| /*------------------------------------------------------------------------- |
| * |
| * datetime.c |
| * Support functions for date/time types. |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/utils/adt/datetime.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include <ctype.h> |
| #include <limits.h> |
| #include <math.h> |
| |
| #include "access/htup_details.h" |
| #include "access/xact.h" |
| #include "catalog/pg_type.h" |
| #include "common/int.h" |
| #include "common/string.h" |
| #include "funcapi.h" |
| #include "miscadmin.h" |
| #include "nodes/nodeFuncs.h" |
| #include "parser/scansup.h" |
| #include "utils/builtins.h" |
| #include "utils/date.h" |
| #include "utils/guc.h" |
| #include "utils/datetime.h" |
| #include "utils/guc.h" |
| #include "utils/memutils.h" |
| #include "utils/tzparser.h" |
| |
| /* |
| * We don't support locale-aware month names or day-of-week names, or non-arabic numbers, |
| * and we know the only alpha or numeric chars we can handle are in the ASCII7 set. |
| * So we can use these replacements for the standard versions. |
| * I think these are faster. |
| */ |
| #undef isdigit |
| #define isdigit(x) ((x) >= '0' && (x) <= '9') |
| #undef isalpha |
| #define isalpha(x) (((x) >= 'a' && (x) <= 'z') || ((x) >= 'A' && (x) <= 'Z')) |
| #undef isalnum |
| #define isalnum(x) (isalpha(x) || isdigit(x)) |
| |
| static int DecodeNumber(int flen, char *str, bool haveTextMonth, |
| int fmask, int *tmask, |
| struct pg_tm *tm, fsec_t *fsec, bool *is2digits); |
| static int DecodeNumberField(int len, char *str, |
| int fmask, int *tmask, |
| struct pg_tm *tm, fsec_t *fsec, bool *is2digits); |
| static int DecodeTimeCommon(char *str, int fmask, int range, |
| int *tmask, struct pg_itm *itm); |
| static int DecodeTime(char *str, int fmask, int range, |
| int *tmask, struct pg_tm *tm, fsec_t *fsec); |
| static int DecodeTimeForInterval(char *str, int fmask, int range, |
| int *tmask, struct pg_itm_in *itm_in); |
| static const datetkn *datebsearch(const char *key, const datetkn *base, int nel); |
| static int DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, |
| struct pg_tm *tm); |
| static char *AppendSeconds(char *cp, int sec, fsec_t fsec, |
| int precision, bool fillzeros); |
| static bool int64_multiply_add(int64 val, int64 multiplier, int64 *sum); |
| static bool AdjustFractMicroseconds(double frac, int64 scale, |
| struct pg_itm_in *itm_in); |
| static bool AdjustFractDays(double frac, int scale, |
| struct pg_itm_in *itm_in); |
| static bool AdjustFractYears(double frac, int scale, |
| struct pg_itm_in *itm_in); |
| static bool AdjustMicroseconds(int64 val, double fval, int64 scale, |
| struct pg_itm_in *itm_in); |
| static bool AdjustDays(int64 val, int scale, |
| struct pg_itm_in *itm_in); |
| static bool AdjustMonths(int64 val, struct pg_itm_in *itm_in); |
| static bool AdjustYears(int64 val, int scale, |
| struct pg_itm_in *itm_in); |
| static int DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, |
| pg_time_t *tp); |
| static bool DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, |
| const char *abbr, pg_tz *tzp, |
| int *offset, int *isdst); |
| static pg_tz *FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp, |
| DateTimeErrorExtra *extra); |
| |
| |
| const int day_tab[2][13] = |
| { |
| {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0}, |
| {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 0} |
| }; |
| |
| const char *const months[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", NULL}; |
| |
| const char *const days[] = {"Sunday", "Monday", "Tuesday", "Wednesday", |
| "Thursday", "Friday", "Saturday", NULL}; |
| |
| |
| /***************************************************************************** |
| * PRIVATE ROUTINES * |
| *****************************************************************************/ |
| |
| /* |
| * datetktbl holds date/time keywords. |
| * |
| * Note that this table must be strictly alphabetically ordered to allow an |
| * O(ln(N)) search algorithm to be used. |
| * |
| * The token field must be NUL-terminated; we truncate entries to TOKMAXLEN |
| * characters to fit. |
| * |
| * The static table contains no TZ, DTZ, or DYNTZ entries; rather those |
| * are loaded from configuration files and stored in zoneabbrevtbl, whose |
| * abbrevs[] field has the same format as the static datetktbl. |
| */ |
| static const datetkn datetktbl[] = { |
| /* token, type, value */ |
| {"+infinity", RESERV, DTK_LATE}, /* same as "infinity" */ |
| {EARLY, RESERV, DTK_EARLY}, /* "-infinity" reserved for "early time" */ |
| {DA_D, ADBC, AD}, /* "ad" for years > 0 */ |
| {"allballs", RESERV, DTK_ZULU}, /* 00:00:00 */ |
| {"am", AMPM, AM}, |
| {"apr", MONTH, 4}, |
| {"april", MONTH, 4}, |
| {"at", IGNORE_DTF, 0}, /* "at" (throwaway) */ |
| {"aug", MONTH, 8}, |
| {"august", MONTH, 8}, |
| {DB_C, ADBC, BC}, /* "bc" for years <= 0 */ |
| {"d", UNITS, DTK_DAY}, /* "day of month" for ISO input */ |
| {"dec", MONTH, 12}, |
| {"december", MONTH, 12}, |
| {"dow", UNITS, DTK_DOW}, /* day of week */ |
| {"doy", UNITS, DTK_DOY}, /* day of year */ |
| {"dst", DTZMOD, SECS_PER_HOUR}, |
| {EPOCH, RESERV, DTK_EPOCH}, /* "epoch" reserved for system epoch time */ |
| {"feb", MONTH, 2}, |
| {"february", MONTH, 2}, |
| {"fri", DOW, 5}, |
| {"friday", DOW, 5}, |
| {"h", UNITS, DTK_HOUR}, /* "hour" */ |
| {LATE, RESERV, DTK_LATE}, /* "infinity" reserved for "late time" */ |
| {"isodow", UNITS, DTK_ISODOW}, /* ISO day of week, Sunday == 7 */ |
| {"isoyear", UNITS, DTK_ISOYEAR}, /* year in terms of the ISO week date */ |
| {"j", UNITS, DTK_JULIAN}, |
| {"jan", MONTH, 1}, |
| {"january", MONTH, 1}, |
| {"jd", UNITS, DTK_JULIAN}, |
| {"jul", MONTH, 7}, |
| {"julian", UNITS, DTK_JULIAN}, |
| {"july", MONTH, 7}, |
| {"jun", MONTH, 6}, |
| {"june", MONTH, 6}, |
| {"m", UNITS, DTK_MONTH}, /* "month" for ISO input */ |
| {"mar", MONTH, 3}, |
| {"march", MONTH, 3}, |
| {"may", MONTH, 5}, |
| {"mm", UNITS, DTK_MINUTE}, /* "minute" for ISO input */ |
| {"mon", DOW, 1}, |
| {"monday", DOW, 1}, |
| {"nov", MONTH, 11}, |
| {"november", MONTH, 11}, |
| {NOW, RESERV, DTK_NOW}, /* current transaction time */ |
| {"oct", MONTH, 10}, |
| {"october", MONTH, 10}, |
| {"on", IGNORE_DTF, 0}, /* "on" (throwaway) */ |
| {"pm", AMPM, PM}, |
| {"s", UNITS, DTK_SECOND}, /* "seconds" for ISO input */ |
| {"sat", DOW, 6}, |
| {"saturday", DOW, 6}, |
| {"sep", MONTH, 9}, |
| {"sept", MONTH, 9}, |
| {"september", MONTH, 9}, |
| {"sun", DOW, 0}, |
| {"sunday", DOW, 0}, |
| {"t", ISOTIME, DTK_TIME}, /* Filler for ISO time fields */ |
| {"thu", DOW, 4}, |
| {"thur", DOW, 4}, |
| {"thurs", DOW, 4}, |
| {"thursday", DOW, 4}, |
| {TODAY, RESERV, DTK_TODAY}, /* midnight */ |
| {TOMORROW, RESERV, DTK_TOMORROW}, /* tomorrow midnight */ |
| {"tue", DOW, 2}, |
| {"tues", DOW, 2}, |
| {"tuesday", DOW, 2}, |
| {"wed", DOW, 3}, |
| {"wednesday", DOW, 3}, |
| {"weds", DOW, 3}, |
| {"y", UNITS, DTK_YEAR}, /* "year" for ISO input */ |
| {YESTERDAY, RESERV, DTK_YESTERDAY} /* yesterday midnight */ |
| }; |
| |
| static const int szdatetktbl = sizeof datetktbl / sizeof datetktbl[0]; |
| |
| /* |
| * deltatktbl: same format as datetktbl, but holds keywords used to represent |
| * time units (eg, for intervals, and for EXTRACT). |
| */ |
| static const datetkn deltatktbl[] = { |
| /* token, type, value */ |
| {"@", IGNORE_DTF, 0}, /* postgres relative prefix */ |
| {DAGO, AGO, 0}, /* "ago" indicates negative time offset */ |
| {"c", UNITS, DTK_CENTURY}, /* "century" relative */ |
| {"cent", UNITS, DTK_CENTURY}, /* "century" relative */ |
| {"centuries", UNITS, DTK_CENTURY}, /* "centuries" relative */ |
| {DCENTURY, UNITS, DTK_CENTURY}, /* "century" relative */ |
| {"d", UNITS, DTK_DAY}, /* "day" relative */ |
| {DDAY, UNITS, DTK_DAY}, /* "day" relative */ |
| {"days", UNITS, DTK_DAY}, /* "days" relative */ |
| {"dec", UNITS, DTK_DECADE}, /* "decade" relative */ |
| {DDECADE, UNITS, DTK_DECADE}, /* "decade" relative */ |
| {"decades", UNITS, DTK_DECADE}, /* "decades" relative */ |
| {"decs", UNITS, DTK_DECADE}, /* "decades" relative */ |
| {"h", UNITS, DTK_HOUR}, /* "hour" relative */ |
| {DHOUR, UNITS, DTK_HOUR}, /* "hour" relative */ |
| {"hours", UNITS, DTK_HOUR}, /* "hours" relative */ |
| {"hr", UNITS, DTK_HOUR}, /* "hour" relative */ |
| {"hrs", UNITS, DTK_HOUR}, /* "hours" relative */ |
| {"m", UNITS, DTK_MINUTE}, /* "minute" relative */ |
| {"microsecon", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| {"mil", UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ |
| {"millennia", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ |
| {DMILLENNIUM, UNITS, DTK_MILLENNIUM}, /* "millennium" relative */ |
| {"millisecon", UNITS, DTK_MILLISEC}, /* relative */ |
| {"mils", UNITS, DTK_MILLENNIUM}, /* "millennia" relative */ |
| {"min", UNITS, DTK_MINUTE}, /* "minute" relative */ |
| {"mins", UNITS, DTK_MINUTE}, /* "minutes" relative */ |
| {DMINUTE, UNITS, DTK_MINUTE}, /* "minute" relative */ |
| {"minutes", UNITS, DTK_MINUTE}, /* "minutes" relative */ |
| {"mon", UNITS, DTK_MONTH}, /* "months" relative */ |
| {"mons", UNITS, DTK_MONTH}, /* "months" relative */ |
| {DMONTH, UNITS, DTK_MONTH}, /* "month" relative */ |
| {"months", UNITS, DTK_MONTH}, |
| {"ms", UNITS, DTK_MILLISEC}, |
| {"msec", UNITS, DTK_MILLISEC}, |
| {DMILLISEC, UNITS, DTK_MILLISEC}, |
| {"mseconds", UNITS, DTK_MILLISEC}, |
| {"msecs", UNITS, DTK_MILLISEC}, |
| {"qtr", UNITS, DTK_QUARTER}, /* "quarter" relative */ |
| {DQUARTER, UNITS, DTK_QUARTER}, /* "quarter" relative */ |
| {"s", UNITS, DTK_SECOND}, |
| {"sec", UNITS, DTK_SECOND}, |
| {DSECOND, UNITS, DTK_SECOND}, |
| {"seconds", UNITS, DTK_SECOND}, |
| {"secs", UNITS, DTK_SECOND}, |
| {DTIMEZONE, UNITS, DTK_TZ}, /* "timezone" time offset */ |
| {"timezone_h", UNITS, DTK_TZ_HOUR}, /* timezone hour units */ |
| {"timezone_m", UNITS, DTK_TZ_MINUTE}, /* timezone minutes units */ |
| {"us", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| {"usec", UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| {DMICROSEC, UNITS, DTK_MICROSEC}, /* "microsecond" relative */ |
| {"useconds", UNITS, DTK_MICROSEC}, /* "microseconds" relative */ |
| {"usecs", UNITS, DTK_MICROSEC}, /* "microseconds" relative */ |
| {"w", UNITS, DTK_WEEK}, /* "week" relative */ |
| {DWEEK, UNITS, DTK_WEEK}, /* "week" relative */ |
| {"weeks", UNITS, DTK_WEEK}, /* "weeks" relative */ |
| {"y", UNITS, DTK_YEAR}, /* "year" relative */ |
| {DYEAR, UNITS, DTK_YEAR}, /* "year" relative */ |
| {"years", UNITS, DTK_YEAR}, /* "years" relative */ |
| {"yr", UNITS, DTK_YEAR}, /* "year" relative */ |
| {"yrs", UNITS, DTK_YEAR} /* "years" relative */ |
| }; |
| |
| static const int szdeltatktbl = sizeof deltatktbl / sizeof deltatktbl[0]; |
| |
| static TimeZoneAbbrevTable *zoneabbrevtbl = NULL; |
| |
| /* Caches of recent lookup results in the above tables */ |
| |
| static const datetkn *datecache[MAXDATEFIELDS] = {NULL}; |
| |
| static const datetkn *deltacache[MAXDATEFIELDS] = {NULL}; |
| |
| static const datetkn *abbrevcache[MAXDATEFIELDS] = {NULL}; |
| |
| |
| /* |
| * Calendar time to Julian date conversions. |
| * Julian date is commonly used in astronomical applications, |
| * since it is numerically accurate and computationally simple. |
| * The algorithms here will accurately convert between Julian day |
| * and calendar date for all non-negative Julian days |
| * (i.e. from Nov 24, -4713 on). |
| * |
| * Rewritten to eliminate overflow problems. This now allows the |
| * routines to work correctly for all Julian day counts from |
| * 0 to 2147483647 (Nov 24, -4713 to Jun 3, 5874898) assuming |
| * a 32-bit integer. Longer types should also work to the limits |
| * of their precision. |
| * |
| * Actually, date2j() will work sanely, in the sense of producing |
| * valid negative Julian dates, significantly before Nov 24, -4713. |
| * We rely on it to do so back to Nov 1, -4713; see IS_VALID_JULIAN() |
| * and associated commentary in timestamp.h. |
| */ |
| |
| int |
| date2j(int year, int month, int day) |
| { |
| int julian; |
| int century; |
| |
| if (month > 2) |
| { |
| month += 1; |
| year += 4800; |
| } |
| else |
| { |
| month += 13; |
| year += 4799; |
| } |
| |
| century = year / 100; |
| julian = year * 365 - 32167; |
| julian += year / 4 - century + century / 4; |
| julian += 7834 * month / 256 + day; |
| |
| return julian; |
| } /* date2j() */ |
| |
| void |
| j2date(int jd, int *year, int *month, int *day) |
| { |
| unsigned int julian; |
| unsigned int quad; |
| unsigned int extra; |
| int y; |
| |
| julian = jd; |
| julian += 32044; |
| quad = julian / 146097; |
| extra = (julian - quad * 146097) * 4 + 3; |
| julian += 60 + quad * 3 + extra / 146097; |
| quad = julian / 1461; |
| julian -= quad * 1461; |
| y = julian * 4 / 1461; |
| julian = ((y != 0) ? ((julian + 305) % 365) : ((julian + 306) % 366)) |
| + 123; |
| y += quad * 4; |
| *year = y - 4800; |
| quad = julian * 2141 / 65536; |
| *day = julian - 7834 * quad / 256; |
| *month = (quad + 10) % MONTHS_PER_YEAR + 1; |
| } /* j2date() */ |
| |
| |
| /* |
| * j2day - convert Julian date to day-of-week (0..6 == Sun..Sat) |
| * |
| * Note: various places use the locution j2day(date - 1) to produce a |
| * result according to the convention 0..6 = Mon..Sun. This is a bit of |
| * a crock, but will work as long as the computation here is just a modulo. |
| */ |
| int |
| j2day(int date) |
| { |
| date += 1; |
| date %= 7; |
| /* Cope if division truncates towards zero, as it probably does */ |
| if (date < 0) |
| date += 7; |
| |
| return date; |
| } /* j2day() */ |
| |
| |
| /* |
| * GetCurrentDateTime() |
| * |
| * Get the transaction start time ("now()") broken down as a struct pg_tm, |
| * converted according to the session timezone setting. |
| * |
| * This is just a convenience wrapper for GetCurrentTimeUsec, to cover the |
| * case where caller doesn't need either fractional seconds or tz offset. |
| */ |
| void |
| GetCurrentDateTime(struct pg_tm *tm) |
| { |
| fsec_t fsec; |
| |
| GetCurrentTimeUsec(tm, &fsec, NULL); |
| } |
| |
| /* |
| * GetCurrentTimeUsec() |
| * |
| * Get the transaction start time ("now()") broken down as a struct pg_tm, |
| * including fractional seconds and timezone offset. The time is converted |
| * according to the session timezone setting. |
| * |
| * Callers may pass tzp = NULL if they don't need the offset, but this does |
| * not affect the conversion behavior (unlike timestamp2tm()). |
| * |
| * Internally, we cache the result, since this could be called many times |
| * in a transaction, within which now() doesn't change. |
| */ |
| void |
| GetCurrentTimeUsec(struct pg_tm *tm, fsec_t *fsec, int *tzp) |
| { |
| TimestampTz cur_ts = GetCurrentTransactionStartTimestamp(); |
| |
| /* |
| * The cache key must include both current time and current timezone. By |
| * representing the timezone by just a pointer, we're assuming that |
| * distinct timezone settings could never have the same pointer value. |
| * This is true by virtue of the hashtable used inside pg_tzset(); |
| * however, it might need another look if we ever allow entries in that |
| * hash to be recycled. |
| */ |
| static TimestampTz cache_ts = 0; |
| static pg_tz *cache_timezone = NULL; |
| static struct pg_tm cache_tm; |
| static fsec_t cache_fsec; |
| static int cache_tz; |
| |
| if (cur_ts != cache_ts || session_timezone != cache_timezone) |
| { |
| /* |
| * Make sure cache is marked invalid in case of error after partial |
| * update within timestamp2tm. |
| */ |
| cache_timezone = NULL; |
| |
| /* |
| * Perform the computation, storing results into cache. We do not |
| * really expect any error here, since current time surely ought to be |
| * within range, but check just for sanity's sake. |
| */ |
| if (timestamp2tm(cur_ts, &cache_tz, &cache_tm, &cache_fsec, |
| NULL, session_timezone) != 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), |
| errmsg("timestamp out of range"))); |
| |
| /* OK, so mark the cache valid. */ |
| cache_ts = cur_ts; |
| cache_timezone = session_timezone; |
| } |
| |
| *tm = cache_tm; |
| *fsec = cache_fsec; |
| if (tzp != NULL) |
| *tzp = cache_tz; |
| } |
| |
| |
| /* |
| * Append seconds and fractional seconds (if any) at *cp. |
| * |
| * precision is the max number of fraction digits, fillzeros says to |
| * pad to two integral-seconds digits. |
| * |
| * Returns a pointer to the new end of string. No NUL terminator is put |
| * there; callers are responsible for NUL terminating str themselves. |
| * |
| * Note that any sign is stripped from the input sec and fsec values. |
| */ |
| static char * |
| AppendSeconds(char *cp, int sec, fsec_t fsec, int precision, bool fillzeros) |
| { |
| Assert(precision >= 0); |
| |
| if (fillzeros) |
| cp = pg_ultostr_zeropad(cp, abs(sec), 2); |
| else |
| cp = pg_ultostr(cp, abs(sec)); |
| |
| /* fsec_t is just an int32 */ |
| if (fsec != 0) |
| { |
| int32 value = abs(fsec); |
| char *end = &cp[precision + 1]; |
| bool gotnonzero = false; |
| |
| *cp++ = '.'; |
| |
| /* |
| * Append the fractional seconds part. Note that we don't want any |
| * trailing zeros here, so since we're building the number in reverse |
| * we'll skip appending zeros until we've output a non-zero digit. |
| */ |
| while (precision--) |
| { |
| int32 oldval = value; |
| int32 remainder; |
| |
| value /= 10; |
| remainder = oldval - value * 10; |
| |
| /* check if we got a non-zero */ |
| if (remainder) |
| gotnonzero = true; |
| |
| if (gotnonzero) |
| cp[precision] = '0' + remainder; |
| else |
| end = &cp[precision]; |
| } |
| |
| /* |
| * If we still have a non-zero value then precision must have not been |
| * enough to print the number. We punt the problem to pg_ultostr(), |
| * which will generate a correct answer in the minimum valid width. |
| */ |
| if (value) |
| return pg_ultostr(cp, abs(fsec)); |
| |
| return end; |
| } |
| else |
| return cp; |
| } |
| |
| |
| /* |
| * Variant of above that's specialized to timestamp case. |
| * |
| * Returns a pointer to the new end of string. No NUL terminator is put |
| * there; callers are responsible for NUL terminating str themselves. |
| */ |
| static char * |
| AppendTimestampSeconds(char *cp, struct pg_tm *tm, fsec_t fsec) |
| { |
| return AppendSeconds(cp, tm->tm_sec, fsec, MAX_TIMESTAMP_PRECISION, true); |
| } |
| |
| |
| /* |
| * Add val * multiplier to *sum. |
| * Returns true if successful, false on overflow. |
| */ |
| static bool |
| int64_multiply_add(int64 val, int64 multiplier, int64 *sum) |
| { |
| int64 product; |
| |
| if (pg_mul_s64_overflow(val, multiplier, &product) || |
| pg_add_s64_overflow(*sum, product, sum)) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Multiply frac by scale (to produce microseconds) and add to itm_in->tm_usec. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustFractMicroseconds(double frac, int64 scale, |
| struct pg_itm_in *itm_in) |
| { |
| int64 usec; |
| |
| /* Fast path for common case */ |
| if (frac == 0) |
| return true; |
| |
| /* |
| * We assume the input frac has abs value less than 1, so overflow of frac |
| * or usec is not an issue for interesting values of scale. |
| */ |
| frac *= scale; |
| usec = (int64) frac; |
| |
| /* Round off any fractional microsecond */ |
| frac -= usec; |
| if (frac > 0.5) |
| usec++; |
| else if (frac < -0.5) |
| usec--; |
| |
| return !pg_add_s64_overflow(itm_in->tm_usec, usec, &itm_in->tm_usec); |
| } |
| |
| /* |
| * Multiply frac by scale (to produce days). Add the integral part of the |
| * result to itm_in->tm_mday, the fractional part to itm_in->tm_usec. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustFractDays(double frac, int scale, |
| struct pg_itm_in *itm_in) |
| { |
| int extra_days; |
| |
| /* Fast path for common case */ |
| if (frac == 0) |
| return true; |
| |
| /* |
| * We assume the input frac has abs value less than 1, so overflow of frac |
| * or extra_days is not an issue. |
| */ |
| frac *= scale; |
| extra_days = (int) frac; |
| |
| /* ... but this could overflow, if tm_mday is already nonzero */ |
| if (pg_add_s32_overflow(itm_in->tm_mday, extra_days, &itm_in->tm_mday)) |
| return false; |
| |
| /* Handle any fractional day */ |
| frac -= extra_days; |
| return AdjustFractMicroseconds(frac, USECS_PER_DAY, itm_in); |
| } |
| |
| /* |
| * Multiply frac by scale (to produce years), then further scale up to months. |
| * Add the integral part of the result to itm_in->tm_mon, discarding any |
| * fractional part. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustFractYears(double frac, int scale, |
| struct pg_itm_in *itm_in) |
| { |
| /* |
| * As above, we assume abs(frac) < 1, so this can't overflow for any |
| * interesting value of scale. |
| */ |
| int extra_months = (int) rint(frac * scale * MONTHS_PER_YEAR); |
| |
| return !pg_add_s32_overflow(itm_in->tm_mon, extra_months, &itm_in->tm_mon); |
| } |
| |
| /* |
| * Add (val + fval) * scale to itm_in->tm_usec. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustMicroseconds(int64 val, double fval, int64 scale, |
| struct pg_itm_in *itm_in) |
| { |
| /* Handle the integer part */ |
| if (!int64_multiply_add(val, scale, &itm_in->tm_usec)) |
| return false; |
| /* Handle the float part */ |
| return AdjustFractMicroseconds(fval, scale, itm_in); |
| } |
| |
| /* |
| * Multiply val by scale (to produce days) and add to itm_in->tm_mday. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustDays(int64 val, int scale, struct pg_itm_in *itm_in) |
| { |
| int days; |
| |
| if (val < INT_MIN || val > INT_MAX) |
| return false; |
| return !pg_mul_s32_overflow((int32) val, scale, &days) && |
| !pg_add_s32_overflow(itm_in->tm_mday, days, &itm_in->tm_mday); |
| } |
| |
| /* |
| * Add val to itm_in->tm_mon (no need for scale here, as val is always |
| * in months already). |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustMonths(int64 val, struct pg_itm_in *itm_in) |
| { |
| if (val < INT_MIN || val > INT_MAX) |
| return false; |
| return !pg_add_s32_overflow(itm_in->tm_mon, (int32) val, &itm_in->tm_mon); |
| } |
| |
| /* |
| * Multiply val by scale (to produce years) and add to itm_in->tm_year. |
| * Returns true if successful, false if itm_in overflows. |
| */ |
| static bool |
| AdjustYears(int64 val, int scale, |
| struct pg_itm_in *itm_in) |
| { |
| int years; |
| |
| if (val < INT_MIN || val > INT_MAX) |
| return false; |
| return !pg_mul_s32_overflow((int32) val, scale, &years) && |
| !pg_add_s32_overflow(itm_in->tm_year, years, &itm_in->tm_year); |
| } |
| |
| |
| /* |
| * Parse the fractional part of a number (decimal point and optional digits, |
| * followed by end of string). Returns the fractional value into *frac. |
| * |
| * Returns 0 if successful, DTERR code if bogus input detected. |
| */ |
| static int |
| ParseFraction(char *cp, double *frac) |
| { |
| /* Caller should always pass the start of the fraction part */ |
| Assert(*cp == '.'); |
| |
| /* |
| * We want to allow just "." with no digits, but some versions of strtod |
| * will report EINVAL for that, so special-case it. |
| */ |
| if (cp[1] == '\0') |
| { |
| *frac = 0; |
| } |
| else |
| { |
| errno = 0; |
| *frac = strtod(cp, &cp); |
| /* check for parse failure */ |
| if (*cp != '\0' || errno != 0) |
| return DTERR_BAD_FORMAT; |
| } |
| return 0; |
| } |
| |
| /* |
| * Fetch a fractional-second value with suitable error checking. |
| * Same as ParseFraction except we convert the result to integer microseconds. |
| */ |
| static int |
| ParseFractionalSecond(char *cp, fsec_t *fsec) |
| { |
| double frac; |
| int dterr; |
| |
| dterr = ParseFraction(cp, &frac); |
| if (dterr) |
| return dterr; |
| *fsec = rint(frac * 1000000); |
| return 0; |
| } |
| |
| |
| /* ParseDateTime() |
| * Break string into tokens based on a date/time context. |
| * Returns 0 if successful, DTERR code if bogus input detected. |
| * |
| * timestr - the input string |
| * workbuf - workspace for field string storage. This must be |
| * larger than the largest legal input for this datetime type -- |
| * some additional space will be needed to NUL terminate fields. |
| * buflen - the size of workbuf |
| * field[] - pointers to field strings are returned in this array |
| * ftype[] - field type indicators are returned in this array |
| * maxfields - dimensions of the above two arrays |
| * *numfields - set to the actual number of fields detected |
| * |
| * The fields extracted from the input are stored as separate, |
| * null-terminated strings in the workspace at workbuf. Any text is |
| * converted to lower case. |
| * |
| * Several field types are assigned: |
| * DTK_NUMBER - digits and (possibly) a decimal point |
| * DTK_DATE - digits and two delimiters, or digits and text |
| * DTK_TIME - digits, colon delimiters, and possibly a decimal point |
| * DTK_STRING - text (no digits or punctuation) |
| * DTK_SPECIAL - leading "+" or "-" followed by text |
| * DTK_TZ - leading "+" or "-" followed by digits (also eats ':', '.', '-') |
| * |
| * Note that some field types can hold unexpected items: |
| * DTK_NUMBER can hold date fields (yy.ddd) |
| * DTK_STRING can hold months (January) and time zones (PST) |
| * DTK_DATE can hold time zone names (America/New_York, GMT-8) |
| */ |
| int |
| ParseDateTime(const char *timestr, char *workbuf, size_t buflen, |
| char **field, int *ftype, int maxfields, int *numfields) |
| { |
| int nf = 0; |
| const char *cp = timestr; |
| char *bufp = workbuf; |
| const char *bufend = workbuf + buflen; |
| |
| /* |
| * Set the character pointed-to by "bufptr" to "newchar", and increment |
| * "bufptr". "end" gives the end of the buffer -- we return an error if |
| * there is no space left to append a character to the buffer. Note that |
| * "bufptr" is evaluated twice. |
| */ |
| #define APPEND_CHAR(bufptr, end, newchar) \ |
| do \ |
| { \ |
| if (((bufptr) + 1) >= (end)) \ |
| return DTERR_BAD_FORMAT; \ |
| *(bufptr)++ = newchar; \ |
| } while (0) |
| |
| /* outer loop through fields */ |
| while (*cp != '\0') |
| { |
| /* Ignore spaces between fields */ |
| if (isspace((unsigned char) *cp)) |
| { |
| cp++; |
| continue; |
| } |
| |
| /* Record start of current field */ |
| if (nf >= maxfields) |
| return DTERR_BAD_FORMAT; |
| field[nf] = bufp; |
| |
| /* leading digit? then date or time */ |
| if (isdigit((unsigned char) *cp)) |
| { |
| APPEND_CHAR(bufp, bufend, *cp++); |
| while (isdigit((unsigned char) *cp)) |
| APPEND_CHAR(bufp, bufend, *cp++); |
| |
| /* time field? */ |
| if (*cp == ':') |
| { |
| ftype[nf] = DTK_TIME; |
| APPEND_CHAR(bufp, bufend, *cp++); |
| while (isdigit((unsigned char) *cp) || |
| (*cp == ':') || (*cp == '.')) |
| APPEND_CHAR(bufp, bufend, *cp++); |
| } |
| /* date field? allow embedded text month */ |
| else if (*cp == '-' || *cp == '/' || *cp == '.') |
| { |
| /* save delimiting character to use later */ |
| char delim = *cp; |
| |
| APPEND_CHAR(bufp, bufend, *cp++); |
| /* second field is all digits? then no embedded text month */ |
| if (isdigit((unsigned char) *cp)) |
| { |
| ftype[nf] = ((delim == '.') ? DTK_NUMBER : DTK_DATE); |
| while (isdigit((unsigned char) *cp)) |
| APPEND_CHAR(bufp, bufend, *cp++); |
| |
| /* |
| * insist that the delimiters match to get a three-field |
| * date. |
| */ |
| if (*cp == delim) |
| { |
| ftype[nf] = DTK_DATE; |
| APPEND_CHAR(bufp, bufend, *cp++); |
| while (isdigit((unsigned char) *cp) || *cp == delim) |
| APPEND_CHAR(bufp, bufend, *cp++); |
| } |
| } |
| else |
| { |
| ftype[nf] = DTK_DATE; |
| while (isalnum((unsigned char) *cp) || *cp == delim) |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| } |
| } |
| |
| /* |
| * otherwise, number only and will determine year, month, day, or |
| * concatenated fields later... |
| */ |
| else |
| ftype[nf] = DTK_NUMBER; |
| } |
| /* Leading decimal point? Then fractional seconds... */ |
| else if (*cp == '.') |
| { |
| APPEND_CHAR(bufp, bufend, *cp++); |
| while (isdigit((unsigned char) *cp)) |
| APPEND_CHAR(bufp, bufend, *cp++); |
| |
| ftype[nf] = DTK_NUMBER; |
| } |
| |
| /* |
| * text? then date string, month, day of week, special, or timezone |
| */ |
| else if (isalpha((unsigned char) *cp)) |
| { |
| bool is_date; |
| |
| ftype[nf] = DTK_STRING; |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| while (isalpha((unsigned char) *cp)) |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| |
| /* |
| * Dates can have embedded '-', '/', or '.' separators. It could |
| * also be a timezone name containing embedded '/', '+', '-', '_', |
| * or ':' (but '_' or ':' can't be the first punctuation). If the |
| * next character is a digit or '+', we need to check whether what |
| * we have so far is a recognized non-timezone keyword --- if so, |
| * don't believe that this is the start of a timezone. |
| */ |
| is_date = false; |
| if (*cp == '-' || *cp == '/' || *cp == '.') |
| is_date = true; |
| else if (*cp == '+' || isdigit((unsigned char) *cp)) |
| { |
| *bufp = '\0'; /* null-terminate current field value */ |
| /* we need search only the core token table, not TZ names */ |
| if (datebsearch(field[nf], datetktbl, szdatetktbl) == NULL) |
| is_date = true; |
| } |
| if (is_date) |
| { |
| ftype[nf] = DTK_DATE; |
| do |
| { |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| } while (*cp == '+' || *cp == '-' || |
| *cp == '/' || *cp == '_' || |
| *cp == '.' || *cp == ':' || |
| isalnum((unsigned char) *cp)); |
| } |
| } |
| /* sign? then special or numeric timezone */ |
| else if (*cp == '+' || *cp == '-') |
| { |
| APPEND_CHAR(bufp, bufend, *cp++); |
| /* soak up leading whitespace */ |
| while (isspace((unsigned char) *cp)) |
| cp++; |
| /* numeric timezone? */ |
| /* note that "DTK_TZ" could also be a signed float or yyyy-mm */ |
| if (isdigit((unsigned char) *cp)) |
| { |
| ftype[nf] = DTK_TZ; |
| APPEND_CHAR(bufp, bufend, *cp++); |
| while (isdigit((unsigned char) *cp) || |
| *cp == ':' || *cp == '.' || *cp == '-') |
| APPEND_CHAR(bufp, bufend, *cp++); |
| } |
| /* special? */ |
| else if (isalpha((unsigned char) *cp)) |
| { |
| ftype[nf] = DTK_SPECIAL; |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| while (isalpha((unsigned char) *cp)) |
| APPEND_CHAR(bufp, bufend, pg_tolower((unsigned char) *cp++)); |
| } |
| /* otherwise something wrong... */ |
| else |
| return DTERR_BAD_FORMAT; |
| } |
| /* ignore other punctuation but use as delimiter */ |
| else if (ispunct((unsigned char) *cp)) |
| { |
| cp++; |
| continue; |
| } |
| /* otherwise, something is not right... */ |
| else |
| return DTERR_BAD_FORMAT; |
| |
| /* force in a delimiter after each field */ |
| *bufp++ = '\0'; |
| nf++; |
| } |
| |
| *numfields = nf; |
| |
| return 0; |
| } |
| |
| |
| /* DecodeDateTime() |
| * Interpret previously parsed fields for general date and time. |
| * Return 0 if full date, 1 if only time, and negative DTERR code if problems. |
| * (Currently, all callers treat 1 as an error return too.) |
| * |
| * Inputs are field[] and ftype[] arrays, of length nf. |
| * Other arguments are outputs. |
| * |
| * External format(s): |
| * "<weekday> <month>-<day>-<year> <hour>:<minute>:<second>" |
| * "Fri Feb-7-1997 15:23:27" |
| * "Feb-7-1997 15:23:27" |
| * "2-7-1997 15:23:27" |
| * "1997-2-7 15:23:27" |
| * "1997.038 15:23:27" (day of year 1-366) |
| * Also supports input in compact time: |
| * "970207 152327" |
| * "97038 152327" |
| * "20011225T040506.789-07" |
| * |
| * Use the system-provided functions to get the current time zone |
| * if not specified in the input string. |
| * |
| * If the date is outside the range of pg_time_t (in practice that could only |
| * happen if pg_time_t is just 32 bits), then assume UTC time zone - thomas |
| * 1997-05-27 |
| */ |
| int |
| DecodeDateTime(char **field, int *ftype, int nf, |
| int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, |
| DateTimeErrorExtra *extra) |
| { |
| int fmask = 0, |
| tmask, |
| type; |
| int ptype = 0; /* "prefix type" for ISO and Julian formats */ |
| int i; |
| int val; |
| int dterr; |
| int mer = HR24; |
| bool haveTextMonth = false; |
| bool isjulian = false; |
| bool is2digits = false; |
| bool bc = false; |
| pg_tz *namedTz = NULL; |
| pg_tz *abbrevTz = NULL; |
| pg_tz *valtz; |
| char *abbrev = NULL; |
| struct pg_tm cur_tm; |
| |
| /* |
| * We'll insist on at least all of the date fields, but initialize the |
| * remaining fields in case they are not set later... |
| */ |
| *dtype = DTK_DATE; |
| tm->tm_hour = 0; |
| tm->tm_min = 0; |
| tm->tm_sec = 0; |
| *fsec = 0; |
| /* don't know daylight savings time status apriori */ |
| tm->tm_isdst = -1; |
| if (tzp != NULL) |
| *tzp = 0; |
| |
| for (i = 0; i < nf; i++) |
| { |
| switch (ftype[i]) |
| { |
| case DTK_DATE: |
| |
| /* |
| * Integral julian day with attached time zone? All other |
| * forms with JD will be separated into distinct fields, so we |
| * handle just this case here. |
| */ |
| if (ptype == DTK_JULIAN) |
| { |
| char *cp; |
| int jday; |
| |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| errno = 0; |
| jday = strtoint(field[i], &cp, 10); |
| if (errno == ERANGE || jday < 0) |
| return DTERR_FIELD_OVERFLOW; |
| |
| j2date(jday, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| isjulian = true; |
| |
| /* Get the time zone from the end of the string */ |
| dterr = DecodeTimezone(cp, tzp); |
| if (dterr) |
| return dterr; |
| |
| tmask = DTK_DATE_M | DTK_TIME_M | DTK_M(TZ); |
| ptype = 0; |
| break; |
| } |
| |
| /* |
| * Already have a date? Then this might be a time zone name |
| * with embedded punctuation (e.g. "America/New_York") or a |
| * run-together time with trailing time zone (e.g. hhmmss-zz). |
| * - thomas 2001-12-25 |
| * |
| * We consider it a time zone if we already have month & day. |
| * This is to allow the form "mmm dd hhmmss tz year", which |
| * we've historically accepted. |
| */ |
| else if (ptype != 0 || |
| ((fmask & (DTK_M(MONTH) | DTK_M(DAY))) == |
| (DTK_M(MONTH) | DTK_M(DAY)))) |
| { |
| /* No time zone accepted? Then quit... */ |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| if (isdigit((unsigned char) *field[i]) || ptype != 0) |
| { |
| char *cp; |
| |
| /* |
| * Allow a preceding "t" field, but no other units. |
| */ |
| if (ptype != 0) |
| { |
| /* Sanity check; should not fail this test */ |
| if (ptype != DTK_TIME) |
| return DTERR_BAD_FORMAT; |
| ptype = 0; |
| } |
| |
| /* |
| * Starts with a digit but we already have a time |
| * field? Then we are in trouble with a date and time |
| * already... |
| */ |
| if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| return DTERR_BAD_FORMAT; |
| |
| if ((cp = strchr(field[i], '-')) == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| /* Get the time zone from the end of the string */ |
| dterr = DecodeTimezone(cp, tzp); |
| if (dterr) |
| return dterr; |
| *cp = '\0'; |
| |
| /* |
| * Then read the rest of the field as a concatenated |
| * time |
| */ |
| dterr = DecodeNumberField(strlen(field[i]), field[i], |
| fmask, |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| |
| /* |
| * modify tmask after returning from |
| * DecodeNumberField() |
| */ |
| tmask |= DTK_M(TZ); |
| } |
| else |
| { |
| namedTz = pg_tzset(field[i]); |
| if (!namedTz) |
| { |
| extra->dtee_timezone = field[i]; |
| return DTERR_BAD_TIMEZONE; |
| } |
| /* we'll apply the zone setting below */ |
| tmask = DTK_M(TZ); |
| } |
| } |
| else |
| { |
| dterr = DecodeDate(field[i], fmask, |
| &tmask, &is2digits, tm); |
| if (dterr) |
| return dterr; |
| } |
| break; |
| |
| case DTK_TIME: |
| |
| /* |
| * This might be an ISO time following a "t" field. |
| */ |
| if (ptype != 0) |
| { |
| /* Sanity check; should not fail this test */ |
| if (ptype != DTK_TIME) |
| return DTERR_BAD_FORMAT; |
| ptype = 0; |
| } |
| dterr = DecodeTime(field[i], fmask, INTERVAL_FULL_RANGE, |
| &tmask, tm, fsec); |
| if (dterr) |
| return dterr; |
| |
| /* check for time overflow */ |
| if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, |
| *fsec)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| |
| case DTK_TZ: |
| { |
| int tz; |
| |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| dterr = DecodeTimezone(field[i], &tz); |
| if (dterr) |
| return dterr; |
| *tzp = tz; |
| tmask = DTK_M(TZ); |
| } |
| break; |
| |
| case DTK_NUMBER: |
| |
| /* |
| * Deal with cases where previous field labeled this one |
| */ |
| if (ptype != 0) |
| { |
| char *cp; |
| int value; |
| |
| errno = 0; |
| value = strtoint(field[i], &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp != '.' && *cp != '\0') |
| return DTERR_BAD_FORMAT; |
| |
| switch (ptype) |
| { |
| case DTK_JULIAN: |
| /* previous field was a label for "julian date" */ |
| if (value < 0) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_DATE_M; |
| j2date(value, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| isjulian = true; |
| |
| /* fractional Julian Day? */ |
| if (*cp == '.') |
| { |
| double time; |
| |
| dterr = ParseFraction(cp, &time); |
| if (dterr) |
| return dterr; |
| time *= USECS_PER_DAY; |
| dt2time(time, |
| &tm->tm_hour, &tm->tm_min, |
| &tm->tm_sec, fsec); |
| tmask |= DTK_TIME_M; |
| } |
| break; |
| |
| case DTK_TIME: |
| /* previous field was "t" for ISO time */ |
| dterr = DecodeNumberField(strlen(field[i]), field[i], |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| if (tmask != DTK_TIME_M) |
| return DTERR_BAD_FORMAT; |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| break; |
| } |
| |
| ptype = 0; |
| *dtype = DTK_DATE; |
| } |
| else |
| { |
| char *cp; |
| int flen; |
| |
| flen = strlen(field[i]); |
| cp = strchr(field[i], '.'); |
| |
| /* |
| * Embedded decimal and no date yet? Only do this if |
| * we're not looking at something like YYYYMMDDHHMMSS.mm |
| */ |
| if (cp != NULL && !(fmask & DTK_DATE_M) && flen <= 14) |
| { |
| dterr = DecodeDate(field[i], fmask, |
| &tmask, &is2digits, tm); |
| if (dterr) |
| return dterr; |
| } |
| /* embedded decimal and several digits before? */ |
| else if (cp != NULL && flen - strlen(cp) > 2) |
| { |
| /* |
| * Interpret as a concatenated date or time Set the |
| * type field to allow decoding other fields later. |
| * Example: 20011223 or 040506 |
| */ |
| dterr = DecodeNumberField(flen, field[i], fmask, |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| } |
| |
| /* |
| * Is this a YMD or HMS specification, or a year number? |
| * YMD and HMS are required to be six digits or more, so |
| * if it is 5 digits, it is a year. If it is six or more |
| * digits, we assume it is YMD or HMS unless no date and |
| * no time values have been specified. This forces 6+ |
| * digit years to be at the end of the string, or to use |
| * the ISO date specification. |
| */ |
| else if (flen >= 6 && (!(fmask & DTK_DATE_M) || |
| !(fmask & DTK_TIME_M))) |
| { |
| dterr = DecodeNumberField(flen, field[i], fmask, |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| } |
| /* otherwise it is a single date/time field... */ |
| else |
| { |
| dterr = DecodeNumber(flen, field[i], |
| haveTextMonth, fmask, |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr) |
| return dterr; |
| } |
| } |
| break; |
| |
| case DTK_STRING: |
| case DTK_SPECIAL: |
| /* timezone abbrevs take precedence over built-in tokens */ |
| dterr = DecodeTimezoneAbbrev(i, field[i], |
| &type, &val, &valtz, extra); |
| if (dterr) |
| return dterr; |
| if (type == UNKNOWN_FIELD) |
| type = DecodeSpecial(i, field[i], &val); |
| if (type == IGNORE_DTF) |
| continue; |
| |
| tmask = DTK_M(type); |
| switch (type) |
| { |
| case RESERV: |
| switch (val) |
| { |
| case DTK_NOW: |
| tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ)); |
| *dtype = DTK_DATE; |
| GetCurrentTimeUsec(tm, fsec, tzp); |
| break; |
| |
| case DTK_YESTERDAY: |
| tmask = DTK_DATE_M; |
| *dtype = DTK_DATE; |
| GetCurrentDateTime(&cur_tm); |
| j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) - 1, |
| &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| break; |
| |
| case DTK_TODAY: |
| tmask = DTK_DATE_M; |
| *dtype = DTK_DATE; |
| GetCurrentDateTime(&cur_tm); |
| tm->tm_year = cur_tm.tm_year; |
| tm->tm_mon = cur_tm.tm_mon; |
| tm->tm_mday = cur_tm.tm_mday; |
| break; |
| |
| case DTK_TOMORROW: |
| tmask = DTK_DATE_M; |
| *dtype = DTK_DATE; |
| GetCurrentDateTime(&cur_tm); |
| j2date(date2j(cur_tm.tm_year, cur_tm.tm_mon, cur_tm.tm_mday) + 1, |
| &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| break; |
| |
| case DTK_ZULU: |
| tmask = (DTK_TIME_M | DTK_M(TZ)); |
| *dtype = DTK_DATE; |
| tm->tm_hour = 0; |
| tm->tm_min = 0; |
| tm->tm_sec = 0; |
| if (tzp != NULL) |
| *tzp = 0; |
| break; |
| |
| case DTK_EPOCH: |
| case DTK_LATE: |
| case DTK_EARLY: |
| tmask = (DTK_DATE_M | DTK_TIME_M | DTK_M(TZ)); |
| *dtype = val; |
| /* caller ignores tm for these dtype codes */ |
| break; |
| |
| default: |
| elog(ERROR, "unrecognized RESERV datetime token: %d", |
| val); |
| } |
| |
| break; |
| |
| case MONTH: |
| |
| /* |
| * already have a (numeric) month? then see if we can |
| * substitute... |
| */ |
| if ((fmask & DTK_M(MONTH)) && !haveTextMonth && |
| !(fmask & DTK_M(DAY)) && tm->tm_mon >= 1 && |
| tm->tm_mon <= 31) |
| { |
| tm->tm_mday = tm->tm_mon; |
| tmask = DTK_M(DAY); |
| } |
| haveTextMonth = true; |
| tm->tm_mon = val; |
| break; |
| |
| case DTZMOD: |
| |
| /* |
| * daylight savings time modifier (solves "MET DST" |
| * syntax) |
| */ |
| tmask |= DTK_M(DTZ); |
| tm->tm_isdst = 1; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp -= val; |
| break; |
| |
| case DTZ: |
| |
| /* |
| * set mask for TZ here _or_ check for DTZ later when |
| * getting default timezone |
| */ |
| tmask |= DTK_M(TZ); |
| tm->tm_isdst = 1; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp = -val; |
| break; |
| |
| case TZ: |
| tm->tm_isdst = 0; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp = -val; |
| break; |
| |
| case DYNTZ: |
| tmask |= DTK_M(TZ); |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| /* we'll determine the actual offset later */ |
| abbrevTz = valtz; |
| abbrev = field[i]; |
| break; |
| |
| case AMPM: |
| mer = val; |
| break; |
| |
| case ADBC: |
| bc = (val == BC); |
| break; |
| |
| case DOW: |
| tm->tm_wday = val; |
| break; |
| |
| case UNITS: |
| tmask = 0; |
| /* reject consecutive unhandled units */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| ptype = val; |
| break; |
| |
| case ISOTIME: |
| |
| /* |
| * This is a filler field "t" indicating that the next |
| * field is time. Try to verify that this is sensible. |
| */ |
| tmask = 0; |
| |
| /* No preceding date? Then quit... */ |
| if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| return DTERR_BAD_FORMAT; |
| |
| /* reject consecutive unhandled units */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| ptype = val; |
| break; |
| |
| case UNKNOWN_FIELD: |
| |
| /* |
| * Before giving up and declaring error, check to see |
| * if it is an all-alpha timezone name. |
| */ |
| namedTz = pg_tzset(field[i]); |
| if (!namedTz) |
| return DTERR_BAD_FORMAT; |
| /* we'll apply the zone setting below */ |
| tmask = DTK_M(TZ); |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| |
| if (tmask & fmask) |
| return DTERR_BAD_FORMAT; |
| fmask |= tmask; |
| } /* end loop over fields */ |
| |
| /* reject if prefix type appeared and was never handled */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| |
| /* do additional checking for normal date specs (but not "infinity" etc) */ |
| if (*dtype == DTK_DATE) |
| { |
| /* do final checking/adjustment of Y/M/D fields */ |
| dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); |
| if (dterr) |
| return dterr; |
| |
| /* handle AM/PM */ |
| if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) |
| return DTERR_FIELD_OVERFLOW; |
| if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) |
| tm->tm_hour = 0; |
| else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) |
| tm->tm_hour += HOURS_PER_DAY / 2; |
| |
| /* check for incomplete input */ |
| if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| { |
| if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| return 1; |
| return DTERR_BAD_FORMAT; |
| } |
| |
| /* |
| * If we had a full timezone spec, compute the offset (we could not do |
| * it before, because we need the date to resolve DST status). |
| */ |
| if (namedTz != NULL) |
| { |
| /* daylight savings time modifier disallowed with full TZ */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| *tzp = DetermineTimeZoneOffset(tm, namedTz); |
| } |
| |
| /* |
| * Likewise, if we had a dynamic timezone abbreviation, resolve it |
| * now. |
| */ |
| if (abbrevTz != NULL) |
| { |
| /* daylight savings time modifier disallowed with dynamic TZ */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| *tzp = DetermineTimeZoneAbbrevOffset(tm, abbrev, abbrevTz); |
| } |
| |
| /* timezone not specified? then use session timezone */ |
| if (tzp != NULL && !(fmask & DTK_M(TZ))) |
| { |
| /* |
| * daylight savings time modifier but no standard timezone? then |
| * error |
| */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| *tzp = DetermineTimeZoneOffset(tm, session_timezone); |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /* DetermineTimeZoneOffset() |
| * |
| * Given a struct pg_tm in which tm_year, tm_mon, tm_mday, tm_hour, tm_min, |
| * and tm_sec fields are set, and a zic-style time zone definition, determine |
| * the applicable GMT offset and daylight-savings status at that time. |
| * Set the struct pg_tm's tm_isdst field accordingly, and return the GMT |
| * offset as the function result. |
| * |
| * Note: if the date is out of the range we can deal with, we return zero |
| * as the GMT offset and set tm_isdst = 0. We don't throw an error here, |
| * though probably some higher-level code will. |
| */ |
| int |
| DetermineTimeZoneOffset(struct pg_tm *tm, pg_tz *tzp) |
| { |
| pg_time_t t; |
| |
| return DetermineTimeZoneOffsetInternal(tm, tzp, &t); |
| } |
| |
| |
| /* DetermineTimeZoneOffsetInternal() |
| * |
| * As above, but also return the actual UTC time imputed to the date/time |
| * into *tp. |
| * |
| * In event of an out-of-range date, we punt by returning zero into *tp. |
| * This is okay for the immediate callers but is a good reason for not |
| * exposing this worker function globally. |
| * |
| * Note: it might seem that we should use mktime() for this, but bitter |
| * experience teaches otherwise. This code is much faster than most versions |
| * of mktime(), anyway. |
| */ |
| static int |
| DetermineTimeZoneOffsetInternal(struct pg_tm *tm, pg_tz *tzp, pg_time_t *tp) |
| { |
| int date, |
| sec; |
| pg_time_t day, |
| mytime, |
| prevtime, |
| boundary, |
| beforetime, |
| aftertime; |
| long int before_gmtoff, |
| after_gmtoff; |
| int before_isdst, |
| after_isdst; |
| int res; |
| |
| /* |
| * First, generate the pg_time_t value corresponding to the given |
| * y/m/d/h/m/s taken as GMT time. If this overflows, punt and decide the |
| * timezone is GMT. (For a valid Julian date, integer overflow should be |
| * impossible with 64-bit pg_time_t, but let's check for safety.) |
| */ |
| if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday)) |
| goto overflow; |
| date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - UNIX_EPOCH_JDATE; |
| |
| day = ((pg_time_t) date) * SECS_PER_DAY; |
| if (day / SECS_PER_DAY != date) |
| goto overflow; |
| sec = tm->tm_sec + (tm->tm_min + tm->tm_hour * MINS_PER_HOUR) * SECS_PER_MINUTE; |
| mytime = day + sec; |
| /* since sec >= 0, overflow could only be from +day to -mytime */ |
| if (mytime < 0 && day > 0) |
| goto overflow; |
| |
| /* |
| * Find the DST time boundary just before or following the target time. We |
| * assume that all zones have GMT offsets less than 24 hours, and that DST |
| * boundaries can't be closer together than 48 hours, so backing up 24 |
| * hours and finding the "next" boundary will work. |
| */ |
| prevtime = mytime - SECS_PER_DAY; |
| if (mytime < 0 && prevtime > 0) |
| goto overflow; |
| |
| res = pg_next_dst_boundary(&prevtime, |
| &before_gmtoff, &before_isdst, |
| &boundary, |
| &after_gmtoff, &after_isdst, |
| tzp); |
| if (res < 0) |
| goto overflow; /* failure? */ |
| |
| if (res == 0) |
| { |
| /* Non-DST zone, life is simple */ |
| tm->tm_isdst = before_isdst; |
| *tp = mytime - before_gmtoff; |
| return -(int) before_gmtoff; |
| } |
| |
| /* |
| * Form the candidate pg_time_t values with local-time adjustment |
| */ |
| beforetime = mytime - before_gmtoff; |
| if ((before_gmtoff > 0 && |
| mytime < 0 && beforetime > 0) || |
| (before_gmtoff <= 0 && |
| mytime > 0 && beforetime < 0)) |
| goto overflow; |
| aftertime = mytime - after_gmtoff; |
| if ((after_gmtoff > 0 && |
| mytime < 0 && aftertime > 0) || |
| (after_gmtoff <= 0 && |
| mytime > 0 && aftertime < 0)) |
| goto overflow; |
| |
| /* |
| * If both before or both after the boundary time, we know what to do. The |
| * boundary time itself is considered to be after the transition, which |
| * means we can accept aftertime == boundary in the second case. |
| */ |
| if (beforetime < boundary && aftertime < boundary) |
| { |
| tm->tm_isdst = before_isdst; |
| *tp = beforetime; |
| return -(int) before_gmtoff; |
| } |
| if (beforetime > boundary && aftertime >= boundary) |
| { |
| tm->tm_isdst = after_isdst; |
| *tp = aftertime; |
| return -(int) after_gmtoff; |
| } |
| |
| /* |
| * It's an invalid or ambiguous time due to timezone transition. In a |
| * spring-forward transition, prefer the "before" interpretation; in a |
| * fall-back transition, prefer "after". (We used to define and implement |
| * this test as "prefer the standard-time interpretation", but that rule |
| * does not help to resolve the behavior when both times are reported as |
| * standard time; which does happen, eg Europe/Moscow in Oct 2014. Also, |
| * in some zones such as Europe/Dublin, there is widespread confusion |
| * about which time offset is "standard" time, so it's fortunate that our |
| * behavior doesn't depend on that.) |
| */ |
| if (beforetime > aftertime) |
| { |
| tm->tm_isdst = before_isdst; |
| *tp = beforetime; |
| return -(int) before_gmtoff; |
| } |
| tm->tm_isdst = after_isdst; |
| *tp = aftertime; |
| return -(int) after_gmtoff; |
| |
| overflow: |
| /* Given date is out of range, so assume UTC */ |
| tm->tm_isdst = 0; |
| *tp = 0; |
| return 0; |
| } |
| |
| |
| /* DetermineTimeZoneAbbrevOffset() |
| * |
| * Determine the GMT offset and DST flag to be attributed to a dynamic |
| * time zone abbreviation, that is one whose meaning has changed over time. |
| * *tm contains the local time at which the meaning should be determined, |
| * and tm->tm_isdst receives the DST flag. |
| * |
| * This differs from the behavior of DetermineTimeZoneOffset() in that a |
| * standard-time or daylight-time abbreviation forces use of the corresponding |
| * GMT offset even when the zone was then in DS or standard time respectively. |
| * (However, that happens only if we can match the given abbreviation to some |
| * abbreviation that appears in the IANA timezone data. Otherwise, we fall |
| * back to doing DetermineTimeZoneOffset().) |
| */ |
| int |
| DetermineTimeZoneAbbrevOffset(struct pg_tm *tm, const char *abbr, pg_tz *tzp) |
| { |
| pg_time_t t; |
| int zone_offset; |
| int abbr_offset; |
| int abbr_isdst; |
| |
| /* |
| * Compute the UTC time we want to probe at. (In event of overflow, we'll |
| * probe at the epoch, which is a bit random but probably doesn't matter.) |
| */ |
| zone_offset = DetermineTimeZoneOffsetInternal(tm, tzp, &t); |
| |
| /* |
| * Try to match the abbreviation to something in the zone definition. |
| */ |
| if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, |
| &abbr_offset, &abbr_isdst)) |
| { |
| /* Success, so use the abbrev-specific answers. */ |
| tm->tm_isdst = abbr_isdst; |
| return abbr_offset; |
| } |
| |
| /* |
| * No match, so use the answers we already got from |
| * DetermineTimeZoneOffsetInternal. |
| */ |
| return zone_offset; |
| } |
| |
| |
| /* DetermineTimeZoneAbbrevOffsetTS() |
| * |
| * As above but the probe time is specified as a TimestampTz (hence, UTC time), |
| * and DST status is returned into *isdst rather than into tm->tm_isdst. |
| */ |
| int |
| DetermineTimeZoneAbbrevOffsetTS(TimestampTz ts, const char *abbr, |
| pg_tz *tzp, int *isdst) |
| { |
| pg_time_t t = timestamptz_to_time_t(ts); |
| int zone_offset; |
| int abbr_offset; |
| int tz; |
| struct pg_tm tm; |
| fsec_t fsec; |
| |
| /* |
| * If the abbrev matches anything in the zone data, this is pretty easy. |
| */ |
| if (DetermineTimeZoneAbbrevOffsetInternal(t, abbr, tzp, |
| &abbr_offset, isdst)) |
| return abbr_offset; |
| |
| /* |
| * Else, break down the timestamp so we can use DetermineTimeZoneOffset. |
| */ |
| if (timestamp2tm(ts, &tz, &tm, &fsec, NULL, tzp) != 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE), |
| errmsg("timestamp out of range"))); |
| |
| zone_offset = DetermineTimeZoneOffset(&tm, tzp); |
| *isdst = tm.tm_isdst; |
| return zone_offset; |
| } |
| |
| |
| /* DetermineTimeZoneAbbrevOffsetInternal() |
| * |
| * Workhorse for above two functions: work from a pg_time_t probe instant. |
| * On success, return GMT offset and DST status into *offset and *isdst. |
| */ |
| static bool |
| DetermineTimeZoneAbbrevOffsetInternal(pg_time_t t, const char *abbr, pg_tz *tzp, |
| int *offset, int *isdst) |
| { |
| char upabbr[TZ_STRLEN_MAX + 1]; |
| unsigned char *p; |
| long int gmtoff; |
| |
| /* We need to force the abbrev to upper case */ |
| strlcpy(upabbr, abbr, sizeof(upabbr)); |
| for (p = (unsigned char *) upabbr; *p; p++) |
| *p = pg_toupper(*p); |
| |
| /* Look up the abbrev's meaning at this time in this zone */ |
| if (pg_interpret_timezone_abbrev(upabbr, |
| &t, |
| &gmtoff, |
| isdst, |
| tzp)) |
| { |
| /* Change sign to agree with DetermineTimeZoneOffset() */ |
| *offset = (int) -gmtoff; |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /* DecodeTimeOnly() |
| * Interpret parsed string as time fields only. |
| * Returns 0 if successful, DTERR code if bogus input detected. |
| * |
| * Inputs are field[] and ftype[] arrays, of length nf. |
| * Other arguments are outputs. |
| * |
| * Note that support for time zone is here for |
| * SQL TIME WITH TIME ZONE, but it reveals |
| * bogosity with SQL date/time standards, since |
| * we must infer a time zone from current time. |
| * - thomas 2000-03-10 |
| * Allow specifying date to get a better time zone, |
| * if time zones are allowed. - thomas 2001-12-26 |
| */ |
| int |
| DecodeTimeOnly(char **field, int *ftype, int nf, |
| int *dtype, struct pg_tm *tm, fsec_t *fsec, int *tzp, |
| DateTimeErrorExtra *extra) |
| { |
| int fmask = 0, |
| tmask, |
| type; |
| int ptype = 0; /* "prefix type" for ISO and Julian formats */ |
| int i; |
| int val; |
| int dterr; |
| bool isjulian = false; |
| bool is2digits = false; |
| bool bc = false; |
| int mer = HR24; |
| pg_tz *namedTz = NULL; |
| pg_tz *abbrevTz = NULL; |
| char *abbrev = NULL; |
| pg_tz *valtz; |
| |
| *dtype = DTK_TIME; |
| tm->tm_hour = 0; |
| tm->tm_min = 0; |
| tm->tm_sec = 0; |
| *fsec = 0; |
| /* don't know daylight savings time status apriori */ |
| tm->tm_isdst = -1; |
| |
| if (tzp != NULL) |
| *tzp = 0; |
| |
| for (i = 0; i < nf; i++) |
| { |
| switch (ftype[i]) |
| { |
| case DTK_DATE: |
| |
| /* |
| * Time zone not allowed? Then should not accept dates or time |
| * zones no matter what else! |
| */ |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| /* Under limited circumstances, we will accept a date... */ |
| if (i == 0 && nf >= 2 && |
| (ftype[nf - 1] == DTK_DATE || ftype[1] == DTK_TIME)) |
| { |
| dterr = DecodeDate(field[i], fmask, |
| &tmask, &is2digits, tm); |
| if (dterr) |
| return dterr; |
| } |
| /* otherwise, this is a time and/or time zone */ |
| else |
| { |
| if (isdigit((unsigned char) *field[i])) |
| { |
| char *cp; |
| |
| /* |
| * Starts with a digit but we already have a time |
| * field? Then we are in trouble with time already... |
| */ |
| if ((fmask & DTK_TIME_M) == DTK_TIME_M) |
| return DTERR_BAD_FORMAT; |
| |
| /* |
| * Should not get here and fail. Sanity check only... |
| */ |
| if ((cp = strchr(field[i], '-')) == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| /* Get the time zone from the end of the string */ |
| dterr = DecodeTimezone(cp, tzp); |
| if (dterr) |
| return dterr; |
| *cp = '\0'; |
| |
| /* |
| * Then read the rest of the field as a concatenated |
| * time |
| */ |
| dterr = DecodeNumberField(strlen(field[i]), field[i], |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| ftype[i] = dterr; |
| |
| tmask |= DTK_M(TZ); |
| } |
| else |
| { |
| namedTz = pg_tzset(field[i]); |
| if (!namedTz) |
| { |
| extra->dtee_timezone = field[i]; |
| return DTERR_BAD_TIMEZONE; |
| } |
| /* we'll apply the zone setting below */ |
| ftype[i] = DTK_TZ; |
| tmask = DTK_M(TZ); |
| } |
| } |
| break; |
| |
| case DTK_TIME: |
| |
| /* |
| * This might be an ISO time following a "t" field. |
| */ |
| if (ptype != 0) |
| { |
| if (ptype != DTK_TIME) |
| return DTERR_BAD_FORMAT; |
| ptype = 0; |
| } |
| |
| dterr = DecodeTime(field[i], (fmask | DTK_DATE_M), |
| INTERVAL_FULL_RANGE, |
| &tmask, tm, fsec); |
| if (dterr) |
| return dterr; |
| break; |
| |
| case DTK_TZ: |
| { |
| int tz; |
| |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| |
| dterr = DecodeTimezone(field[i], &tz); |
| if (dterr) |
| return dterr; |
| *tzp = tz; |
| tmask = DTK_M(TZ); |
| } |
| break; |
| |
| case DTK_NUMBER: |
| |
| /* |
| * Deal with cases where previous field labeled this one |
| */ |
| if (ptype != 0) |
| { |
| char *cp; |
| int value; |
| |
| errno = 0; |
| value = strtoint(field[i], &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp != '.' && *cp != '\0') |
| return DTERR_BAD_FORMAT; |
| |
| switch (ptype) |
| { |
| case DTK_JULIAN: |
| /* previous field was a label for "julian date" */ |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| if (value < 0) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_DATE_M; |
| j2date(value, &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| isjulian = true; |
| |
| if (*cp == '.') |
| { |
| double time; |
| |
| dterr = ParseFraction(cp, &time); |
| if (dterr) |
| return dterr; |
| time *= USECS_PER_DAY; |
| dt2time(time, |
| &tm->tm_hour, &tm->tm_min, |
| &tm->tm_sec, fsec); |
| tmask |= DTK_TIME_M; |
| } |
| break; |
| |
| case DTK_TIME: |
| /* previous field was "t" for ISO time */ |
| dterr = DecodeNumberField(strlen(field[i]), field[i], |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| ftype[i] = dterr; |
| |
| if (tmask != DTK_TIME_M) |
| return DTERR_BAD_FORMAT; |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| break; |
| } |
| |
| ptype = 0; |
| *dtype = DTK_DATE; |
| } |
| else |
| { |
| char *cp; |
| int flen; |
| |
| flen = strlen(field[i]); |
| cp = strchr(field[i], '.'); |
| |
| /* Embedded decimal? */ |
| if (cp != NULL) |
| { |
| /* |
| * Under limited circumstances, we will accept a |
| * date... |
| */ |
| if (i == 0 && nf >= 2 && ftype[nf - 1] == DTK_DATE) |
| { |
| dterr = DecodeDate(field[i], fmask, |
| &tmask, &is2digits, tm); |
| if (dterr) |
| return dterr; |
| } |
| /* embedded decimal and several digits before? */ |
| else if (flen - strlen(cp) > 2) |
| { |
| /* |
| * Interpret as a concatenated date or time Set |
| * the type field to allow decoding other fields |
| * later. Example: 20011223 or 040506 |
| */ |
| dterr = DecodeNumberField(flen, field[i], |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| ftype[i] = dterr; |
| } |
| else |
| return DTERR_BAD_FORMAT; |
| } |
| else if (flen > 4) |
| { |
| dterr = DecodeNumberField(flen, field[i], |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr < 0) |
| return dterr; |
| ftype[i] = dterr; |
| } |
| /* otherwise it is a single date/time field... */ |
| else |
| { |
| dterr = DecodeNumber(flen, field[i], |
| false, |
| (fmask | DTK_DATE_M), |
| &tmask, tm, |
| fsec, &is2digits); |
| if (dterr) |
| return dterr; |
| } |
| } |
| break; |
| |
| case DTK_STRING: |
| case DTK_SPECIAL: |
| /* timezone abbrevs take precedence over built-in tokens */ |
| dterr = DecodeTimezoneAbbrev(i, field[i], |
| &type, &val, &valtz, extra); |
| if (dterr) |
| return dterr; |
| if (type == UNKNOWN_FIELD) |
| type = DecodeSpecial(i, field[i], &val); |
| if (type == IGNORE_DTF) |
| continue; |
| |
| tmask = DTK_M(type); |
| switch (type) |
| { |
| case RESERV: |
| switch (val) |
| { |
| case DTK_NOW: |
| tmask = DTK_TIME_M; |
| *dtype = DTK_TIME; |
| GetCurrentTimeUsec(tm, fsec, NULL); |
| break; |
| |
| case DTK_ZULU: |
| tmask = (DTK_TIME_M | DTK_M(TZ)); |
| *dtype = DTK_TIME; |
| tm->tm_hour = 0; |
| tm->tm_min = 0; |
| tm->tm_sec = 0; |
| tm->tm_isdst = 0; |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| |
| break; |
| |
| case DTZMOD: |
| |
| /* |
| * daylight savings time modifier (solves "MET DST" |
| * syntax) |
| */ |
| tmask |= DTK_M(DTZ); |
| tm->tm_isdst = 1; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp -= val; |
| break; |
| |
| case DTZ: |
| |
| /* |
| * set mask for TZ here _or_ check for DTZ later when |
| * getting default timezone |
| */ |
| tmask |= DTK_M(TZ); |
| tm->tm_isdst = 1; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp = -val; |
| ftype[i] = DTK_TZ; |
| break; |
| |
| case TZ: |
| tm->tm_isdst = 0; |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| *tzp = -val; |
| ftype[i] = DTK_TZ; |
| break; |
| |
| case DYNTZ: |
| tmask |= DTK_M(TZ); |
| if (tzp == NULL) |
| return DTERR_BAD_FORMAT; |
| /* we'll determine the actual offset later */ |
| abbrevTz = valtz; |
| abbrev = field[i]; |
| ftype[i] = DTK_TZ; |
| break; |
| |
| case AMPM: |
| mer = val; |
| break; |
| |
| case ADBC: |
| bc = (val == BC); |
| break; |
| |
| case UNITS: |
| tmask = 0; |
| /* reject consecutive unhandled units */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| ptype = val; |
| break; |
| |
| case ISOTIME: |
| tmask = 0; |
| /* reject consecutive unhandled units */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| ptype = val; |
| break; |
| |
| case UNKNOWN_FIELD: |
| |
| /* |
| * Before giving up and declaring error, check to see |
| * if it is an all-alpha timezone name. |
| */ |
| namedTz = pg_tzset(field[i]); |
| if (!namedTz) |
| return DTERR_BAD_FORMAT; |
| /* we'll apply the zone setting below */ |
| tmask = DTK_M(TZ); |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| |
| if (tmask & fmask) |
| return DTERR_BAD_FORMAT; |
| fmask |= tmask; |
| } /* end loop over fields */ |
| |
| /* reject if prefix type appeared and was never handled */ |
| if (ptype != 0) |
| return DTERR_BAD_FORMAT; |
| |
| /* do final checking/adjustment of Y/M/D fields */ |
| dterr = ValidateDate(fmask, isjulian, is2digits, bc, tm); |
| if (dterr) |
| return dterr; |
| |
| /* handle AM/PM */ |
| if (mer != HR24 && tm->tm_hour > HOURS_PER_DAY / 2) |
| return DTERR_FIELD_OVERFLOW; |
| if (mer == AM && tm->tm_hour == HOURS_PER_DAY / 2) |
| tm->tm_hour = 0; |
| else if (mer == PM && tm->tm_hour != HOURS_PER_DAY / 2) |
| tm->tm_hour += HOURS_PER_DAY / 2; |
| |
| /* check for time overflow */ |
| if (time_overflows(tm->tm_hour, tm->tm_min, tm->tm_sec, *fsec)) |
| return DTERR_FIELD_OVERFLOW; |
| |
| if ((fmask & DTK_TIME_M) != DTK_TIME_M) |
| return DTERR_BAD_FORMAT; |
| |
| /* |
| * If we had a full timezone spec, compute the offset (we could not do it |
| * before, because we may need the date to resolve DST status). |
| */ |
| if (namedTz != NULL) |
| { |
| long int gmtoff; |
| |
| /* daylight savings time modifier disallowed with full TZ */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| /* if non-DST zone, we do not need to know the date */ |
| if (pg_get_timezone_offset(namedTz, &gmtoff)) |
| { |
| *tzp = -(int) gmtoff; |
| } |
| else |
| { |
| /* a date has to be specified */ |
| if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| return DTERR_BAD_FORMAT; |
| *tzp = DetermineTimeZoneOffset(tm, namedTz); |
| } |
| } |
| |
| /* |
| * Likewise, if we had a dynamic timezone abbreviation, resolve it now. |
| */ |
| if (abbrevTz != NULL) |
| { |
| struct pg_tm tt, |
| *tmp = &tt; |
| |
| /* |
| * daylight savings time modifier but no standard timezone? then error |
| */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| if ((fmask & DTK_DATE_M) == 0) |
| GetCurrentDateTime(tmp); |
| else |
| { |
| /* a date has to be specified */ |
| if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| return DTERR_BAD_FORMAT; |
| tmp->tm_year = tm->tm_year; |
| tmp->tm_mon = tm->tm_mon; |
| tmp->tm_mday = tm->tm_mday; |
| } |
| tmp->tm_hour = tm->tm_hour; |
| tmp->tm_min = tm->tm_min; |
| tmp->tm_sec = tm->tm_sec; |
| *tzp = DetermineTimeZoneAbbrevOffset(tmp, abbrev, abbrevTz); |
| tm->tm_isdst = tmp->tm_isdst; |
| } |
| |
| /* timezone not specified? then use session timezone */ |
| if (tzp != NULL && !(fmask & DTK_M(TZ))) |
| { |
| struct pg_tm tt, |
| *tmp = &tt; |
| |
| /* |
| * daylight savings time modifier but no standard timezone? then error |
| */ |
| if (fmask & DTK_M(DTZMOD)) |
| return DTERR_BAD_FORMAT; |
| |
| if ((fmask & DTK_DATE_M) == 0) |
| GetCurrentDateTime(tmp); |
| else |
| { |
| /* a date has to be specified */ |
| if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| return DTERR_BAD_FORMAT; |
| tmp->tm_year = tm->tm_year; |
| tmp->tm_mon = tm->tm_mon; |
| tmp->tm_mday = tm->tm_mday; |
| } |
| tmp->tm_hour = tm->tm_hour; |
| tmp->tm_min = tm->tm_min; |
| tmp->tm_sec = tm->tm_sec; |
| *tzp = DetermineTimeZoneOffset(tmp, session_timezone); |
| tm->tm_isdst = tmp->tm_isdst; |
| } |
| |
| return 0; |
| } |
| |
| /* DecodeDate() |
| * Decode date string which includes delimiters. |
| * Return 0 if okay, a DTERR code if not. |
| * |
| * str: field to be parsed |
| * fmask: bitmask for field types already seen |
| * *tmask: receives bitmask for fields found here |
| * *is2digits: set to true if we find 2-digit year |
| * *tm: field values are stored into appropriate members of this struct |
| */ |
| static int |
| DecodeDate(char *str, int fmask, int *tmask, bool *is2digits, |
| struct pg_tm *tm) |
| { |
| fsec_t fsec; |
| int nf = 0; |
| int i, |
| len; |
| int dterr; |
| bool haveTextMonth = false; |
| int type, |
| val, |
| dmask = 0; |
| char *field[MAXDATEFIELDS]; |
| int fieldlens[MAXDATEFIELDS]; |
| |
| *tmask = 0; |
| |
| /* parse this string... */ |
| while (*str != '\0' && nf < MAXDATEFIELDS) |
| { |
| /* skip field separators */ |
| while (*str != '\0' && !isalnum((unsigned char) *str)) |
| str++; |
| |
| if (*str == '\0') |
| return DTERR_BAD_FORMAT; /* end of string after separator */ |
| |
| field[nf] = str; |
| if (isdigit((unsigned char) *str)) |
| { |
| while (isdigit((unsigned char) *str)) |
| str++; |
| } |
| else if (isalpha((unsigned char) *str)) |
| { |
| while (isalpha((unsigned char) *str)) |
| str++; |
| } |
| |
| fieldlens[nf] = str - field[nf]; |
| /* Just get rid of any non-digit, non-alpha characters... */ |
| if (*str != '\0') |
| *str++ = '\0'; |
| nf++; |
| } |
| |
| /* look first for text fields, since that will be unambiguous month */ |
| for (i = 0; i < nf; i++) |
| { |
| if (isalpha((unsigned char) *field[i])) |
| { |
| type = DecodeSpecial(i, field[i], &val); |
| if (type == IGNORE_DTF) |
| continue; |
| |
| dmask = DTK_M(type); |
| switch (type) |
| { |
| case MONTH: |
| tm->tm_mon = val; |
| haveTextMonth = true; |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| if (fmask & dmask) |
| return DTERR_BAD_FORMAT; |
| |
| fmask |= dmask; |
| *tmask |= dmask; |
| |
| /* mark this field as being completed */ |
| field[i] = NULL; |
| } |
| } |
| |
| /* now pick up remaining numeric fields */ |
| for (i = 0; i < nf; i++) |
| { |
| if (field[i] == NULL) |
| continue; |
| |
| if ((len = fieldlens[i]) <= 0) |
| return DTERR_BAD_FORMAT; |
| |
| dterr = DecodeNumber(len, field[i], haveTextMonth, fmask, |
| &dmask, tm, |
| &fsec, is2digits); |
| if (dterr) |
| return dterr; |
| |
| if (fmask & dmask) |
| return DTERR_BAD_FORMAT; |
| |
| fmask |= dmask; |
| *tmask |= dmask; |
| } |
| |
| if ((fmask & ~(DTK_M(DOY) | DTK_M(TZ))) != DTK_DATE_M) |
| return DTERR_BAD_FORMAT; |
| |
| /* validation of the field values must wait until ValidateDate() */ |
| |
| return 0; |
| } |
| |
| /* ValidateDate() |
| * Check valid year/month/day values, handle BC and DOY cases |
| * Return 0 if okay, a DTERR code if not. |
| */ |
| int |
| ValidateDate(int fmask, bool isjulian, bool is2digits, bool bc, |
| struct pg_tm *tm) |
| { |
| if (fmask & DTK_M(YEAR)) |
| { |
| if (isjulian) |
| { |
| /* tm_year is correct and should not be touched */ |
| } |
| else if (bc) |
| { |
| /* there is no year zero in AD/BC notation */ |
| if (tm->tm_year <= 0) |
| return DTERR_FIELD_OVERFLOW; |
| /* internally, we represent 1 BC as year zero, 2 BC as -1, etc */ |
| tm->tm_year = -(tm->tm_year - 1); |
| } |
| else if (is2digits) |
| { |
| /* process 1 or 2-digit input as 1970-2069 AD, allow '0' and '00' */ |
| if (tm->tm_year < 0) /* just paranoia */ |
| return DTERR_FIELD_OVERFLOW; |
| if (tm->tm_year < 70) |
| tm->tm_year += 2000; |
| else if (tm->tm_year < 100) |
| tm->tm_year += 1900; |
| } |
| else |
| { |
| /* there is no year zero in AD/BC notation */ |
| if (tm->tm_year <= 0) |
| return DTERR_FIELD_OVERFLOW; |
| } |
| } |
| |
| /* now that we have correct year, decode DOY */ |
| if (fmask & DTK_M(DOY)) |
| { |
| j2date(date2j(tm->tm_year, 1, 1) + tm->tm_yday - 1, |
| &tm->tm_year, &tm->tm_mon, &tm->tm_mday); |
| } |
| |
| /* check for valid month */ |
| if (fmask & DTK_M(MONTH)) |
| { |
| if (tm->tm_mon < 1 || tm->tm_mon > MONTHS_PER_YEAR) |
| return DTERR_MD_FIELD_OVERFLOW; |
| } |
| |
| /* minimal check for valid day */ |
| if (fmask & DTK_M(DAY)) |
| { |
| if (tm->tm_mday < 1 || tm->tm_mday > 31) |
| return DTERR_MD_FIELD_OVERFLOW; |
| } |
| |
| if ((fmask & DTK_DATE_M) == DTK_DATE_M) |
| { |
| /* |
| * Check for valid day of month, now that we know for sure the month |
| * and year. Note we don't use MD_FIELD_OVERFLOW here, since it seems |
| * unlikely that "Feb 29" is a YMD-order error. |
| */ |
| if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]) |
| return DTERR_FIELD_OVERFLOW; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* DecodeTimeCommon() |
| * Decode time string which includes delimiters. |
| * Return 0 if okay, a DTERR code if not. |
| * tmask and itm are output parameters. |
| * |
| * This code is shared between the timestamp and interval cases. |
| * We return a struct pg_itm (of which only the tm_usec, tm_sec, tm_min, |
| * and tm_hour fields are used) and let the wrapper functions below |
| * convert and range-check as necessary. |
| */ |
| static int |
| DecodeTimeCommon(char *str, int fmask, int range, |
| int *tmask, struct pg_itm *itm) |
| { |
| char *cp; |
| int dterr; |
| fsec_t fsec = 0; |
| |
| *tmask = DTK_TIME_M; |
| |
| errno = 0; |
| itm->tm_hour = strtoi64(str, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp != ':') |
| return DTERR_BAD_FORMAT; |
| errno = 0; |
| itm->tm_min = strtoint(cp + 1, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp == '\0') |
| { |
| itm->tm_sec = 0; |
| /* If it's a MINUTE TO SECOND interval, take 2 fields as being mm:ss */ |
| if (range == (INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND))) |
| { |
| if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN) |
| return DTERR_FIELD_OVERFLOW; |
| itm->tm_sec = itm->tm_min; |
| itm->tm_min = (int) itm->tm_hour; |
| itm->tm_hour = 0; |
| } |
| } |
| else if (*cp == '.') |
| { |
| /* always assume mm:ss.sss is MINUTE TO SECOND */ |
| dterr = ParseFractionalSecond(cp, &fsec); |
| if (dterr) |
| return dterr; |
| if (itm->tm_hour > INT_MAX || itm->tm_hour < INT_MIN) |
| return DTERR_FIELD_OVERFLOW; |
| itm->tm_sec = itm->tm_min; |
| itm->tm_min = (int) itm->tm_hour; |
| itm->tm_hour = 0; |
| } |
| else if (*cp == ':') |
| { |
| errno = 0; |
| itm->tm_sec = strtoint(cp + 1, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp == '.') |
| { |
| dterr = ParseFractionalSecond(cp, &fsec); |
| if (dterr) |
| return dterr; |
| } |
| else if (*cp != '\0') |
| return DTERR_BAD_FORMAT; |
| } |
| else |
| return DTERR_BAD_FORMAT; |
| |
| /* do a sanity check; but caller must check the range of tm_hour */ |
| if (itm->tm_hour < 0 || |
| itm->tm_min < 0 || itm->tm_min > MINS_PER_HOUR - 1 || |
| itm->tm_sec < 0 || itm->tm_sec > SECS_PER_MINUTE || |
| fsec < 0 || fsec > USECS_PER_SEC) |
| return DTERR_FIELD_OVERFLOW; |
| |
| itm->tm_usec = (int) fsec; |
| |
| return 0; |
| } |
| |
| /* DecodeTime() |
| * Decode time string which includes delimiters. |
| * Return 0 if okay, a DTERR code if not. |
| * |
| * This version is used for timestamps. The results are returned into |
| * the tm_hour/tm_min/tm_sec fields of *tm, and microseconds into *fsec. |
| */ |
| static int |
| DecodeTime(char *str, int fmask, int range, |
| int *tmask, struct pg_tm *tm, fsec_t *fsec) |
| { |
| struct pg_itm itm; |
| int dterr; |
| |
| dterr = DecodeTimeCommon(str, fmask, range, |
| tmask, &itm); |
| if (dterr) |
| return dterr; |
| |
| if (itm.tm_hour > INT_MAX) |
| return DTERR_FIELD_OVERFLOW; |
| tm->tm_hour = (int) itm.tm_hour; |
| tm->tm_min = itm.tm_min; |
| tm->tm_sec = itm.tm_sec; |
| *fsec = itm.tm_usec; |
| |
| return 0; |
| } |
| |
| /* DecodeTimeForInterval() |
| * Decode time string which includes delimiters. |
| * Return 0 if okay, a DTERR code if not. |
| * |
| * This version is used for intervals. The results are returned into |
| * itm_in->tm_usec. |
| */ |
| static int |
| DecodeTimeForInterval(char *str, int fmask, int range, |
| int *tmask, struct pg_itm_in *itm_in) |
| { |
| struct pg_itm itm; |
| int dterr; |
| |
| dterr = DecodeTimeCommon(str, fmask, range, |
| tmask, &itm); |
| if (dterr) |
| return dterr; |
| |
| itm_in->tm_usec = itm.tm_usec; |
| if (!int64_multiply_add(itm.tm_hour, USECS_PER_HOUR, &itm_in->tm_usec) || |
| !int64_multiply_add(itm.tm_min, USECS_PER_MINUTE, &itm_in->tm_usec) || |
| !int64_multiply_add(itm.tm_sec, USECS_PER_SEC, &itm_in->tm_usec)) |
| return DTERR_FIELD_OVERFLOW; |
| |
| return 0; |
| } |
| |
| |
| /* DecodeNumber() |
| * Interpret plain numeric field as a date value in context. |
| * Return 0 if okay, a DTERR code if not. |
| */ |
| static int |
| DecodeNumber(int flen, char *str, bool haveTextMonth, int fmask, |
| int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) |
| { |
| int val; |
| char *cp; |
| int dterr; |
| |
| *tmask = 0; |
| |
| errno = 0; |
| val = strtoint(str, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| if (cp == str) |
| return DTERR_BAD_FORMAT; |
| |
| if (*cp == '.') |
| { |
| /* |
| * More than two digits before decimal point? Then could be a date or |
| * a run-together time: 2001.360 20011225 040506.789 |
| */ |
| if (cp - str > 2) |
| { |
| dterr = DecodeNumberField(flen, str, |
| (fmask | DTK_DATE_M), |
| tmask, tm, |
| fsec, is2digits); |
| if (dterr < 0) |
| return dterr; |
| return 0; |
| } |
| |
| dterr = ParseFractionalSecond(cp, fsec); |
| if (dterr) |
| return dterr; |
| } |
| else if (*cp != '\0') |
| return DTERR_BAD_FORMAT; |
| |
| /* Special case for day of year */ |
| if (flen == 3 && (fmask & DTK_DATE_M) == DTK_M(YEAR) && val >= 1 && |
| val <= 366) |
| { |
| *tmask = (DTK_M(DOY) | DTK_M(MONTH) | DTK_M(DAY)); |
| tm->tm_yday = val; |
| /* tm_mon and tm_mday can't actually be set yet ... */ |
| return 0; |
| } |
| |
| /* Switch based on what we have so far */ |
| switch (fmask & DTK_DATE_M) |
| { |
| case 0: |
| |
| /* |
| * Nothing so far; make a decision about what we think the input |
| * is. There used to be lots of heuristics here, but the |
| * consensus now is to be paranoid. It *must* be either |
| * YYYY-MM-DD (with a more-than-two-digit year field), or the |
| * field order defined by DateOrder. |
| */ |
| if (flen >= 3 || DateOrder == DATEORDER_YMD) |
| { |
| *tmask = DTK_M(YEAR); |
| tm->tm_year = val; |
| } |
| else if (DateOrder == DATEORDER_DMY) |
| { |
| *tmask = DTK_M(DAY); |
| tm->tm_mday = val; |
| } |
| else |
| { |
| *tmask = DTK_M(MONTH); |
| tm->tm_mon = val; |
| } |
| break; |
| |
| case (DTK_M(YEAR)): |
| /* Must be at second field of YY-MM-DD */ |
| *tmask = DTK_M(MONTH); |
| tm->tm_mon = val; |
| break; |
| |
| case (DTK_M(MONTH)): |
| if (haveTextMonth) |
| { |
| /* |
| * We are at the first numeric field of a date that included a |
| * textual month name. We want to support the variants |
| * MON-DD-YYYY, DD-MON-YYYY, and YYYY-MON-DD as unambiguous |
| * inputs. We will also accept MON-DD-YY or DD-MON-YY in |
| * either DMY or MDY modes, as well as YY-MON-DD in YMD mode. |
| */ |
| if (flen >= 3 || DateOrder == DATEORDER_YMD) |
| { |
| *tmask = DTK_M(YEAR); |
| tm->tm_year = val; |
| } |
| else |
| { |
| *tmask = DTK_M(DAY); |
| tm->tm_mday = val; |
| } |
| } |
| else |
| { |
| /* Must be at second field of MM-DD-YY */ |
| *tmask = DTK_M(DAY); |
| tm->tm_mday = val; |
| } |
| break; |
| |
| case (DTK_M(YEAR) | DTK_M(MONTH)): |
| if (haveTextMonth) |
| { |
| /* Need to accept DD-MON-YYYY even in YMD mode */ |
| if (flen >= 3 && *is2digits) |
| { |
| /* Guess that first numeric field is day was wrong */ |
| *tmask = DTK_M(DAY); /* YEAR is already set */ |
| tm->tm_mday = tm->tm_year; |
| tm->tm_year = val; |
| *is2digits = false; |
| } |
| else |
| { |
| *tmask = DTK_M(DAY); |
| tm->tm_mday = val; |
| } |
| } |
| else |
| { |
| /* Must be at third field of YY-MM-DD */ |
| *tmask = DTK_M(DAY); |
| tm->tm_mday = val; |
| } |
| break; |
| |
| case (DTK_M(DAY)): |
| /* Must be at second field of DD-MM-YY */ |
| *tmask = DTK_M(MONTH); |
| tm->tm_mon = val; |
| break; |
| |
| case (DTK_M(MONTH) | DTK_M(DAY)): |
| /* Must be at third field of DD-MM-YY or MM-DD-YY */ |
| *tmask = DTK_M(YEAR); |
| tm->tm_year = val; |
| break; |
| |
| case (DTK_M(YEAR) | DTK_M(MONTH) | DTK_M(DAY)): |
| /* we have all the date, so it must be a time field */ |
| dterr = DecodeNumberField(flen, str, fmask, |
| tmask, tm, |
| fsec, is2digits); |
| if (dterr < 0) |
| return dterr; |
| return 0; |
| |
| default: |
| /* Anything else is bogus input */ |
| return DTERR_BAD_FORMAT; |
| } |
| |
| /* |
| * When processing a year field, mark it for adjustment if it's only one |
| * or two digits. |
| */ |
| if (*tmask == DTK_M(YEAR)) |
| *is2digits = (flen <= 2); |
| |
| return 0; |
| } |
| |
| |
| /* DecodeNumberField() |
| * Interpret numeric string as a concatenated date or time field. |
| * Return a DTK token (>= 0) if successful, a DTERR code (< 0) if not. |
| * |
| * Use the context of previously decoded fields to help with |
| * the interpretation. |
| */ |
| static int |
| DecodeNumberField(int len, char *str, int fmask, |
| int *tmask, struct pg_tm *tm, fsec_t *fsec, bool *is2digits) |
| { |
| char *cp; |
| |
| /* |
| * Have a decimal point? Then this is a date or something with a seconds |
| * field... |
| */ |
| if ((cp = strchr(str, '.')) != NULL) |
| { |
| /* |
| * Can we use ParseFractionalSecond here? Not clear whether trailing |
| * junk should be rejected ... |
| */ |
| if (cp[1] == '\0') |
| { |
| /* avoid assuming that strtod will accept "." */ |
| *fsec = 0; |
| } |
| else |
| { |
| double frac; |
| |
| errno = 0; |
| frac = strtod(cp, NULL); |
| if (errno != 0) |
| return DTERR_BAD_FORMAT; |
| *fsec = rint(frac * 1000000); |
| } |
| /* Now truncate off the fraction for further processing */ |
| *cp = '\0'; |
| len = strlen(str); |
| } |
| /* No decimal point and no complete date yet? */ |
| else if ((fmask & DTK_DATE_M) != DTK_DATE_M) |
| { |
| if (len >= 6) |
| { |
| *tmask = DTK_DATE_M; |
| |
| /* |
| * Start from end and consider first 2 as Day, next 2 as Month, |
| * and the rest as Year. |
| */ |
| tm->tm_mday = atoi(str + (len - 2)); |
| *(str + (len - 2)) = '\0'; |
| tm->tm_mon = atoi(str + (len - 4)); |
| *(str + (len - 4)) = '\0'; |
| tm->tm_year = atoi(str); |
| if ((len - 4) == 2) |
| *is2digits = true; |
| else if (((len - 4 ) == 3) && !gp_allow_date_field_width_5digits) |
| return DTERR_BAD_FORMAT; |
| |
| return DTK_DATE; |
| } |
| } |
| |
| /* not all time fields are specified? */ |
| if ((fmask & DTK_TIME_M) != DTK_TIME_M) |
| { |
| /* hhmmss */ |
| if (len == 6) |
| { |
| *tmask = DTK_TIME_M; |
| tm->tm_sec = atoi(str + 4); |
| *(str + 4) = '\0'; |
| tm->tm_min = atoi(str + 2); |
| *(str + 2) = '\0'; |
| tm->tm_hour = atoi(str); |
| |
| return DTK_TIME; |
| } |
| /* hhmm? */ |
| else if (len == 4) |
| { |
| *tmask = DTK_TIME_M; |
| tm->tm_sec = 0; |
| tm->tm_min = atoi(str + 2); |
| *(str + 2) = '\0'; |
| tm->tm_hour = atoi(str); |
| |
| return DTK_TIME; |
| } |
| } |
| |
| return DTERR_BAD_FORMAT; |
| } |
| |
| |
| /* DecodeTimezone() |
| * Interpret string as a numeric timezone. |
| * |
| * Return 0 if okay (and set *tzp), a DTERR code if not okay. |
| */ |
| int |
| DecodeTimezone(const char *str, int *tzp) |
| { |
| int tz; |
| int hr, |
| min, |
| sec = 0; |
| char *cp; |
| |
| /* leading character must be "+" or "-" */ |
| if (*str != '+' && *str != '-') |
| return DTERR_BAD_FORMAT; |
| |
| errno = 0; |
| hr = strtoint(str + 1, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_TZDISP_OVERFLOW; |
| |
| /* explicit delimiter? */ |
| if (*cp == ':') |
| { |
| errno = 0; |
| min = strtoint(cp + 1, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_TZDISP_OVERFLOW; |
| if (*cp == ':') |
| { |
| errno = 0; |
| sec = strtoint(cp + 1, &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_TZDISP_OVERFLOW; |
| } |
| } |
| /* otherwise, might have run things together... */ |
| else if (*cp == '\0' && strlen(str) > 3) |
| { |
| min = hr % 100; |
| hr = hr / 100; |
| /* we could, but don't, support a run-together hhmmss format */ |
| } |
| else |
| min = 0; |
| |
| /* Range-check the values; see notes in datatype/timestamp.h */ |
| if (hr < 0 || hr > MAX_TZDISP_HOUR) |
| return DTERR_TZDISP_OVERFLOW; |
| if (min < 0 || min >= MINS_PER_HOUR) |
| return DTERR_TZDISP_OVERFLOW; |
| if (sec < 0 || sec >= SECS_PER_MINUTE) |
| return DTERR_TZDISP_OVERFLOW; |
| |
| tz = (hr * MINS_PER_HOUR + min) * SECS_PER_MINUTE + sec; |
| if (*str == '-') |
| tz = -tz; |
| |
| *tzp = -tz; |
| |
| if (*cp != '\0') |
| return DTERR_BAD_FORMAT; |
| |
| return 0; |
| } |
| |
| |
| /* DecodeTimezoneAbbrev() |
| * Interpret string as a timezone abbreviation, if possible. |
| * |
| * Sets *ftype to an abbreviation type (TZ, DTZ, or DYNTZ), or UNKNOWN_FIELD if |
| * string is not any known abbreviation. On success, set *offset and *tz to |
| * represent the UTC offset (for TZ or DTZ) or underlying zone (for DYNTZ). |
| * Note that full timezone names (such as America/New_York) are not handled |
| * here, mostly for historical reasons. |
| * |
| * The function result is 0 or a DTERR code; in the latter case, *extra |
| * is filled as needed. Note that unknown-abbreviation is not considered |
| * an error case. Also note that many callers assume that the DTERR code |
| * is one that DateTimeParseError does not require "str" or "datatype" |
| * strings for. |
| * |
| * Given string must be lowercased already. |
| * |
| * Implement a cache lookup since it is likely that dates |
| * will be related in format. |
| */ |
| int |
| DecodeTimezoneAbbrev(int field, const char *lowtoken, |
| int *ftype, int *offset, pg_tz **tz, |
| DateTimeErrorExtra *extra) |
| { |
| const datetkn *tp; |
| |
| tp = abbrevcache[field]; |
| /* use strncmp so that we match truncated tokens */ |
| if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| { |
| if (zoneabbrevtbl) |
| tp = datebsearch(lowtoken, zoneabbrevtbl->abbrevs, |
| zoneabbrevtbl->numabbrevs); |
| else |
| tp = NULL; |
| } |
| if (tp == NULL) |
| { |
| *ftype = UNKNOWN_FIELD; |
| *offset = 0; |
| *tz = NULL; |
| } |
| else |
| { |
| abbrevcache[field] = tp; |
| *ftype = tp->type; |
| if (tp->type == DYNTZ) |
| { |
| *offset = 0; |
| *tz = FetchDynamicTimeZone(zoneabbrevtbl, tp, extra); |
| if (*tz == NULL) |
| return DTERR_BAD_ZONE_ABBREV; |
| } |
| else |
| { |
| *offset = tp->value; |
| *tz = NULL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /* DecodeSpecial() |
| * Decode text string using lookup table. |
| * |
| * Recognizes the keywords listed in datetktbl. |
| * Note: at one time this would also recognize timezone abbreviations, |
| * but no more; use DecodeTimezoneAbbrev for that. |
| * |
| * Given string must be lowercased already. |
| * |
| * Implement a cache lookup since it is likely that dates |
| * will be related in format. |
| */ |
| int |
| DecodeSpecial(int field, const char *lowtoken, int *val) |
| { |
| int type; |
| const datetkn *tp; |
| |
| tp = datecache[field]; |
| /* use strncmp so that we match truncated tokens */ |
| if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| { |
| tp = datebsearch(lowtoken, datetktbl, szdatetktbl); |
| } |
| if (tp == NULL) |
| { |
| type = UNKNOWN_FIELD; |
| *val = 0; |
| } |
| else |
| { |
| datecache[field] = tp; |
| type = tp->type; |
| *val = tp->value; |
| } |
| |
| return type; |
| } |
| |
| |
| /* DecodeTimezoneName() |
| * Interpret string as a timezone abbreviation or name. |
| * Throw error if the name is not recognized. |
| * |
| * The return value indicates what kind of zone identifier it is: |
| * TZNAME_FIXED_OFFSET: fixed offset from UTC |
| * TZNAME_DYNTZ: dynamic timezone abbreviation |
| * TZNAME_ZONE: full tzdb zone name |
| * |
| * For TZNAME_FIXED_OFFSET, *offset receives the UTC offset (in seconds, |
| * with ISO sign convention: positive is east of Greenwich). |
| * For the other two cases, *tz receives the timezone struct representing |
| * the zone name or the abbreviation's underlying zone. |
| */ |
| int |
| DecodeTimezoneName(const char *tzname, int *offset, pg_tz **tz) |
| { |
| char *lowzone; |
| int dterr, |
| type; |
| DateTimeErrorExtra extra; |
| |
| /* |
| * First we look in the timezone abbreviation table (to handle cases like |
| * "EST"), and if that fails, we look in the timezone database (to handle |
| * cases like "America/New_York"). This matches the order in which |
| * timestamp input checks the cases; it's important because the timezone |
| * database unwisely uses a few zone names that are identical to offset |
| * abbreviations. |
| */ |
| |
| /* DecodeTimezoneAbbrev requires lowercase input */ |
| lowzone = downcase_truncate_identifier(tzname, |
| strlen(tzname), |
| false); |
| |
| dterr = DecodeTimezoneAbbrev(0, lowzone, &type, offset, tz, &extra); |
| if (dterr) |
| DateTimeParseError(dterr, &extra, NULL, NULL, NULL); |
| |
| if (type == TZ || type == DTZ) |
| { |
| /* fixed-offset abbreviation, return the offset */ |
| return TZNAME_FIXED_OFFSET; |
| } |
| else if (type == DYNTZ) |
| { |
| /* dynamic-offset abbreviation, return its referenced timezone */ |
| return TZNAME_DYNTZ; |
| } |
| else |
| { |
| /* try it as a full zone name */ |
| *tz = pg_tzset(tzname); |
| if (*tz == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("time zone \"%s\" not recognized", tzname))); |
| return TZNAME_ZONE; |
| } |
| } |
| |
| /* DecodeTimezoneNameToTz() |
| * Interpret string as a timezone abbreviation or name. |
| * Throw error if the name is not recognized. |
| * |
| * This is a simple wrapper for DecodeTimezoneName that produces a pg_tz * |
| * result in all cases. |
| */ |
| pg_tz * |
| DecodeTimezoneNameToTz(const char *tzname) |
| { |
| pg_tz *result; |
| int offset; |
| |
| if (DecodeTimezoneName(tzname, &offset, &result) == TZNAME_FIXED_OFFSET) |
| { |
| /* fixed-offset abbreviation, get a pg_tz descriptor for that */ |
| result = pg_tzset_offset(-offset); /* flip to POSIX sign convention */ |
| } |
| return result; |
| } |
| |
| |
| /* ClearPgItmIn |
| * |
| * Zero out a pg_itm_in |
| */ |
| static inline void |
| ClearPgItmIn(struct pg_itm_in *itm_in) |
| { |
| itm_in->tm_usec = 0; |
| itm_in->tm_mday = 0; |
| itm_in->tm_mon = 0; |
| itm_in->tm_year = 0; |
| } |
| |
| |
| /* DecodeInterval() |
| * Interpret previously parsed fields for general time interval. |
| * Returns 0 if successful, DTERR code if bogus input detected. |
| * dtype and itm_in are output parameters. |
| * |
| * Allow "date" field DTK_DATE since this could be just |
| * an unsigned floating point number. - thomas 1997-11-16 |
| * |
| * Allow ISO-style time span, with implicit units on number of days |
| * preceding an hh:mm:ss field. - thomas 1998-04-30 |
| */ |
| int |
| DecodeInterval(char **field, int *ftype, int nf, int range, |
| int *dtype, struct pg_itm_in *itm_in) |
| { |
| bool force_negative = false; |
| bool is_before = false; |
| char *cp; |
| int fmask = 0, |
| tmask, |
| type, |
| uval; |
| int i; |
| int dterr; |
| int64 val; |
| double fval; |
| |
| *dtype = DTK_DELTA; |
| type = IGNORE_DTF; |
| ClearPgItmIn(itm_in); |
| |
| /*---------- |
| * The SQL standard defines the interval literal |
| * '-1 1:00:00' |
| * to mean "negative 1 days and negative 1 hours", while Postgres |
| * traditionally treats this as meaning "negative 1 days and positive |
| * 1 hours". In SQL_STANDARD intervalstyle, we apply the leading sign |
| * to all fields if there are no other explicit signs. |
| * |
| * We leave the signs alone if there are additional explicit signs. |
| * This protects us against misinterpreting postgres-style dump output, |
| * since the postgres-style output code has always put an explicit sign on |
| * all fields following a negative field. But note that SQL-spec output |
| * is ambiguous and can be misinterpreted on load! (So it's best practice |
| * to dump in postgres style, not SQL style.) |
| *---------- |
| */ |
| if (IntervalStyle == INTSTYLE_SQL_STANDARD && nf > 0 && *field[0] == '-') |
| { |
| force_negative = true; |
| /* Check for additional explicit signs */ |
| for (i = 1; i < nf; i++) |
| { |
| if (*field[i] == '-' || *field[i] == '+') |
| { |
| force_negative = false; |
| break; |
| } |
| } |
| } |
| |
| /* read through list backwards to pick up units before values */ |
| for (i = nf - 1; i >= 0; i--) |
| { |
| switch (ftype[i]) |
| { |
| case DTK_TIME: |
| dterr = DecodeTimeForInterval(field[i], fmask, range, |
| &tmask, itm_in); |
| if (dterr) |
| return dterr; |
| if (force_negative && |
| itm_in->tm_usec > 0) |
| itm_in->tm_usec = -itm_in->tm_usec; |
| type = DTK_DAY; |
| break; |
| |
| case DTK_TZ: |
| |
| /* |
| * Timezone means a token with a leading sign character and at |
| * least one digit; there could be ':', '.', '-' embedded in |
| * it as well. |
| */ |
| Assert(*field[i] == '-' || *field[i] == '+'); |
| |
| /* |
| * Check for signed hh:mm or hh:mm:ss. If so, process exactly |
| * like DTK_TIME case above, plus handling the sign. |
| */ |
| if (strchr(field[i] + 1, ':') != NULL && |
| DecodeTimeForInterval(field[i] + 1, fmask, range, |
| &tmask, itm_in) == 0) |
| { |
| if (*field[i] == '-') |
| { |
| /* flip the sign on time field */ |
| if (itm_in->tm_usec == PG_INT64_MIN) |
| return DTERR_FIELD_OVERFLOW; |
| itm_in->tm_usec = -itm_in->tm_usec; |
| } |
| |
| if (force_negative && |
| itm_in->tm_usec > 0) |
| itm_in->tm_usec = -itm_in->tm_usec; |
| |
| /* |
| * Set the next type to be a day, if units are not |
| * specified. This handles the case of '1 +02:03' since we |
| * are reading right to left. |
| */ |
| type = DTK_DAY; |
| break; |
| } |
| |
| /* |
| * Otherwise, fall through to DTK_NUMBER case, which can |
| * handle signed float numbers and signed year-month values. |
| */ |
| |
| /* FALLTHROUGH */ |
| |
| case DTK_DATE: |
| case DTK_NUMBER: |
| if (type == IGNORE_DTF) |
| { |
| /* use typmod to decide what rightmost field is */ |
| switch (range) |
| { |
| case INTERVAL_MASK(YEAR): |
| type = DTK_YEAR; |
| break; |
| case INTERVAL_MASK(MONTH): |
| case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH): |
| type = DTK_MONTH; |
| break; |
| case INTERVAL_MASK(DAY): |
| type = DTK_DAY; |
| break; |
| case INTERVAL_MASK(HOUR): |
| case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR): |
| type = DTK_HOUR; |
| break; |
| case INTERVAL_MASK(MINUTE): |
| case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): |
| case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE): |
| type = DTK_MINUTE; |
| break; |
| case INTERVAL_MASK(SECOND): |
| case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND): |
| type = DTK_SECOND; |
| break; |
| default: |
| type = DTK_SECOND; |
| break; |
| } |
| } |
| |
| errno = 0; |
| val = strtoi64(field[i], &cp, 10); |
| if (errno == ERANGE) |
| return DTERR_FIELD_OVERFLOW; |
| |
| if (*cp == '-') |
| { |
| /* SQL "years-months" syntax */ |
| int val2; |
| |
| val2 = strtoint(cp + 1, &cp, 10); |
| if (errno == ERANGE || val2 < 0 || val2 >= MONTHS_PER_YEAR) |
| return DTERR_FIELD_OVERFLOW; |
| if (*cp != '\0') |
| return DTERR_BAD_FORMAT; |
| type = DTK_MONTH; |
| if (*field[i] == '-') |
| val2 = -val2; |
| if (pg_mul_s64_overflow(val, MONTHS_PER_YEAR, &val)) |
| return DTERR_FIELD_OVERFLOW; |
| if (pg_add_s64_overflow(val, val2, &val)) |
| return DTERR_FIELD_OVERFLOW; |
| fval = 0; |
| } |
| else if (*cp == '.') |
| { |
| dterr = ParseFraction(cp, &fval); |
| if (dterr) |
| return dterr; |
| if (*field[i] == '-') |
| fval = -fval; |
| } |
| else if (*cp == '\0') |
| fval = 0; |
| else |
| return DTERR_BAD_FORMAT; |
| |
| tmask = 0; /* DTK_M(type); */ |
| |
| if (force_negative) |
| { |
| /* val and fval should be of same sign, but test anyway */ |
| if (val > 0) |
| val = -val; |
| if (fval > 0) |
| fval = -fval; |
| } |
| |
| switch (type) |
| { |
| case DTK_MICROSEC: |
| if (!AdjustMicroseconds(val, fval, 1, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(MICROSECOND); |
| break; |
| |
| case DTK_MILLISEC: |
| if (!AdjustMicroseconds(val, fval, 1000, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(MILLISECOND); |
| break; |
| |
| case DTK_SECOND: |
| if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| |
| /* |
| * If any subseconds were specified, consider this |
| * microsecond and millisecond input as well. |
| */ |
| if (fval == 0) |
| tmask = DTK_M(SECOND); |
| else |
| tmask = DTK_ALL_SECS_M; |
| break; |
| |
| case DTK_MINUTE: |
| if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(MINUTE); |
| break; |
| |
| case DTK_HOUR: |
| if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(HOUR); |
| type = DTK_DAY; /* set for next field */ |
| break; |
| |
| case DTK_DAY: |
| if (!AdjustDays(val, 1, itm_in) || |
| !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(DAY); |
| break; |
| |
| case DTK_WEEK: |
| if (!AdjustDays(val, 7, itm_in) || |
| !AdjustFractDays(fval, 7, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(WEEK); |
| break; |
| |
| case DTK_MONTH: |
| if (!AdjustMonths(val, itm_in) || |
| !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(MONTH); |
| break; |
| |
| case DTK_YEAR: |
| if (!AdjustYears(val, 1, itm_in) || |
| !AdjustFractYears(fval, 1, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(YEAR); |
| break; |
| |
| case DTK_DECADE: |
| if (!AdjustYears(val, 10, itm_in) || |
| !AdjustFractYears(fval, 10, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(DECADE); |
| break; |
| |
| case DTK_CENTURY: |
| if (!AdjustYears(val, 100, itm_in) || |
| !AdjustFractYears(fval, 100, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(CENTURY); |
| break; |
| |
| case DTK_MILLENNIUM: |
| if (!AdjustYears(val, 1000, itm_in) || |
| !AdjustFractYears(fval, 1000, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| tmask = DTK_M(MILLENNIUM); |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| break; |
| |
| case DTK_STRING: |
| case DTK_SPECIAL: |
| type = DecodeUnits(i, field[i], &uval); |
| if (type == IGNORE_DTF) |
| continue; |
| |
| tmask = 0; /* DTK_M(type); */ |
| switch (type) |
| { |
| case UNITS: |
| type = uval; |
| break; |
| |
| case AGO: |
| is_before = true; |
| type = uval; |
| break; |
| |
| case RESERV: |
| tmask = (DTK_DATE_M | DTK_TIME_M); |
| *dtype = uval; |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| break; |
| |
| default: |
| return DTERR_BAD_FORMAT; |
| } |
| |
| if (tmask & fmask) |
| return DTERR_BAD_FORMAT; |
| fmask |= tmask; |
| } |
| |
| /* ensure that at least one time field has been found */ |
| if (fmask == 0) |
| return DTERR_BAD_FORMAT; |
| |
| /* finally, AGO negates everything */ |
| if (is_before) |
| { |
| if (itm_in->tm_usec == PG_INT64_MIN || |
| itm_in->tm_mday == INT_MIN || |
| itm_in->tm_mon == INT_MIN || |
| itm_in->tm_year == INT_MIN) |
| return DTERR_FIELD_OVERFLOW; |
| |
| itm_in->tm_usec = -itm_in->tm_usec; |
| itm_in->tm_mday = -itm_in->tm_mday; |
| itm_in->tm_mon = -itm_in->tm_mon; |
| itm_in->tm_year = -itm_in->tm_year; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Helper functions to avoid duplicated code in DecodeISO8601Interval. |
| * |
| * Parse a decimal value and break it into integer and fractional parts. |
| * Set *endptr to end+1 of the parsed substring. |
| * Returns 0 or DTERR code. |
| */ |
| static int |
| ParseISO8601Number(char *str, char **endptr, int64 *ipart, double *fpart) |
| { |
| double val; |
| |
| /* |
| * Historically this has accepted anything that strtod() would take, |
| * notably including "e" notation, so continue doing that. This is |
| * slightly annoying because the precision of double is less than that of |
| * int64, so we would lose accuracy for inputs larger than 2^53 or so. |
| * However, historically we rejected inputs outside the int32 range, |
| * making that concern moot. What we do now is reject abs(val) above |
| * 1.0e15 (a round number a bit less than 2^50), so that any accepted |
| * value will have an exact integer part, and thereby a fraction part with |
| * abs(*fpart) less than 1. In the absence of field complaints it doesn't |
| * seem worth working harder. |
| */ |
| if (!(isdigit((unsigned char) *str) || *str == '-' || *str == '.')) |
| return DTERR_BAD_FORMAT; |
| errno = 0; |
| val = strtod(str, endptr); |
| /* did we not see anything that looks like a double? */ |
| if (*endptr == str || errno != 0) |
| return DTERR_BAD_FORMAT; |
| /* watch out for overflow, including infinities; reject NaN too */ |
| if (isnan(val) || val < -1.0e15 || val > 1.0e15) |
| return DTERR_FIELD_OVERFLOW; |
| /* be very sure we truncate towards zero (cf dtrunc()) */ |
| if (val >= 0) |
| *ipart = (int64) floor(val); |
| else |
| *ipart = (int64) -floor(-val); |
| *fpart = val - *ipart; |
| /* Callers expect this to hold */ |
| Assert(*fpart > -1.0 && *fpart < 1.0); |
| return 0; |
| } |
| |
| /* |
| * Determine number of integral digits in a valid ISO 8601 number field |
| * (we should ignore sign and any fraction part) |
| */ |
| static int |
| ISO8601IntegerWidth(char *fieldstart) |
| { |
| /* We might have had a leading '-' */ |
| if (*fieldstart == '-') |
| fieldstart++; |
| return strspn(fieldstart, "0123456789"); |
| } |
| |
| |
| /* DecodeISO8601Interval() |
| * Decode an ISO 8601 time interval of the "format with designators" |
| * (section 4.4.3.2) or "alternative format" (section 4.4.3.3) |
| * Examples: P1D for 1 day |
| * PT1H for 1 hour |
| * P2Y6M7DT1H30M for 2 years, 6 months, 7 days 1 hour 30 min |
| * P0002-06-07T01:30:00 the same value in alternative format |
| * |
| * Returns 0 if successful, DTERR code if bogus input detected. |
| * Note: error code should be DTERR_BAD_FORMAT if input doesn't look like |
| * ISO8601, otherwise this could cause unexpected error messages. |
| * dtype and itm_in are output parameters. |
| * |
| * A couple exceptions from the spec: |
| * - a week field ('W') may coexist with other units |
| * - allows decimals in fields other than the least significant unit. |
| */ |
| int |
| DecodeISO8601Interval(char *str, |
| int *dtype, struct pg_itm_in *itm_in) |
| { |
| bool datepart = true; |
| bool havefield = false; |
| |
| *dtype = DTK_DELTA; |
| ClearPgItmIn(itm_in); |
| |
| if (strlen(str) < 2 || str[0] != 'P') |
| return DTERR_BAD_FORMAT; |
| |
| str++; |
| while (*str) |
| { |
| char *fieldstart; |
| int64 val; |
| double fval; |
| char unit; |
| int dterr; |
| |
| if (*str == 'T') /* T indicates the beginning of the time part */ |
| { |
| datepart = false; |
| havefield = false; |
| str++; |
| continue; |
| } |
| |
| fieldstart = str; |
| dterr = ParseISO8601Number(str, &str, &val, &fval); |
| if (dterr) |
| return dterr; |
| |
| /* |
| * Note: we could step off the end of the string here. Code below |
| * *must* exit the loop if unit == '\0'. |
| */ |
| unit = *str++; |
| |
| if (datepart) |
| { |
| switch (unit) /* before T: Y M W D */ |
| { |
| case 'Y': |
| if (!AdjustYears(val, 1, itm_in) || |
| !AdjustFractYears(fval, 1, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'M': |
| if (!AdjustMonths(val, itm_in) || |
| !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'W': |
| if (!AdjustDays(val, 7, itm_in) || |
| !AdjustFractDays(fval, 7, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'D': |
| if (!AdjustDays(val, 1, itm_in) || |
| !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'T': /* ISO 8601 4.4.3.3 Alternative Format / Basic */ |
| case '\0': |
| if (ISO8601IntegerWidth(fieldstart) == 8 && !havefield) |
| { |
| if (!AdjustYears(val / 10000, 1, itm_in) || |
| !AdjustMonths((val / 100) % 100, itm_in) || |
| !AdjustDays(val % 100, 1, itm_in) || |
| !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (unit == '\0') |
| return 0; |
| datepart = false; |
| havefield = false; |
| continue; |
| } |
| /* Else fall through to extended alternative format */ |
| /* FALLTHROUGH */ |
| case '-': /* ISO 8601 4.4.3.3 Alternative Format, |
| * Extended */ |
| if (havefield) |
| return DTERR_BAD_FORMAT; |
| |
| if (!AdjustYears(val, 1, itm_in) || |
| !AdjustFractYears(fval, 1, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (unit == '\0') |
| return 0; |
| if (unit == 'T') |
| { |
| datepart = false; |
| havefield = false; |
| continue; |
| } |
| |
| dterr = ParseISO8601Number(str, &str, &val, &fval); |
| if (dterr) |
| return dterr; |
| if (!AdjustMonths(val, itm_in) || |
| !AdjustFractDays(fval, DAYS_PER_MONTH, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (*str == '\0') |
| return 0; |
| if (*str == 'T') |
| { |
| datepart = false; |
| havefield = false; |
| continue; |
| } |
| if (*str != '-') |
| return DTERR_BAD_FORMAT; |
| str++; |
| |
| dterr = ParseISO8601Number(str, &str, &val, &fval); |
| if (dterr) |
| return dterr; |
| if (!AdjustDays(val, 1, itm_in) || |
| !AdjustFractMicroseconds(fval, USECS_PER_DAY, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (*str == '\0') |
| return 0; |
| if (*str == 'T') |
| { |
| datepart = false; |
| havefield = false; |
| continue; |
| } |
| return DTERR_BAD_FORMAT; |
| default: |
| /* not a valid date unit suffix */ |
| return DTERR_BAD_FORMAT; |
| } |
| } |
| else |
| { |
| switch (unit) /* after T: H M S */ |
| { |
| case 'H': |
| if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'M': |
| if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case 'S': |
| if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| break; |
| case '\0': /* ISO 8601 4.4.3.3 Alternative Format */ |
| if (ISO8601IntegerWidth(fieldstart) == 6 && !havefield) |
| { |
| if (!AdjustMicroseconds(val / 10000, 0, USECS_PER_HOUR, itm_in) || |
| !AdjustMicroseconds((val / 100) % 100, 0, USECS_PER_MINUTE, itm_in) || |
| !AdjustMicroseconds(val % 100, 0, USECS_PER_SEC, itm_in) || |
| !AdjustFractMicroseconds(fval, 1, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| return 0; |
| } |
| /* Else fall through to extended alternative format */ |
| /* FALLTHROUGH */ |
| case ':': /* ISO 8601 4.4.3.3 Alternative Format, |
| * Extended */ |
| if (havefield) |
| return DTERR_BAD_FORMAT; |
| |
| if (!AdjustMicroseconds(val, fval, USECS_PER_HOUR, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (unit == '\0') |
| return 0; |
| |
| dterr = ParseISO8601Number(str, &str, &val, &fval); |
| if (dterr) |
| return dterr; |
| if (!AdjustMicroseconds(val, fval, USECS_PER_MINUTE, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (*str == '\0') |
| return 0; |
| if (*str != ':') |
| return DTERR_BAD_FORMAT; |
| str++; |
| |
| dterr = ParseISO8601Number(str, &str, &val, &fval); |
| if (dterr) |
| return dterr; |
| if (!AdjustMicroseconds(val, fval, USECS_PER_SEC, itm_in)) |
| return DTERR_FIELD_OVERFLOW; |
| if (*str == '\0') |
| return 0; |
| return DTERR_BAD_FORMAT; |
| |
| default: |
| /* not a valid time unit suffix */ |
| return DTERR_BAD_FORMAT; |
| } |
| } |
| |
| havefield = true; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* DecodeUnits() |
| * Decode text string using lookup table. |
| * |
| * This routine recognizes keywords associated with time interval units. |
| * |
| * Given string must be lowercased already. |
| * |
| * Implement a cache lookup since it is likely that dates |
| * will be related in format. |
| */ |
| int |
| DecodeUnits(int field, const char *lowtoken, int *val) |
| { |
| int type; |
| const datetkn *tp; |
| |
| tp = deltacache[field]; |
| /* use strncmp so that we match truncated tokens */ |
| if (tp == NULL || strncmp(lowtoken, tp->token, TOKMAXLEN) != 0) |
| { |
| tp = datebsearch(lowtoken, deltatktbl, szdeltatktbl); |
| } |
| if (tp == NULL) |
| { |
| type = UNKNOWN_FIELD; |
| *val = 0; |
| } |
| else |
| { |
| deltacache[field] = tp; |
| type = tp->type; |
| *val = tp->value; |
| } |
| |
| return type; |
| } /* DecodeUnits() */ |
| |
| /* |
| * Report an error detected by one of the datetime input processing routines. |
| * |
| * dterr is the error code, and *extra contains any auxiliary info we need |
| * for the error report. extra can be NULL if not needed for the particular |
| * dterr value. |
| * |
| * str is the original input string, and datatype is the name of the datatype |
| * we were trying to accept. (For some DTERR codes, these are not used and |
| * can be NULL.) |
| * |
| * If escontext points to an ErrorSaveContext node, that is filled instead |
| * of throwing an error. |
| * |
| * Note: it might seem useless to distinguish DTERR_INTERVAL_OVERFLOW and |
| * DTERR_TZDISP_OVERFLOW from DTERR_FIELD_OVERFLOW, but SQL99 mandates three |
| * separate SQLSTATE codes, so ... |
| */ |
| void |
| DateTimeParseError(int dterr, DateTimeErrorExtra *extra, |
| const char *str, const char *datatype, |
| Node *escontext) |
| { |
| switch (dterr) |
| { |
| case DTERR_FIELD_OVERFLOW: |
| errsave(escontext, |
| (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), |
| errmsg("date/time field value out of range: \"%s\"", |
| str))); |
| break; |
| case DTERR_MD_FIELD_OVERFLOW: |
| /* <nanny>same as above, but add hint about DateStyle</nanny> */ |
| errsave(escontext, |
| (errcode(ERRCODE_DATETIME_FIELD_OVERFLOW), |
| errmsg("date/time field value out of range: \"%s\"", |
| str), |
| errhint("Perhaps you need a different \"datestyle\" setting."))); |
| break; |
| case DTERR_INTERVAL_OVERFLOW: |
| errsave(escontext, |
| (errcode(ERRCODE_INTERVAL_FIELD_OVERFLOW), |
| errmsg("interval field value out of range: \"%s\"", |
| str))); |
| break; |
| case DTERR_TZDISP_OVERFLOW: |
| errsave(escontext, |
| (errcode(ERRCODE_INVALID_TIME_ZONE_DISPLACEMENT_VALUE), |
| errmsg("time zone displacement out of range: \"%s\"", |
| str))); |
| break; |
| case DTERR_BAD_TIMEZONE: |
| errsave(escontext, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("time zone \"%s\" not recognized", |
| extra->dtee_timezone))); |
| break; |
| case DTERR_BAD_ZONE_ABBREV: |
| errsave(escontext, |
| (errcode(ERRCODE_CONFIG_FILE_ERROR), |
| errmsg("time zone \"%s\" not recognized", |
| extra->dtee_timezone), |
| errdetail("This time zone name appears in the configuration file for time zone abbreviation \"%s\".", |
| extra->dtee_abbrev))); |
| break; |
| case DTERR_BAD_FORMAT: |
| default: |
| errsave(escontext, |
| (errcode(ERRCODE_INVALID_DATETIME_FORMAT), |
| errmsg("invalid input syntax for type %s: \"%s\"", |
| datatype, str))); |
| break; |
| } |
| } |
| |
| /* datebsearch() |
| * Binary search -- from Knuth (6.2.1) Algorithm B. Special case like this |
| * is WAY faster than the generic bsearch(). |
| */ |
| static const datetkn * |
| datebsearch(const char *key, const datetkn *base, int nel) |
| { |
| if (nel > 0) |
| { |
| const datetkn *last = base + nel - 1, |
| *position; |
| int result; |
| |
| while (last >= base) |
| { |
| position = base + ((last - base) >> 1); |
| /* precheck the first character for a bit of extra speed */ |
| result = (int) key[0] - (int) position->token[0]; |
| if (result == 0) |
| { |
| /* use strncmp so that we match truncated tokens */ |
| result = strncmp(key, position->token, TOKMAXLEN); |
| if (result == 0) |
| return position; |
| } |
| if (result < 0) |
| last = position - 1; |
| else |
| base = position + 1; |
| } |
| } |
| return NULL; |
| } |
| |
| /* EncodeTimezone() |
| * Copies representation of a numeric timezone offset to str. |
| * |
| * Returns a pointer to the new end of string. No NUL terminator is put |
| * there; callers are responsible for NUL terminating str themselves. |
| */ |
| static char * |
| EncodeTimezone(char *str, int tz, int style) |
| { |
| int hour, |
| min, |
| sec; |
| |
| sec = abs(tz); |
| min = sec / SECS_PER_MINUTE; |
| sec -= min * SECS_PER_MINUTE; |
| hour = min / MINS_PER_HOUR; |
| min -= hour * MINS_PER_HOUR; |
| |
| /* TZ is negated compared to sign we wish to display ... */ |
| *str++ = (tz <= 0 ? '+' : '-'); |
| |
| if (sec != 0) |
| { |
| str = pg_ultostr_zeropad(str, hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, min, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, sec, 2); |
| } |
| else if (min != 0 || style == USE_XSD_DATES) |
| { |
| str = pg_ultostr_zeropad(str, hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, min, 2); |
| } |
| else |
| str = pg_ultostr_zeropad(str, hour, 2); |
| return str; |
| } |
| |
| |
| /* |
| * Convenience routine for encoding dates faster than sprintf does. |
| * tm is the timestamp structure, str is the string, pos is position in |
| * the string which we are at. Upon returning, it is set to the offset of the |
| * last character we set in str. |
| */ |
| inline static void |
| fast_encode_date(struct pg_tm * tm, char *str, int *pos) |
| { |
| /* |
| * sprintf() is very slow so we just convert the numbers to |
| * a string manually. Since we allow dates in the range |
| * 4713 BC to 5874897 AD, we have to check for years |
| * with 7, 6 and 5 digits, being careful to not add |
| * leading zeros for those. We only zero pad to four digits. |
| */ |
| int y = (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1); |
| |
| if (y >= 1000000) |
| str[(*pos)++] = y / 1000000 % 10 + '0'; |
| if (y >= 100000) |
| str[(*pos)++] = y / 100000 % 10 + '0'; |
| if (y >= 10000) |
| str[(*pos)++] = y / 10000 % 10 + '0'; |
| |
| str[(*pos)++] = y/1000 % 10 + '0'; |
| str[(*pos)++] = y/100 % 10 + '0'; |
| str[(*pos)++] = y/10 % 10 + '0'; |
| str[(*pos)++] = y % 10 + '0'; |
| str[(*pos)++] = '-'; |
| str[(*pos)++] = tm->tm_mon/10 + '0'; |
| str[(*pos)++] = tm->tm_mon % 10 + '0'; |
| str[(*pos)++] = '-'; |
| str[(*pos)++] = tm->tm_mday/10 + '0'; |
| str[(*pos)++] = tm->tm_mday % 10 + '0'; |
| str[(*pos)] = '\0'; |
| } |
| |
| /* EncodeDateOnly() |
| * Encode date as local time. |
| */ |
| void |
| EncodeDateOnly(struct pg_tm *tm, int style, char *str) |
| { |
| Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); |
| |
| switch (style) |
| { |
| case USE_ISO_DATES: |
| case USE_XSD_DATES: |
| /* compatible with ISO date formats */ |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| |
| break; |
| |
| case USE_SQL_DATES: |
| /* compatible with Oracle/Ingres date formats */ |
| if (DateOrder == DATEORDER_DMY) |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| } |
| else |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| } |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| break; |
| |
| case USE_GERMAN_DATES: |
| /* German-style date format */ |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = '.'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '.'; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| break; |
| |
| case USE_POSTGRES_DATES: |
| default: |
| /* traditional date-only style for Postgres */ |
| if (DateOrder == DATEORDER_DMY) |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| } |
| else |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| } |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| break; |
| } |
| |
| if (tm->tm_year <= 0) |
| { |
| memcpy(str, " BC", 3); /* Don't copy NUL */ |
| str += 3; |
| } |
| *str = '\0'; |
| } |
| |
| |
| /* EncodeTimeOnly() |
| * Encode time fields only. |
| * |
| * tm and fsec are the value to encode, print_tz determines whether to include |
| * a time zone (the difference between time and timetz types), tz is the |
| * numeric time zone offset, style is the date style, str is where to write the |
| * output. |
| */ |
| void |
| EncodeTimeOnly(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, int style, char *str) |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, tm->tm_min, 2); |
| *str++ = ':'; |
| str = AppendSeconds(str, tm->tm_sec, fsec, MAX_TIME_PRECISION, true); |
| if (print_tz) |
| str = EncodeTimezone(str, tz, style); |
| *str = '\0'; |
| } |
| |
| |
| /* EncodeDateTime() |
| * Encode date and time interpreted as local time. |
| * |
| * tm and fsec are the value to encode, print_tz determines whether to include |
| * a time zone (the difference between timestamp and timestamptz types), tz is |
| * the numeric time zone offset, tzn is the textual time zone, which if |
| * specified will be used instead of tz by some styles, style is the date |
| * style, str is where to write the output. |
| * |
| * Supported date styles: |
| * Postgres - day mon hh:mm:ss yyyy tz |
| * SQL - mm/dd/yyyy hh:mm:ss.ss tz |
| * ISO - yyyy-mm-dd hh:mm:ss+/-tz |
| * German - dd.mm.yyyy hh:mm:ss tz |
| * XSD - yyyy-mm-ddThh:mm:ss.ss+/-tz |
| */ |
| void |
| EncodeDateTime(struct pg_tm *tm, fsec_t fsec, bool print_tz, int tz, const char *tzn, int style, char *str) |
| { |
| int day; |
| |
| Assert(tm->tm_mon >= 1 && tm->tm_mon <= MONTHS_PER_YEAR); |
| |
| /* |
| * Negative tm_isdst means we have no valid time zone translation. |
| */ |
| if (tm->tm_isdst < 0) |
| print_tz = false; |
| |
| switch (style) |
| { |
| case USE_ISO_DATES: |
| case USE_XSD_DATES: |
| /* Compatible with ISO-8601 date formats */ |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '-'; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = (style == USE_ISO_DATES) ? ' ' : 'T'; |
| str = pg_ultostr_zeropad(str, tm->tm_hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, tm->tm_min, 2); |
| *str++ = ':'; |
| str = AppendTimestampSeconds(str, tm, fsec); |
| if (print_tz) |
| str = EncodeTimezone(str, tz, style); |
| break; |
| |
| case USE_SQL_DATES: |
| /* Compatible with Oracle/Ingres date formats */ |
| if (DateOrder == DATEORDER_DMY) |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| } |
| else |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| } |
| *str++ = '/'; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| *str++ = ' '; |
| str = pg_ultostr_zeropad(str, tm->tm_hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, tm->tm_min, 2); |
| *str++ = ':'; |
| str = AppendTimestampSeconds(str, tm, fsec); |
| |
| /* |
| * Note: the uses of %.*s in this function would be risky if the |
| * timezone names ever contain non-ASCII characters, since we are |
| * not being careful to do encoding-aware clipping. However, all |
| * TZ abbreviations in the IANA database are plain ASCII. |
| */ |
| if (print_tz) |
| { |
| if (tzn) |
| { |
| sprintf(str, " %.*s", MAXTZLEN, tzn); |
| str += strlen(str); |
| } |
| else |
| str = EncodeTimezone(str, tz, style); |
| } |
| break; |
| |
| case USE_GERMAN_DATES: |
| /* German variant on European style */ |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = '.'; |
| str = pg_ultostr_zeropad(str, tm->tm_mon, 2); |
| *str++ = '.'; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| *str++ = ' '; |
| str = pg_ultostr_zeropad(str, tm->tm_hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, tm->tm_min, 2); |
| *str++ = ':'; |
| str = AppendTimestampSeconds(str, tm, fsec); |
| |
| if (print_tz) |
| { |
| if (tzn) |
| { |
| sprintf(str, " %.*s", MAXTZLEN, tzn); |
| str += strlen(str); |
| } |
| else |
| str = EncodeTimezone(str, tz, style); |
| } |
| break; |
| |
| case USE_POSTGRES_DATES: |
| default: |
| /* Backward-compatible with traditional Postgres abstime dates */ |
| day = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday); |
| tm->tm_wday = j2day(day); |
| memcpy(str, days[tm->tm_wday], 3); |
| str += 3; |
| *str++ = ' '; |
| if (DateOrder == DATEORDER_DMY) |
| { |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| *str++ = ' '; |
| memcpy(str, months[tm->tm_mon - 1], 3); |
| str += 3; |
| } |
| else |
| { |
| memcpy(str, months[tm->tm_mon - 1], 3); |
| str += 3; |
| *str++ = ' '; |
| str = pg_ultostr_zeropad(str, tm->tm_mday, 2); |
| } |
| *str++ = ' '; |
| str = pg_ultostr_zeropad(str, tm->tm_hour, 2); |
| *str++ = ':'; |
| str = pg_ultostr_zeropad(str, tm->tm_min, 2); |
| *str++ = ':'; |
| str = AppendTimestampSeconds(str, tm, fsec); |
| *str++ = ' '; |
| str = pg_ultostr_zeropad(str, |
| (tm->tm_year > 0) ? tm->tm_year : -(tm->tm_year - 1), 4); |
| |
| if (print_tz) |
| { |
| if (tzn) |
| { |
| sprintf(str, " %.*s", MAXTZLEN, tzn); |
| str += strlen(str); |
| } |
| else |
| { |
| /* |
| * We have a time zone, but no string version. Use the |
| * numeric form, but be sure to include a leading space to |
| * avoid formatting something which would be rejected by |
| * the date/time parser later. - thomas 2001-10-19 |
| */ |
| *str++ = ' '; |
| str = EncodeTimezone(str, tz, style); |
| } |
| } |
| break; |
| } |
| |
| if (tm->tm_year <= 0) |
| { |
| memcpy(str, " BC", 3); /* Don't copy NUL */ |
| str += 3; |
| } |
| *str = '\0'; |
| } |
| |
| |
| /* |
| * Helper functions to avoid duplicated code in EncodeInterval. |
| */ |
| |
| /* Append an ISO-8601-style interval field, but only if value isn't zero */ |
| static char * |
| AddISO8601IntPart(char *cp, int64 value, char units) |
| { |
| if (value == 0) |
| return cp; |
| sprintf(cp, "%lld%c", (long long) value, units); |
| return cp + strlen(cp); |
| } |
| |
| /* Append a postgres-style interval field, but only if value isn't zero */ |
| static char * |
| AddPostgresIntPart(char *cp, int64 value, const char *units, |
| bool *is_zero, bool *is_before) |
| { |
| if (value == 0) |
| return cp; |
| sprintf(cp, "%s%s%lld %s%s", |
| (!*is_zero) ? " " : "", |
| (*is_before && value > 0) ? "+" : "", |
| (long long) value, |
| units, |
| (value != 1) ? "s" : ""); |
| |
| /* |
| * Each nonzero field sets is_before for (only) the next one. This is a |
| * tad bizarre but it's how it worked before... |
| */ |
| *is_before = (value < 0); |
| *is_zero = false; |
| return cp + strlen(cp); |
| } |
| |
| /* Append a verbose-style interval field, but only if value isn't zero */ |
| static char * |
| AddVerboseIntPart(char *cp, int64 value, const char *units, |
| bool *is_zero, bool *is_before) |
| { |
| if (value == 0) |
| return cp; |
| /* first nonzero value sets is_before */ |
| if (*is_zero) |
| { |
| *is_before = (value < 0); |
| value = i64abs(value); |
| } |
| else if (*is_before) |
| value = -value; |
| sprintf(cp, " %lld %s%s", (long long) value, units, (value == 1) ? "" : "s"); |
| *is_zero = false; |
| return cp + strlen(cp); |
| } |
| |
| |
| /* EncodeInterval() |
| * Interpret time structure as a delta time and convert to string. |
| * |
| * Support "traditional Postgres" and ISO-8601 styles. |
| * Actually, afaik ISO does not address time interval formatting, |
| * but this looks similar to the spec for absolute date/time. |
| * - thomas 1998-04-30 |
| * |
| * Actually, afaik, ISO 8601 does specify formats for "time |
| * intervals...[of the]...format with time-unit designators", which |
| * are pretty ugly. The format looks something like |
| * P1Y1M1DT1H1M1.12345S |
| * but useful for exchanging data with computers instead of humans. |
| * - ron 2003-07-14 |
| * |
| * And ISO's SQL 2008 standard specifies standards for |
| * "year-month literal"s (that look like '2-3') and |
| * "day-time literal"s (that look like ('4 5:6:7') |
| */ |
| void |
| EncodeInterval(struct pg_itm *itm, int style, char *str) |
| { |
| char *cp = str; |
| int year = itm->tm_year; |
| int mon = itm->tm_mon; |
| int64 mday = itm->tm_mday; /* tm_mday could be INT_MIN */ |
| int64 hour = itm->tm_hour; |
| int min = itm->tm_min; |
| int sec = itm->tm_sec; |
| int fsec = itm->tm_usec; |
| bool is_before = false; |
| bool is_zero = true; |
| |
| /* |
| * The sign of year and month are guaranteed to match, since they are |
| * stored internally as "month". But we'll need to check for is_before and |
| * is_zero when determining the signs of day and hour/minute/seconds |
| * fields. |
| */ |
| switch (style) |
| { |
| /* SQL Standard interval format */ |
| case INTSTYLE_SQL_STANDARD: |
| { |
| bool has_negative = year < 0 || mon < 0 || |
| mday < 0 || hour < 0 || |
| min < 0 || sec < 0 || fsec < 0; |
| bool has_positive = year > 0 || mon > 0 || |
| mday > 0 || hour > 0 || |
| min > 0 || sec > 0 || fsec > 0; |
| bool has_year_month = year != 0 || mon != 0; |
| bool has_day_time = mday != 0 || hour != 0 || |
| min != 0 || sec != 0 || fsec != 0; |
| bool has_day = mday != 0; |
| bool sql_standard_value = !(has_negative && has_positive) && |
| !(has_year_month && has_day_time); |
| |
| /* |
| * SQL Standard wants only 1 "<sign>" preceding the whole |
| * interval ... but can't do that if mixed signs. |
| */ |
| if (has_negative && sql_standard_value) |
| { |
| *cp++ = '-'; |
| year = -year; |
| mon = -mon; |
| mday = -mday; |
| hour = -hour; |
| min = -min; |
| sec = -sec; |
| fsec = -fsec; |
| } |
| |
| if (!has_negative && !has_positive) |
| { |
| sprintf(cp, "0"); |
| } |
| else if (!sql_standard_value) |
| { |
| /* |
| * For non sql-standard interval values, force outputting |
| * the signs to avoid ambiguities with intervals with |
| * mixed sign components. |
| */ |
| char year_sign = (year < 0 || mon < 0) ? '-' : '+'; |
| char day_sign = (mday < 0) ? '-' : '+'; |
| char sec_sign = (hour < 0 || min < 0 || |
| sec < 0 || fsec < 0) ? '-' : '+'; |
| |
| sprintf(cp, "%c%d-%d %c%lld %c%lld:%02d:", |
| year_sign, abs(year), abs(mon), |
| day_sign, (long long) i64abs(mday), |
| sec_sign, (long long) i64abs(hour), abs(min)); |
| cp += strlen(cp); |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| *cp = '\0'; |
| } |
| else if (has_year_month) |
| { |
| sprintf(cp, "%d-%d", year, mon); |
| } |
| else if (has_day) |
| { |
| sprintf(cp, "%lld %lld:%02d:", |
| (long long) mday, (long long) hour, min); |
| cp += strlen(cp); |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| *cp = '\0'; |
| } |
| else |
| { |
| sprintf(cp, "%lld:%02d:", (long long) hour, min); |
| cp += strlen(cp); |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| *cp = '\0'; |
| } |
| } |
| break; |
| |
| /* ISO 8601 "time-intervals by duration only" */ |
| case INTSTYLE_ISO_8601: |
| /* special-case zero to avoid printing nothing */ |
| if (year == 0 && mon == 0 && mday == 0 && |
| hour == 0 && min == 0 && sec == 0 && fsec == 0) |
| { |
| sprintf(cp, "PT0S"); |
| break; |
| } |
| *cp++ = 'P'; |
| cp = AddISO8601IntPart(cp, year, 'Y'); |
| cp = AddISO8601IntPart(cp, mon, 'M'); |
| cp = AddISO8601IntPart(cp, mday, 'D'); |
| if (hour != 0 || min != 0 || sec != 0 || fsec != 0) |
| *cp++ = 'T'; |
| cp = AddISO8601IntPart(cp, hour, 'H'); |
| cp = AddISO8601IntPart(cp, min, 'M'); |
| if (sec != 0 || fsec != 0) |
| { |
| if (sec < 0 || fsec < 0) |
| *cp++ = '-'; |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); |
| *cp++ = 'S'; |
| *cp++ = '\0'; |
| } |
| break; |
| |
| /* Compatible with postgresql < 8.4 when DateStyle = 'iso' */ |
| case INTSTYLE_POSTGRES: |
| cp = AddPostgresIntPart(cp, year, "year", &is_zero, &is_before); |
| |
| /* |
| * Ideally we should spell out "month" like we do for "year" and |
| * "day". However, for backward compatibility, we can't easily |
| * fix this. bjm 2011-05-24 |
| */ |
| cp = AddPostgresIntPart(cp, mon, "mon", &is_zero, &is_before); |
| cp = AddPostgresIntPart(cp, mday, "day", &is_zero, &is_before); |
| if (is_zero || hour != 0 || min != 0 || sec != 0 || fsec != 0) |
| { |
| bool minus = (hour < 0 || min < 0 || sec < 0 || fsec < 0); |
| |
| sprintf(cp, "%s%s%02lld:%02d:", |
| is_zero ? "" : " ", |
| (minus ? "-" : (is_before ? "+" : "")), |
| (long long) i64abs(hour), abs(min)); |
| cp += strlen(cp); |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, true); |
| *cp = '\0'; |
| } |
| break; |
| |
| /* Compatible with postgresql < 8.4 when DateStyle != 'iso' */ |
| case INTSTYLE_POSTGRES_VERBOSE: |
| default: |
| strcpy(cp, "@"); |
| cp++; |
| cp = AddVerboseIntPart(cp, year, "year", &is_zero, &is_before); |
| cp = AddVerboseIntPart(cp, mon, "mon", &is_zero, &is_before); |
| cp = AddVerboseIntPart(cp, mday, "day", &is_zero, &is_before); |
| cp = AddVerboseIntPart(cp, hour, "hour", &is_zero, &is_before); |
| cp = AddVerboseIntPart(cp, min, "min", &is_zero, &is_before); |
| if (sec != 0 || fsec != 0) |
| { |
| *cp++ = ' '; |
| if (sec < 0 || (sec == 0 && fsec < 0)) |
| { |
| if (is_zero) |
| is_before = true; |
| else if (!is_before) |
| *cp++ = '-'; |
| } |
| else if (is_before) |
| *cp++ = '-'; |
| cp = AppendSeconds(cp, sec, fsec, MAX_INTERVAL_PRECISION, false); |
| /* We output "ago", not negatives, so use abs(). */ |
| sprintf(cp, " sec%s", |
| (abs(sec) != 1 || fsec != 0) ? "s" : ""); |
| is_zero = false; |
| } |
| /* identically zero? then put in a unitless zero... */ |
| if (is_zero) |
| strcat(cp, " 0"); |
| if (is_before) |
| strcat(cp, " ago"); |
| break; |
| } |
| } |
| |
| |
| /* |
| * We've been burnt by stupid errors in the ordering of the datetkn tables |
| * once too often. Arrange to check them during postmaster start. |
| */ |
| static bool |
| CheckDateTokenTable(const char *tablename, const datetkn *base, int nel) |
| { |
| bool ok = true; |
| int i; |
| |
| for (i = 0; i < nel; i++) |
| { |
| /* check for token strings that don't fit */ |
| if (strlen(base[i].token) > TOKMAXLEN) |
| { |
| /* %.*s is safe since all our tokens are ASCII */ |
| elog(LOG, "token too long in %s table: \"%.*s\"", |
| tablename, |
| TOKMAXLEN + 1, base[i].token); |
| ok = false; |
| break; /* don't risk applying strcmp */ |
| } |
| /* check for out of order */ |
| if (i > 0 && |
| strcmp(base[i - 1].token, base[i].token) >= 0) |
| { |
| elog(LOG, "ordering error in %s table: \"%s\" >= \"%s\"", |
| tablename, |
| base[i - 1].token, |
| base[i].token); |
| ok = false; |
| } |
| } |
| return ok; |
| } |
| |
| bool |
| CheckDateTokenTables(void) |
| { |
| bool ok = true; |
| |
| Assert(UNIX_EPOCH_JDATE == date2j(1970, 1, 1)); |
| Assert(POSTGRES_EPOCH_JDATE == date2j(2000, 1, 1)); |
| |
| ok &= CheckDateTokenTable("datetktbl", datetktbl, szdatetktbl); |
| ok &= CheckDateTokenTable("deltatktbl", deltatktbl, szdeltatktbl); |
| return ok; |
| } |
| |
| /* |
| * Common code for temporal prosupport functions: simplify, if possible, |
| * a call to a temporal type's length-coercion function. |
| * |
| * Types time, timetz, timestamp and timestamptz each have a range of allowed |
| * precisions. An unspecified precision is rigorously equivalent to the |
| * highest specifiable precision. We can replace the function call with a |
| * no-op RelabelType if it is coercing to the same or higher precision as the |
| * input is known to have. |
| * |
| * The input Node is always a FuncExpr, but to reduce the #include footprint |
| * of datetime.h, we declare it as Node *. |
| * |
| * Note: timestamp_scale throws an error when the typmod is out of range, but |
| * we can't get there from a cast: our typmodin will have caught it already. |
| */ |
| Node * |
| TemporalSimplify(int32 max_precis, Node *node) |
| { |
| FuncExpr *expr = castNode(FuncExpr, node); |
| Node *ret = NULL; |
| Node *typmod; |
| |
| Assert(list_length(expr->args) >= 2); |
| |
| typmod = (Node *) lsecond(expr->args); |
| |
| if (IsA(typmod, Const) && !((Const *) typmod)->constisnull) |
| { |
| Node *source = (Node *) linitial(expr->args); |
| int32 old_precis = exprTypmod(source); |
| int32 new_precis = DatumGetInt32(((Const *) typmod)->constvalue); |
| |
| if (new_precis < 0 || new_precis == max_precis || |
| (old_precis >= 0 && new_precis >= old_precis)) |
| ret = relabel_to_typmod(source, new_precis); |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This function gets called during timezone config file load or reload |
| * to create the final array of timezone tokens. The argument array |
| * is already sorted in name order. |
| * |
| * The result is a TimeZoneAbbrevTable (which must be a single guc_malloc'd |
| * chunk) or NULL on alloc failure. No other error conditions are defined. |
| */ |
| TimeZoneAbbrevTable * |
| ConvertTimeZoneAbbrevs(struct tzEntry *abbrevs, int n) |
| { |
| TimeZoneAbbrevTable *tbl; |
| Size tbl_size; |
| int i; |
| |
| /* Space for fixed fields and datetkn array */ |
| tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + |
| n * sizeof(datetkn); |
| tbl_size = MAXALIGN(tbl_size); |
| /* Count up space for dynamic abbreviations */ |
| for (i = 0; i < n; i++) |
| { |
| struct tzEntry *abbr = abbrevs + i; |
| |
| if (abbr->zone != NULL) |
| { |
| Size dsize; |
| |
| dsize = offsetof(DynamicZoneAbbrev, zone) + |
| strlen(abbr->zone) + 1; |
| tbl_size += MAXALIGN(dsize); |
| } |
| } |
| |
| /* Alloc the result ... */ |
| tbl = guc_malloc(LOG, tbl_size); |
| if (!tbl) |
| return NULL; |
| |
| /* ... and fill it in */ |
| tbl->tblsize = tbl_size; |
| tbl->numabbrevs = n; |
| /* in this loop, tbl_size reprises the space calculation above */ |
| tbl_size = offsetof(TimeZoneAbbrevTable, abbrevs) + |
| n * sizeof(datetkn); |
| tbl_size = MAXALIGN(tbl_size); |
| for (i = 0; i < n; i++) |
| { |
| struct tzEntry *abbr = abbrevs + i; |
| datetkn *dtoken = tbl->abbrevs + i; |
| |
| /* use strlcpy to truncate name if necessary */ |
| strlcpy(dtoken->token, abbr->abbrev, TOKMAXLEN + 1); |
| if (abbr->zone != NULL) |
| { |
| /* Allocate a DynamicZoneAbbrev for this abbreviation */ |
| DynamicZoneAbbrev *dtza; |
| Size dsize; |
| |
| dtza = (DynamicZoneAbbrev *) ((char *) tbl + tbl_size); |
| dtza->tz = NULL; |
| strcpy(dtza->zone, abbr->zone); |
| |
| dtoken->type = DYNTZ; |
| /* value is offset from table start to DynamicZoneAbbrev */ |
| dtoken->value = (int32) tbl_size; |
| |
| dsize = offsetof(DynamicZoneAbbrev, zone) + |
| strlen(abbr->zone) + 1; |
| tbl_size += MAXALIGN(dsize); |
| } |
| else |
| { |
| dtoken->type = abbr->is_dst ? DTZ : TZ; |
| dtoken->value = abbr->offset; |
| } |
| } |
| |
| /* Assert the two loops above agreed on size calculations */ |
| Assert(tbl->tblsize == tbl_size); |
| |
| /* Check the ordering, if testing */ |
| Assert(CheckDateTokenTable("timezone abbreviations", tbl->abbrevs, n)); |
| |
| return tbl; |
| } |
| |
| /* |
| * Install a TimeZoneAbbrevTable as the active table. |
| * |
| * Caller is responsible that the passed table doesn't go away while in use. |
| */ |
| void |
| InstallTimeZoneAbbrevs(TimeZoneAbbrevTable *tbl) |
| { |
| zoneabbrevtbl = tbl; |
| /* reset abbrevcache, which may contain pointers into old table */ |
| memset(abbrevcache, 0, sizeof(abbrevcache)); |
| } |
| |
| /* |
| * Helper subroutine to locate pg_tz timezone for a dynamic abbreviation. |
| * |
| * On failure, returns NULL and fills *extra for a DTERR_BAD_ZONE_ABBREV error. |
| */ |
| static pg_tz * |
| FetchDynamicTimeZone(TimeZoneAbbrevTable *tbl, const datetkn *tp, |
| DateTimeErrorExtra *extra) |
| { |
| DynamicZoneAbbrev *dtza; |
| |
| /* Just some sanity checks to prevent indexing off into nowhere */ |
| Assert(tp->type == DYNTZ); |
| Assert(tp->value > 0 && tp->value < tbl->tblsize); |
| |
| dtza = (DynamicZoneAbbrev *) ((char *) tbl + tp->value); |
| |
| /* Look up the underlying zone if we haven't already */ |
| if (dtza->tz == NULL) |
| { |
| dtza->tz = pg_tzset(dtza->zone); |
| if (dtza->tz == NULL) |
| { |
| /* Ooops, bogus zone name in config file entry */ |
| extra->dtee_timezone = dtza->zone; |
| extra->dtee_abbrev = tp->token; |
| } |
| } |
| return dtza->tz; |
| } |
| |
| |
| /* |
| * This set-returning function reads all the available time zone abbreviations |
| * and returns a set of (abbrev, utc_offset, is_dst). |
| */ |
| Datum |
| pg_timezone_abbrevs(PG_FUNCTION_ARGS) |
| { |
| FuncCallContext *funcctx; |
| int *pindex; |
| Datum result; |
| HeapTuple tuple; |
| Datum values[3]; |
| bool nulls[3] = {0}; |
| const datetkn *tp; |
| char buffer[TOKMAXLEN + 1]; |
| int gmtoffset; |
| bool is_dst; |
| unsigned char *p; |
| struct pg_itm_in itm_in; |
| Interval *resInterval; |
| |
| /* stuff done only on the first call of the function */ |
| if (SRF_IS_FIRSTCALL()) |
| { |
| TupleDesc tupdesc; |
| MemoryContext oldcontext; |
| |
| /* create a function context for cross-call persistence */ |
| funcctx = SRF_FIRSTCALL_INIT(); |
| |
| /* |
| * switch to memory context appropriate for multiple function calls |
| */ |
| oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| |
| /* allocate memory for user context */ |
| pindex = (int *) palloc(sizeof(int)); |
| *pindex = 0; |
| funcctx->user_fctx = (void *) pindex; |
| |
| if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE) |
| elog(ERROR, "return type must be a row type"); |
| funcctx->tuple_desc = tupdesc; |
| |
| MemoryContextSwitchTo(oldcontext); |
| } |
| |
| /* stuff done on every call of the function */ |
| funcctx = SRF_PERCALL_SETUP(); |
| pindex = (int *) funcctx->user_fctx; |
| |
| if (zoneabbrevtbl == NULL || |
| *pindex >= zoneabbrevtbl->numabbrevs) |
| SRF_RETURN_DONE(funcctx); |
| |
| tp = zoneabbrevtbl->abbrevs + *pindex; |
| |
| switch (tp->type) |
| { |
| case TZ: |
| gmtoffset = tp->value; |
| is_dst = false; |
| break; |
| case DTZ: |
| gmtoffset = tp->value; |
| is_dst = true; |
| break; |
| case DYNTZ: |
| { |
| /* Determine the current meaning of the abbrev */ |
| pg_tz *tzp; |
| DateTimeErrorExtra extra; |
| TimestampTz now; |
| int isdst; |
| |
| tzp = FetchDynamicTimeZone(zoneabbrevtbl, tp, &extra); |
| if (tzp == NULL) |
| DateTimeParseError(DTERR_BAD_ZONE_ABBREV, &extra, |
| NULL, NULL, NULL); |
| now = GetCurrentTransactionStartTimestamp(); |
| gmtoffset = -DetermineTimeZoneAbbrevOffsetTS(now, |
| tp->token, |
| tzp, |
| &isdst); |
| is_dst = (bool) isdst; |
| break; |
| } |
| default: |
| elog(ERROR, "unrecognized timezone type %d", (int) tp->type); |
| gmtoffset = 0; /* keep compiler quiet */ |
| is_dst = false; |
| break; |
| } |
| |
| /* |
| * Convert name to text, using upcasing conversion that is the inverse of |
| * what ParseDateTime() uses. |
| */ |
| strlcpy(buffer, tp->token, sizeof(buffer)); |
| for (p = (unsigned char *) buffer; *p; p++) |
| *p = pg_toupper(*p); |
| |
| values[0] = CStringGetTextDatum(buffer); |
| |
| /* Convert offset (in seconds) to an interval; can't overflow */ |
| MemSet(&itm_in, 0, sizeof(struct pg_itm_in)); |
| itm_in.tm_usec = (int64) gmtoffset * USECS_PER_SEC; |
| resInterval = (Interval *) palloc(sizeof(Interval)); |
| (void) itmin2interval(&itm_in, resInterval); |
| values[1] = IntervalPGetDatum(resInterval); |
| |
| values[2] = BoolGetDatum(is_dst); |
| |
| (*pindex)++; |
| |
| tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls); |
| result = HeapTupleGetDatum(tuple); |
| |
| SRF_RETURN_NEXT(funcctx, result); |
| } |
| |
| /* |
| * This set-returning function reads all the available full time zones |
| * and returns a set of (name, abbrev, utc_offset, is_dst). |
| */ |
| Datum |
| pg_timezone_names(PG_FUNCTION_ARGS) |
| { |
| ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| pg_tzenum *tzenum; |
| pg_tz *tz; |
| Datum values[4]; |
| bool nulls[4] = {0}; |
| int tzoff; |
| struct pg_tm tm; |
| fsec_t fsec; |
| const char *tzn; |
| Interval *resInterval; |
| struct pg_itm_in itm_in; |
| |
| InitMaterializedSRF(fcinfo, 0); |
| |
| /* initialize timezone scanning code */ |
| tzenum = pg_tzenumerate_start(); |
| |
| /* search for another zone to display */ |
| for (;;) |
| { |
| tz = pg_tzenumerate_next(tzenum); |
| if (!tz) |
| break; |
| |
| /* Convert now() to local time in this zone */ |
| if (timestamp2tm(GetCurrentTransactionStartTimestamp(), |
| &tzoff, &tm, &fsec, &tzn, tz) != 0) |
| continue; /* ignore if conversion fails */ |
| |
| /* |
| * IANA's rather silly "Factory" time zone used to emit ridiculously |
| * long "abbreviations" such as "Local time zone must be set--see zic |
| * manual page" or "Local time zone must be set--use tzsetup". While |
| * modern versions of tzdb emit the much saner "-00", it seems some |
| * benighted packagers are hacking the IANA data so that it continues |
| * to produce these strings. To prevent producing a weirdly wide |
| * abbrev column, reject ridiculously long abbreviations. |
| */ |
| if (tzn && strlen(tzn) > 31) |
| continue; |
| |
| values[0] = CStringGetTextDatum(pg_get_timezone_name(tz)); |
| values[1] = CStringGetTextDatum(tzn ? tzn : ""); |
| |
| /* Convert tzoff to an interval; can't overflow */ |
| MemSet(&itm_in, 0, sizeof(struct pg_itm_in)); |
| itm_in.tm_usec = (int64) -tzoff * USECS_PER_SEC; |
| resInterval = (Interval *) palloc(sizeof(Interval)); |
| (void) itmin2interval(&itm_in, resInterval); |
| values[2] = IntervalPGetDatum(resInterval); |
| |
| values[3] = BoolGetDatum(tm.tm_isdst > 0); |
| |
| tuplestore_putvalues(rsinfo->setResult, rsinfo->setDesc, values, nulls); |
| } |
| |
| pg_tzenumerate_end(tzenum); |
| return (Datum) 0; |
| } |