGetDatum(prefix); |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * All OK, choose the node to descend into. (If this tuple is marked |
| * allTheSame, the core code will ignore our choice of nodeN; but we need |
| * not account for that case explicitly here.) |
| */ |
| out->resultType = spgMatchNode; |
| out->result.matchNode.nodeN = inet_spg_node_number(val, commonbits); |
| out->result.matchNode.restDatum = InetPGetDatum(val); |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * The GiST PickSplit method |
| */ |
| Datum |
| inet_spg_picksplit(PG_FUNCTION_ARGS) |
| { |
| spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0); |
| spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1); |
| inet *prefix, |
| *tmp; |
| int i, |
| commonbits; |
| bool differentFamilies = false; |
| |
| /* Initialize the prefix with the first item */ |
| prefix = DatumGetInetPP(in->datums[0]); |
| commonbits = ip_bits(prefix); |
| |
| /* Examine remaining items to discover minimum common prefix length */ |
| for (i = 1; i < in->nTuples; i++) |
| { |
| tmp = DatumGetInetPP(in->datums[i]); |
| |
| if (ip_family(tmp) != ip_family(prefix)) |
| { |
| differentFamilies = true; |
| break; |
| } |
| |
| if (ip_bits(tmp) < commonbits) |
| commonbits = ip_bits(tmp); |
| commonbits = bitncommon(ip_addr(prefix), ip_addr(tmp), commonbits); |
| if (commonbits == 0) |
| break; |
| } |
| |
| /* Don't need labels; allocate output arrays */ |
| out->nodeLabels = NULL; |
| out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples); |
| out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples); |
| |
| if (differentFamilies) |
| { |
| /* Set up 2-node tuple */ |
| out->hasPrefix = false; |
| out->nNodes = 2; |
| |
| for (i = 0; i < in->nTuples; i++) |
| { |
| tmp = DatumGetInetPP(in->datums[i]); |
| out->mapTuplesToNodes[i] = |
| (ip_family(tmp) == PGSQL_AF_INET) ? 0 : 1; |
| out->leafTupleDatums[i] = InetPGetDatum(tmp); |
| } |
| } |
| else |
| { |
| /* Set up 4-node tuple */ |
| out->hasPrefix = true; |
| out->prefixDatum = |
| InetPGetDatum(cidr_set_masklen_internal(prefix, commonbits)); |
| out->nNodes = 4; |
| |
| for (i = 0; i < in->nTuples; i++) |
| { |
| tmp = DatumGetInetPP(in->datums[i]); |
| out->mapTuplesToNodes[i] = inet_spg_node_number(tmp, commonbits); |
| out->leafTupleDatums[i] = InetPGetDatum(tmp); |
| } |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * The SP-GiST query consistency check for inner tuples |
| */ |
| Datum |
| inet_spg_inner_consistent(PG_FUNCTION_ARGS) |
| { |
| spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0); |
| spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1); |
| int i; |
| int which; |
| |
| if (!in->hasPrefix) |
| { |
| Assert(!in->allTheSame); |
| Assert(in->nNodes == 2); |
| |
| /* Identify which child nodes need to be visited */ |
| which = 1 | (1 << 1); |
| |
| for (i = 0; i < in->nkeys; i++) |
| { |
| StrategyNumber strategy = in->scankeys[i].sk_strategy; |
| inet *argument = DatumGetInetPP(in->scankeys[i].sk_argument); |
| |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (ip_family(argument) == PGSQL_AF_INET) |
| which &= 1; |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (ip_family(argument) == PGSQL_AF_INET6) |
| which &= (1 << 1); |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| break; |
| |
| default: |
| /* all other ops can only match addrs of same family */ |
| if (ip_family(argument) == PGSQL_AF_INET) |
| which &= 1; |
| else |
| which &= (1 << 1); |
| break; |
| } |
| } |
| } |
| else if (!in->allTheSame) |
| { |
| Assert(in->nNodes == 4); |
| |
| /* Identify which child nodes need to be visited */ |
| which = inet_spg_consistent_bitmap(DatumGetInetPP(in->prefixDatum), |
| in->nkeys, in->scankeys, false); |
| } |
| else |
| { |
| /* Must visit all nodes; we assume there are less than 32 of 'em */ |
| which = ~0; |
| } |
| |
| out->nNodes = 0; |
| |
| if (which) |
| { |
| out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes); |
| |
| for (i = 0; i < in->nNodes; i++) |
| { |
| if (which & (1 << i)) |
| { |
| out->nodeNumbers[out->nNodes] = i; |
| out->nNodes++; |
| } |
| } |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * The SP-GiST query consistency check for leaf tuples |
| */ |
| Datum |
| inet_spg_leaf_consistent(PG_FUNCTION_ARGS) |
| { |
| spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0); |
| spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1); |
| inet *leaf = DatumGetInetPP(in->leafDatum); |
| |
| /* All tests are exact. */ |
| out->recheck = false; |
| |
| /* Leaf is what it is... */ |
| out->leafValue = InetPGetDatum(leaf); |
| |
| /* Use common code to apply the tests. */ |
| PG_RETURN_BOOL(inet_spg_consistent_bitmap(leaf, in->nkeys, in->scankeys, |
| true)); |
| } |
| |
| /* |
| * Calculate node number (within a 4-node, single-family inner index tuple) |
| * |
| * The value must have the same family as the node's prefix, and |
| * commonbits is the mask length of the prefix. We use even or odd |
| * nodes according to the next address bit after the commonbits, |
| * and low or high nodes according to whether the value's mask length |
| * is larger than commonbits. |
| */ |
| static int |
| inet_spg_node_number(const inet *val, int commonbits) |
| { |
| int nodeN = 0; |
| |
| if (commonbits < ip_maxbits(val) && |
| ip_addr(val)[commonbits / 8] & (1 << (7 - commonbits % 8))) |
| nodeN |= 1; |
| if (commonbits < ip_bits(val)) |
| nodeN |= 2; |
| |
| return nodeN; |
| } |
| |
| /* |
| * Calculate bitmap of node numbers that are consistent with the query |
| * |
| * This can be used either at a 4-way inner tuple, or at a leaf tuple. |
| * In the latter case, we should return a boolean result (0 or 1) |
| * not a bitmap. |
| * |
| * This definition is pretty odd, but the inner and leaf consistency checks |
| * are mostly common and it seems best to keep them in one function. |
| */ |
| static int |
| inet_spg_consistent_bitmap(const inet *prefix, int nkeys, ScanKey scankeys, |
| bool leaf) |
| { |
| int bitmap; |
| int commonbits, |
| i; |
| |
| /* Initialize result to allow visiting all children */ |
| if (leaf) |
| bitmap = 1; |
| else |
| bitmap = 1 | (1 << 1) | (1 << 2) | (1 << 3); |
| |
| commonbits = ip_bits(prefix); |
| |
| for (i = 0; i < nkeys; i++) |
| { |
| inet *argument = DatumGetInetPP(scankeys[i].sk_argument); |
| StrategyNumber strategy = scankeys[i].sk_strategy; |
| int order; |
| |
| /* |
| * Check 0: different families |
| * |
| * Matching families do not help any of the strategies. |
| */ |
| if (ip_family(argument) != ip_family(prefix)) |
| { |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (ip_family(argument) < ip_family(prefix)) |
| bitmap = 0; |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (ip_family(argument) > ip_family(prefix)) |
| bitmap = 0; |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| break; |
| |
| default: |
| /* For all other cases, we can be sure there is no match */ |
| bitmap = 0; |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| |
| /* Other checks make no sense with different families. */ |
| continue; |
| } |
| |
| /* |
| * Check 1: network bit count |
| * |
| * Network bit count (ip_bits) helps to check leaves for sub network |
| * and sup network operators. At non-leaf nodes, we know every child |
| * value has greater ip_bits, so we can avoid descending in some cases |
| * too. |
| * |
| * This check is less expensive than checking the address bits, so we |
| * are doing this before, but it has to be done after for the basic |
| * comparison strategies, because ip_bits only affect their results |
| * when the common network bits are the same. |
| */ |
| switch (strategy) |
| { |
| case RTSubStrategyNumber: |
| if (commonbits <= ip_bits(argument)) |
| bitmap &= (1 << 2) | (1 << 3); |
| break; |
| |
| case RTSubEqualStrategyNumber: |
| if (commonbits < ip_bits(argument)) |
| bitmap &= (1 << 2) | (1 << 3); |
| break; |
| |
| case RTSuperStrategyNumber: |
| if (commonbits == ip_bits(argument) - 1) |
| bitmap &= 1 | (1 << 1); |
| else if (commonbits >= ip_bits(argument)) |
| bitmap = 0; |
| break; |
| |
| case RTSuperEqualStrategyNumber: |
| if (commonbits == ip_bits(argument)) |
| bitmap &= 1 | (1 << 1); |
| else if (commonbits > ip_bits(argument)) |
| bitmap = 0; |
| break; |
| |
| case RTEqualStrategyNumber: |
| if (commonbits < ip_bits(argument)) |
| bitmap &= (1 << 2) | (1 << 3); |
| else if (commonbits == ip_bits(argument)) |
| bitmap &= 1 | (1 << 1); |
| else |
| bitmap = 0; |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| |
| /* |
| * Check 2: common network bits |
| * |
| * Compare available common prefix bits to the query, but not beyond |
| * either the query's netmask or the minimum netmask among the |
| * represented values. If these bits don't match the query, we can |
| * eliminate some cases. |
| */ |
| order = bitncmp(ip_addr(prefix), ip_addr(argument), |
| Min(commonbits, ip_bits(argument))); |
| |
| if (order != 0) |
| { |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (order > 0) |
| bitmap = 0; |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (order < 0) |
| bitmap = 0; |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| break; |
| |
| default: |
| /* For all other cases, we can be sure there is no match */ |
| bitmap = 0; |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| |
| /* |
| * Remaining checks make no sense when common bits don't match. |
| */ |
| continue; |
| } |
| |
| /* |
| * Check 3: next network bit |
| * |
| * We can filter out branch 2 or 3 using the next network bit of the |
| * argument, if it is available. |
| * |
| * This check matters for the performance of the search. The results |
| * would be correct without it. |
| */ |
| if (bitmap & ((1 << 2) | (1 << 3)) && |
| commonbits < ip_bits(argument)) |
| { |
| int nextbit; |
| |
| nextbit = ip_addr(argument)[commonbits / 8] & |
| (1 << (7 - commonbits % 8)); |
| |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (!nextbit) |
| bitmap &= 1 | (1 << 1) | (1 << 2); |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (nextbit) |
| bitmap &= 1 | (1 << 1) | (1 << 3); |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| break; |
| |
| default: |
| if (!nextbit) |
| bitmap &= 1 | (1 << 1) | (1 << 2); |
| else |
| bitmap &= 1 | (1 << 1) | (1 << 3); |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| } |
| |
| /* |
| * Remaining checks are only for the basic comparison strategies. This |
| * test relies on the strategy number ordering defined in stratnum.h. |
| */ |
| if (strategy < RTEqualStrategyNumber || |
| strategy > RTGreaterEqualStrategyNumber) |
| continue; |
| |
| /* |
| * Check 4: network bit count |
| * |
| * At this point, we know that the common network bits of the prefix |
| * and the argument are the same, so we can go forward and check the |
| * ip_bits. |
| */ |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (commonbits == ip_bits(argument)) |
| bitmap &= 1 | (1 << 1); |
| else if (commonbits > ip_bits(argument)) |
| bitmap = 0; |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (commonbits < ip_bits(argument)) |
| bitmap &= (1 << 2) | (1 << 3); |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| |
| /* Remaining checks don't make sense with different ip_bits. */ |
| if (commonbits != ip_bits(argument)) |
| continue; |
| |
| /* |
| * Check 5: next host bit |
| * |
| * We can filter out branch 0 or 1 using the next host bit of the |
| * argument, if it is available. |
| * |
| * This check matters for the performance of the search. The results |
| * would be correct without it. There is no point in running it for |
| * leafs as we have to check the whole address on the next step. |
| */ |
| if (!leaf && bitmap & (1 | (1 << 1)) && |
| commonbits < ip_maxbits(argument)) |
| { |
| int nextbit; |
| |
| nextbit = ip_addr(argument)[commonbits / 8] & |
| (1 << (7 - commonbits % 8)); |
| |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| case RTLessEqualStrategyNumber: |
| if (!nextbit) |
| bitmap &= 1 | (1 << 2) | (1 << 3); |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| case RTGreaterStrategyNumber: |
| if (nextbit) |
| bitmap &= (1 << 1) | (1 << 2) | (1 << 3); |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| break; |
| |
| default: |
| if (!nextbit) |
| bitmap &= 1 | (1 << 2) | (1 << 3); |
| else |
| bitmap &= (1 << 1) | (1 << 2) | (1 << 3); |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| } |
| |
| /* |
| * Check 6: whole address |
| * |
| * This is the last check for correctness of the basic comparison |
| * strategies. It's only appropriate at leaf entries. |
| */ |
| if (leaf) |
| { |
| /* Redo ordering comparison using all address bits */ |
| order = bitncmp(ip_addr(prefix), ip_addr(argument), |
| ip_maxbits(prefix)); |
| |
| switch (strategy) |
| { |
| case RTLessStrategyNumber: |
| if (order >= 0) |
| bitmap = 0; |
| break; |
| |
| case RTLessEqualStrategyNumber: |
| if (order > 0) |
| bitmap = 0; |
| break; |
| |
| case RTEqualStrategyNumber: |
| if (order != 0) |
| bitmap = 0; |
| break; |
| |
| case RTGreaterEqualStrategyNumber: |
| if (order < 0) |
| bitmap = 0; |
| break; |
| |
| case RTGreaterStrategyNumber: |
| if (order <= 0) |
| bitmap = 0; |
| break; |
| |
| case RTNotEqualStrategyNumber: |
| if (order == 0) |
| bitmap = 0; |
| break; |
| } |
| |
| if (!bitmap) |
| break; |
| } |
| } |
| |
| return bitmap; |
| } |