| /*------------------------------------------------------------------------- |
| * |
| * arrayfuncs.c |
| * Support functions for arrays. |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/utils/adt/arrayfuncs.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include <ctype.h> |
| #include <math.h> |
| |
| #include "access/htup_details.h" |
| #include "catalog/pg_type.h" |
| #include "common/int.h" |
| #include "funcapi.h" |
| #include "access/tupmacs.h" |
| #include "libpq/pqformat.h" |
| #include "nodes/nodeFuncs.h" |
| #include "nodes/supportnodes.h" |
| #include "optimizer/optimizer.h" |
| #include "port/pg_bitutils.h" |
| #include "utils/array.h" |
| #include "utils/arrayaccess.h" |
| #include "utils/builtins.h" |
| #include "utils/datum.h" |
| #include "utils/fmgroids.h" |
| #include "utils/lsyscache.h" |
| #include "utils/memutils.h" |
| #include "utils/selfuncs.h" |
| #include "utils/typcache.h" |
| #include "catalog/pg_type.h" |
| |
| |
| /* |
| * GUC parameter |
| */ |
| bool Array_nulls = true; |
| |
| /* |
| * Local definitions |
| */ |
| #define ASSGN "=" |
| |
| #define AARR_FREE_IF_COPY(array,n) \ |
| do { \ |
| if (!VARATT_IS_EXPANDED_HEADER(array)) \ |
| PG_FREE_IF_COPY(array, n); \ |
| } while (0) |
| |
| typedef enum |
| { |
| ARRAY_NO_LEVEL, |
| ARRAY_LEVEL_STARTED, |
| ARRAY_ELEM_STARTED, |
| ARRAY_ELEM_COMPLETED, |
| ARRAY_QUOTED_ELEM_STARTED, |
| ARRAY_QUOTED_ELEM_COMPLETED, |
| ARRAY_ELEM_DELIMITED, |
| ARRAY_LEVEL_COMPLETED, |
| ARRAY_LEVEL_DELIMITED |
| } ArrayParseState; |
| |
| /* Working state for array_iterate() */ |
| typedef struct ArrayIteratorData |
| { |
| /* basic info about the array, set up during array_create_iterator() */ |
| ArrayType *arr; /* array we're iterating through */ |
| bits8 *nullbitmap; /* its null bitmap, if any */ |
| int nitems; /* total number of elements in array */ |
| int16 typlen; /* element type's length */ |
| bool typbyval; /* element type's byval property */ |
| char typalign; /* element type's align property */ |
| |
| /* information about the requested slice size */ |
| int slice_ndim; /* slice dimension, or 0 if not slicing */ |
| int slice_len; /* number of elements per slice */ |
| int *slice_dims; /* slice dims array */ |
| int *slice_lbound; /* slice lbound array */ |
| Datum *slice_values; /* workspace of length slice_len */ |
| bool *slice_nulls; /* workspace of length slice_len */ |
| |
| /* current position information, updated on each iteration */ |
| char *data_ptr; /* our current position in the array */ |
| int current_item; /* the item # we're at in the array */ |
| } ArrayIteratorData; |
| |
| static bool array_isspace(char ch); |
| static int ArrayCount(const char *str, int *dim, char typdelim, |
| Node *escontext); |
| static bool ReadArrayStr(char *arrayStr, const char *origStr, |
| int nitems, int ndim, int *dim, |
| FmgrInfo *inputproc, Oid typioparam, int32 typmod, |
| char typdelim, |
| int typlen, bool typbyval, char typalign, |
| Datum *values, bool *nulls, |
| bool *hasnulls, int32 *nbytes, Node *escontext); |
| static void ReadArrayBinary(StringInfo buf, int nitems, |
| FmgrInfo *receiveproc, Oid typioparam, int32 typmod, |
| int typlen, bool typbyval, char typalign, |
| Datum *values, bool *nulls, |
| bool *hasnulls, int32 *nbytes); |
| static Datum array_get_element_expanded(Datum arraydatum, |
| int nSubscripts, int *indx, |
| int arraytyplen, |
| int elmlen, bool elmbyval, char elmalign, |
| bool *isNull); |
| static Datum array_set_element_expanded(Datum arraydatum, |
| int nSubscripts, int *indx, |
| Datum dataValue, bool isNull, |
| int arraytyplen, |
| int elmlen, bool elmbyval, char elmalign); |
| static bool array_get_isnull(const bits8 *nullbitmap, int offset); |
| static void array_set_isnull(bits8 *nullbitmap, int offset, bool isNull); |
| static Datum ArrayCast(char *value, bool byval, int len); |
| static int ArrayCastAndSet(Datum src, |
| int typlen, bool typbyval, char typalign, |
| char *dest); |
| static char *array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| int typlen, bool typbyval, char typalign); |
| static int array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, |
| int nitems, int typlen, bool typbyval, char typalign); |
| static int array_copy(char *destptr, int nitems, |
| char *srcptr, int offset, bits8 *nullbitmap, |
| int typlen, bool typbyval, char typalign); |
| static int array_slice_size(char *arraydataptr, bits8 *arraynullsptr, |
| int ndim, int *dim, int *lb, |
| int *st, int *endp, |
| int typlen, bool typbyval, char typalign); |
| static void array_extract_slice(ArrayType *newarray, |
| int ndim, int *dim, int *lb, |
| char *arraydataptr, bits8 *arraynullsptr, |
| int *st, int *endp, |
| int typlen, bool typbyval, char typalign); |
| static void array_insert_slice(ArrayType *destArray, ArrayType *origArray, |
| ArrayType *srcArray, |
| int ndim, int *dim, int *lb, |
| int *st, int *endp, |
| int typlen, bool typbyval, char typalign); |
| static int array_cmp(FunctionCallInfo fcinfo); |
| static ArrayType *create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, |
| Oid elmtype, int dataoffset); |
| static ArrayType *array_fill_internal(ArrayType *dims, ArrayType *lbs, |
| Datum value, bool isnull, Oid elmtype, |
| FunctionCallInfo fcinfo); |
| static ArrayType *array_replace_internal(ArrayType *array, |
| Datum search, bool search_isnull, |
| Datum replace, bool replace_isnull, |
| bool remove, Oid collation, |
| FunctionCallInfo fcinfo); |
| static int width_bucket_array_float8(Datum operand, ArrayType *thresholds); |
| static int width_bucket_array_fixed(Datum operand, |
| ArrayType *thresholds, |
| Oid collation, |
| TypeCacheEntry *typentry); |
| static int width_bucket_array_variable(Datum operand, |
| ArrayType *thresholds, |
| Oid collation, |
| TypeCacheEntry *typentry); |
| |
| |
| /* |
| * array_in : |
| * converts an array from the external format in "string" to |
| * its internal format. |
| * |
| * return value : |
| * the internal representation of the input array |
| */ |
| Datum |
| array_in(PG_FUNCTION_ARGS) |
| { |
| char *string = PG_GETARG_CSTRING(0); /* external form */ |
| Oid element_type = PG_GETARG_OID(1); /* type of an array |
| * element */ |
| int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ |
| Node *escontext = fcinfo->context; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| char typdelim; |
| Oid typioparam; |
| char *string_save, |
| *p; |
| int i, |
| nitems; |
| Datum *dataPtr; |
| bool *nullsPtr; |
| bool hasnulls; |
| int32 nbytes; |
| int32 dataoffset; |
| ArrayType *retval; |
| int ndim, |
| dim[MAXDIM], |
| lBound[MAXDIM]; |
| ArrayMetaState *my_extra; |
| |
| /* |
| * We arrange to look up info about element type, including its input |
| * conversion proc, only once per series of calls, assuming the element |
| * type doesn't change underneath us. |
| */ |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| if (my_extra == NULL) |
| { |
| fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| sizeof(ArrayMetaState)); |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| my_extra->element_type = ~element_type; |
| } |
| |
| if (my_extra->element_type != element_type) |
| { |
| /* |
| * Get info about element type, including its input conversion proc |
| */ |
| get_type_io_data(element_type, IOFunc_input, |
| &my_extra->typlen, &my_extra->typbyval, |
| &my_extra->typalign, &my_extra->typdelim, |
| &my_extra->typioparam, &my_extra->typiofunc); |
| fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| fcinfo->flinfo->fn_mcxt); |
| my_extra->element_type = element_type; |
| } |
| typlen = my_extra->typlen; |
| typbyval = my_extra->typbyval; |
| typalign = my_extra->typalign; |
| typdelim = my_extra->typdelim; |
| typioparam = my_extra->typioparam; |
| |
| /* Make a modifiable copy of the input */ |
| string_save = pstrdup(string); |
| |
| /* |
| * If the input string starts with dimension info, read and use that. |
| * Otherwise, we require the input to be in curly-brace style, and we |
| * prescan the input to determine dimensions. |
| * |
| * Dimension info takes the form of one or more [n] or [m:n] items. The |
| * outer loop iterates once per dimension item. |
| */ |
| p = string_save; |
| ndim = 0; |
| for (;;) |
| { |
| char *q; |
| int ub; |
| |
| /* |
| * Note: we currently allow whitespace between, but not within, |
| * dimension items. |
| */ |
| while (array_isspace(*p)) |
| p++; |
| if (*p != '[') |
| break; /* no more dimension items */ |
| p++; |
| if (ndim >= MAXDIM) |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| ndim + 1, MAXDIM))); |
| |
| for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) |
| /* skip */ ; |
| if (q == p) /* no digits? */ |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("\"[\" must introduce explicitly-specified array dimensions."))); |
| |
| if (*q == ':') |
| { |
| /* [m:n] format */ |
| *q = '\0'; |
| lBound[ndim] = atoi(p); |
| p = q + 1; |
| for (q = p; isdigit((unsigned char) *q) || (*q == '-') || (*q == '+'); q++) |
| /* skip */ ; |
| if (q == p) /* no digits? */ |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Missing array dimension value."))); |
| } |
| else |
| { |
| /* [n] format */ |
| lBound[ndim] = 1; |
| } |
| if (*q != ']') |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Missing \"%s\" after array dimensions.", |
| "]"))); |
| |
| *q = '\0'; |
| ub = atoi(p); |
| p = q + 1; |
| if (ub < lBound[ndim]) |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("upper bound cannot be less than lower bound"))); |
| |
| dim[ndim] = ub - lBound[ndim] + 1; |
| ndim++; |
| } |
| |
| if (ndim == 0) |
| { |
| /* No array dimensions, so intuit dimensions from brace structure */ |
| if (*p != '{') |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Array value must start with \"{\" or dimension information."))); |
| ndim = ArrayCount(p, dim, typdelim, escontext); |
| if (ndim < 0) |
| PG_RETURN_NULL(); |
| for (i = 0; i < ndim; i++) |
| lBound[i] = 1; |
| } |
| else |
| { |
| int ndim_braces, |
| dim_braces[MAXDIM]; |
| |
| /* If array dimensions are given, expect '=' operator */ |
| if (strncmp(p, ASSGN, strlen(ASSGN)) != 0) |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Missing \"%s\" after array dimensions.", |
| ASSGN))); |
| p += strlen(ASSGN); |
| while (array_isspace(*p)) |
| p++; |
| |
| /* |
| * intuit dimensions from brace structure -- it better match what we |
| * were given |
| */ |
| if (*p != '{') |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Array contents must start with \"{\"."))); |
| ndim_braces = ArrayCount(p, dim_braces, typdelim, escontext); |
| if (ndim_braces < 0) |
| PG_RETURN_NULL(); |
| if (ndim_braces != ndim) |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Specified array dimensions do not match array contents."))); |
| for (i = 0; i < ndim; ++i) |
| { |
| if (dim[i] != dim_braces[i]) |
| ereturn(escontext, (Datum) 0, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", string), |
| errdetail("Specified array dimensions do not match array contents."))); |
| } |
| } |
| |
| #ifdef ARRAYDEBUG |
| printf("array_in- ndim %d (", ndim); |
| for (i = 0; i < ndim; i++) |
| { |
| printf(" %d", dim[i]); |
| }; |
| printf(") for %s\n", string); |
| #endif |
| |
| /* This checks for overflow of the array dimensions */ |
| nitems = ArrayGetNItemsSafe(ndim, dim, escontext); |
| if (nitems < 0) |
| PG_RETURN_NULL(); |
| if (!ArrayCheckBoundsSafe(ndim, dim, lBound, escontext)) |
| PG_RETURN_NULL(); |
| |
| /* Empty array? */ |
| if (nitems == 0) |
| PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); |
| |
| dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); |
| nullsPtr = (bool *) palloc(nitems * sizeof(bool)); |
| if (!ReadArrayStr(p, string, |
| nitems, ndim, dim, |
| &my_extra->proc, typioparam, typmod, |
| typdelim, |
| typlen, typbyval, typalign, |
| dataPtr, nullsPtr, |
| &hasnulls, &nbytes, escontext)) |
| PG_RETURN_NULL(); |
| if (hasnulls) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| } |
| retval = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(retval, nbytes); |
| retval->ndim = ndim; |
| retval->dataoffset = dataoffset; |
| |
| /* |
| * This comes from the array's pg_type.typelem (which points to the base |
| * data type's pg_type.oid) and stores system oids in user tables. This |
| * oid must be preserved by binary upgrades. |
| */ |
| retval->elemtype = element_type; |
| memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); |
| |
| CopyArrayEls(retval, |
| dataPtr, nullsPtr, nitems, |
| typlen, typbyval, typalign, |
| true); |
| |
| pfree(dataPtr); |
| pfree(nullsPtr); |
| pfree(string_save); |
| |
| PG_RETURN_ARRAYTYPE_P(retval); |
| } |
| |
| /* |
| * array_isspace() --- a non-locale-dependent isspace() |
| * |
| * We used to use isspace() for parsing array values, but that has |
| * undesirable results: an array value might be silently interpreted |
| * differently depending on the locale setting. Now we just hard-wire |
| * the traditional ASCII definition of isspace(). |
| */ |
| static bool |
| array_isspace(char ch) |
| { |
| if (ch == ' ' || |
| ch == '\t' || |
| ch == '\n' || |
| ch == '\r' || |
| ch == '\v' || |
| ch == '\f') |
| return true; |
| return false; |
| } |
| |
| /* |
| * ArrayCount |
| * Determines the dimensions for an array string. |
| * |
| * Returns number of dimensions as function result. The axis lengths are |
| * returned in dim[], which must be of size MAXDIM. |
| * |
| * If we detect an error, fill *escontext with error details and return -1 |
| * (unless escontext isn't provided, in which case errors will be thrown). |
| */ |
| static int |
| ArrayCount(const char *str, int *dim, char typdelim, Node *escontext) |
| { |
| int nest_level = 0, |
| i; |
| int ndim = 1, |
| temp[MAXDIM], |
| nelems[MAXDIM], |
| nelems_last[MAXDIM]; |
| bool in_quotes = false; |
| bool eoArray = false; |
| bool empty_array = true; |
| const char *ptr; |
| ArrayParseState parse_state = ARRAY_NO_LEVEL; |
| |
| for (i = 0; i < MAXDIM; ++i) |
| { |
| temp[i] = dim[i] = nelems_last[i] = 0; |
| nelems[i] = 1; |
| } |
| |
| ptr = str; |
| while (!eoArray) |
| { |
| bool itemdone = false; |
| |
| while (!itemdone) |
| { |
| if (parse_state == ARRAY_ELEM_STARTED || |
| parse_state == ARRAY_QUOTED_ELEM_STARTED) |
| empty_array = false; |
| |
| switch (*ptr) |
| { |
| case '\0': |
| /* Signal a premature end of the string */ |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected end of input."))); |
| case '\\': |
| |
| /* |
| * An escape must be after a level start, after an element |
| * start, or after an element delimiter. In any case we |
| * now must be past an element start. |
| */ |
| if (parse_state != ARRAY_LEVEL_STARTED && |
| parse_state != ARRAY_ELEM_STARTED && |
| parse_state != ARRAY_QUOTED_ELEM_STARTED && |
| parse_state != ARRAY_ELEM_DELIMITED) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected \"%c\" character.", |
| '\\'))); |
| if (parse_state != ARRAY_QUOTED_ELEM_STARTED) |
| parse_state = ARRAY_ELEM_STARTED; |
| /* skip the escaped character */ |
| if (*(ptr + 1)) |
| ptr++; |
| else |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected end of input."))); |
| break; |
| case '"': |
| |
| /* |
| * A quote must be after a level start, after a quoted |
| * element start, or after an element delimiter. In any |
| * case we now must be past an element start. |
| */ |
| if (parse_state != ARRAY_LEVEL_STARTED && |
| parse_state != ARRAY_QUOTED_ELEM_STARTED && |
| parse_state != ARRAY_ELEM_DELIMITED) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected array element."))); |
| in_quotes = !in_quotes; |
| if (in_quotes) |
| parse_state = ARRAY_QUOTED_ELEM_STARTED; |
| else |
| parse_state = ARRAY_QUOTED_ELEM_COMPLETED; |
| break; |
| case '{': |
| if (!in_quotes) |
| { |
| /* |
| * A left brace can occur if no nesting has occurred |
| * yet, after a level start, or after a level |
| * delimiter. |
| */ |
| if (parse_state != ARRAY_NO_LEVEL && |
| parse_state != ARRAY_LEVEL_STARTED && |
| parse_state != ARRAY_LEVEL_DELIMITED) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected \"%c\" character.", |
| '{'))); |
| parse_state = ARRAY_LEVEL_STARTED; |
| if (nest_level >= MAXDIM) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| nest_level + 1, MAXDIM))); |
| temp[nest_level] = 0; |
| nest_level++; |
| if (ndim < nest_level) |
| ndim = nest_level; |
| } |
| break; |
| case '}': |
| if (!in_quotes) |
| { |
| /* |
| * A right brace can occur after an element start, an |
| * element completion, a quoted element completion, or |
| * a level completion. |
| */ |
| if (parse_state != ARRAY_ELEM_STARTED && |
| parse_state != ARRAY_ELEM_COMPLETED && |
| parse_state != ARRAY_QUOTED_ELEM_COMPLETED && |
| parse_state != ARRAY_LEVEL_COMPLETED && |
| !(nest_level == 1 && parse_state == ARRAY_LEVEL_STARTED)) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected \"%c\" character.", |
| '}'))); |
| parse_state = ARRAY_LEVEL_COMPLETED; |
| if (nest_level == 0) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unmatched \"%c\" character.", '}'))); |
| nest_level--; |
| |
| if (nelems_last[nest_level] != 0 && |
| nelems[nest_level] != nelems_last[nest_level]) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Multidimensional arrays must have " |
| "sub-arrays with matching " |
| "dimensions."))); |
| nelems_last[nest_level] = nelems[nest_level]; |
| nelems[nest_level] = 1; |
| if (nest_level == 0) |
| eoArray = itemdone = true; |
| else |
| { |
| /* |
| * We don't set itemdone here; see comments in |
| * ReadArrayStr |
| */ |
| temp[nest_level - 1]++; |
| } |
| } |
| break; |
| default: |
| if (!in_quotes) |
| { |
| if (*ptr == typdelim) |
| { |
| /* |
| * Delimiters can occur after an element start, an |
| * element completion, a quoted element |
| * completion, or a level completion. |
| */ |
| if (parse_state != ARRAY_ELEM_STARTED && |
| parse_state != ARRAY_ELEM_COMPLETED && |
| parse_state != ARRAY_QUOTED_ELEM_COMPLETED && |
| parse_state != ARRAY_LEVEL_COMPLETED) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected \"%c\" character.", |
| typdelim))); |
| if (parse_state == ARRAY_LEVEL_COMPLETED) |
| parse_state = ARRAY_LEVEL_DELIMITED; |
| else |
| parse_state = ARRAY_ELEM_DELIMITED; |
| itemdone = true; |
| nelems[nest_level - 1]++; |
| } |
| else if (!array_isspace(*ptr)) |
| { |
| /* |
| * Other non-space characters must be after a |
| * level start, after an element start, or after |
| * an element delimiter. In any case we now must |
| * be past an element start. |
| */ |
| if (parse_state != ARRAY_LEVEL_STARTED && |
| parse_state != ARRAY_ELEM_STARTED && |
| parse_state != ARRAY_ELEM_DELIMITED) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Unexpected array element."))); |
| parse_state = ARRAY_ELEM_STARTED; |
| } |
| } |
| break; |
| } |
| if (!itemdone) |
| ptr++; |
| } |
| temp[ndim - 1]++; |
| ptr++; |
| } |
| |
| /* only whitespace is allowed after the closing brace */ |
| while (*ptr) |
| { |
| if (!array_isspace(*ptr++)) |
| ereturn(escontext, -1, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", str), |
| errdetail("Junk after closing right brace."))); |
| } |
| |
| /* special case for an empty array */ |
| if (empty_array) |
| return 0; |
| |
| for (i = 0; i < ndim; ++i) |
| dim[i] = temp[i]; |
| |
| return ndim; |
| } |
| |
| /* |
| * ReadArrayStr : |
| * parses the array string pointed to by "arrayStr" and converts the values |
| * to internal format. Unspecified elements are initialized to nulls. |
| * The array dimensions must already have been determined. |
| * |
| * Inputs: |
| * arrayStr: the string to parse. |
| * CAUTION: the contents of "arrayStr" will be modified! |
| * origStr: the unmodified input string, used only in error messages. |
| * nitems: total number of array elements, as already determined. |
| * ndim: number of array dimensions |
| * dim[]: array axis lengths |
| * inputproc: type-specific input procedure for element datatype. |
| * typioparam, typmod: auxiliary values to pass to inputproc. |
| * typdelim: the value delimiter (type-specific). |
| * typlen, typbyval, typalign: storage parameters of element datatype. |
| * |
| * Outputs: |
| * values[]: filled with converted data values. |
| * nulls[]: filled with is-null markers. |
| * *hasnulls: set true iff there are any null elements. |
| * *nbytes: set to total size of data area needed (including alignment |
| * padding but not including array header overhead). |
| * *escontext: if this points to an ErrorSaveContext, details of |
| * any error are reported there. |
| * |
| * Result: |
| * true for success, false for failure (if escontext is provided). |
| * |
| * Note that values[] and nulls[] are allocated by the caller, and must have |
| * nitems elements. |
| */ |
| static bool |
| ReadArrayStr(char *arrayStr, |
| const char *origStr, |
| int nitems, |
| int ndim, |
| int *dim, |
| FmgrInfo *inputproc, |
| Oid typioparam, |
| int32 typmod, |
| char typdelim, |
| int typlen, |
| bool typbyval, |
| char typalign, |
| Datum *values, |
| bool *nulls, |
| bool *hasnulls, |
| int32 *nbytes, |
| Node *escontext) |
| { |
| int i, |
| nest_level = 0; |
| char *srcptr; |
| bool in_quotes = false; |
| bool eoArray = false; |
| bool hasnull; |
| int32 totbytes; |
| int indx[MAXDIM] = {0}, |
| prod[MAXDIM]; |
| |
| mda_get_prod(ndim, dim, prod); |
| |
| /* Initialize is-null markers to true */ |
| memset(nulls, true, nitems * sizeof(bool)); |
| |
| /* |
| * We have to remove " and \ characters to create a clean item value to |
| * pass to the datatype input routine. We overwrite each item value |
| * in-place within arrayStr to do this. srcptr is the current scan point, |
| * and dstptr is where we are copying to. |
| * |
| * We also want to suppress leading and trailing unquoted whitespace. We |
| * use the leadingspace flag to suppress leading space. Trailing space is |
| * tracked by using dstendptr to point to the last significant output |
| * character. |
| * |
| * The error checking in this routine is mostly pro-forma, since we expect |
| * that ArrayCount() already validated the string. So we don't bother |
| * with errdetail messages. |
| */ |
| srcptr = arrayStr; |
| while (!eoArray) |
| { |
| bool itemdone = false; |
| bool leadingspace = true; |
| bool hasquoting = false; |
| char *itemstart; |
| char *dstptr; |
| char *dstendptr; |
| |
| i = -1; |
| itemstart = dstptr = dstendptr = srcptr; |
| |
| while (!itemdone) |
| { |
| switch (*srcptr) |
| { |
| case '\0': |
| /* Signal a premature end of the string */ |
| ereturn(escontext, false, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", |
| origStr))); |
| break; |
| case '\\': |
| /* Skip backslash, copy next character as-is. */ |
| srcptr++; |
| if (*srcptr == '\0') |
| ereturn(escontext, false, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", |
| origStr))); |
| *dstptr++ = *srcptr++; |
| /* Treat the escaped character as non-whitespace */ |
| leadingspace = false; |
| dstendptr = dstptr; |
| hasquoting = true; /* can't be a NULL marker */ |
| break; |
| case '"': |
| in_quotes = !in_quotes; |
| if (in_quotes) |
| leadingspace = false; |
| else |
| { |
| /* |
| * Advance dstendptr when we exit in_quotes; this |
| * saves having to do it in all the other in_quotes |
| * cases. |
| */ |
| dstendptr = dstptr; |
| } |
| hasquoting = true; /* can't be a NULL marker */ |
| srcptr++; |
| break; |
| case '{': |
| if (!in_quotes) |
| { |
| if (nest_level >= ndim) |
| ereturn(escontext, false, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", |
| origStr))); |
| nest_level++; |
| indx[nest_level - 1] = 0; |
| srcptr++; |
| } |
| else |
| *dstptr++ = *srcptr++; |
| break; |
| case '}': |
| if (!in_quotes) |
| { |
| if (nest_level == 0) |
| ereturn(escontext, false, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", |
| origStr))); |
| if (i == -1) |
| i = ArrayGetOffset0(ndim, indx, prod); |
| indx[nest_level - 1] = 0; |
| nest_level--; |
| if (nest_level == 0) |
| eoArray = itemdone = true; |
| else |
| indx[nest_level - 1]++; |
| srcptr++; |
| } |
| else |
| *dstptr++ = *srcptr++; |
| break; |
| default: |
| if (in_quotes) |
| *dstptr++ = *srcptr++; |
| else if (*srcptr == typdelim) |
| { |
| if (i == -1) |
| i = ArrayGetOffset0(ndim, indx, prod); |
| itemdone = true; |
| indx[ndim - 1]++; |
| srcptr++; |
| } |
| else if (array_isspace(*srcptr)) |
| { |
| /* |
| * If leading space, drop it immediately. Else, copy |
| * but don't advance dstendptr. |
| */ |
| if (leadingspace) |
| srcptr++; |
| else |
| *dstptr++ = *srcptr++; |
| } |
| else |
| { |
| *dstptr++ = *srcptr++; |
| leadingspace = false; |
| dstendptr = dstptr; |
| } |
| break; |
| } |
| } |
| |
| Assert(dstptr < srcptr); |
| *dstendptr = '\0'; |
| |
| if (i < 0 || i >= nitems) |
| ereturn(escontext, false, |
| (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION), |
| errmsg("malformed array literal: \"%s\"", |
| origStr))); |
| |
| if (Array_nulls && !hasquoting && |
| pg_strcasecmp(itemstart, "NULL") == 0) |
| { |
| /* it's a NULL item */ |
| if (!InputFunctionCallSafe(inputproc, NULL, |
| typioparam, typmod, |
| escontext, |
| &values[i])) |
| return false; |
| nulls[i] = true; |
| } |
| else |
| { |
| if (!InputFunctionCallSafe(inputproc, itemstart, |
| typioparam, typmod, |
| escontext, |
| &values[i])) |
| return false; |
| nulls[i] = false; |
| } |
| } |
| |
| /* |
| * Check for nulls, compute total data space needed |
| */ |
| hasnull = false; |
| totbytes = 0; |
| for (i = 0; i < nitems; i++) |
| { |
| if (nulls[i]) |
| hasnull = true; |
| else |
| { |
| /* let's just make sure data is not toasted */ |
| if (typlen == -1) |
| values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| totbytes = att_addlength_datum(totbytes, typlen, values[i]); |
| totbytes = att_align_nominal(totbytes, typalign); |
| /* check for overflow of total request */ |
| if (!AllocSizeIsValid(totbytes)) |
| ereturn(escontext, false, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| } |
| } |
| *hasnulls = hasnull; |
| *nbytes = totbytes; |
| return true; |
| } |
| |
| |
| /* |
| * Copy data into an array object from a temporary array of Datums. |
| * |
| * array: array object (with header fields already filled in) |
| * values: array of Datums to be copied |
| * nulls: array of is-null flags (can be NULL if no nulls) |
| * nitems: number of Datums to be copied |
| * typbyval, typlen, typalign: info about element datatype |
| * freedata: if true and element type is pass-by-ref, pfree data values |
| * referenced by Datums after copying them. |
| * |
| * If the input data is of varlena type, the caller must have ensured that |
| * the values are not toasted. (Doing it here doesn't work since the |
| * caller has already allocated space for the array...) |
| */ |
| void |
| CopyArrayEls(ArrayType *array, |
| Datum *values, |
| bool *nulls, |
| int nitems, |
| int typlen, |
| bool typbyval, |
| char typalign, |
| bool freedata) |
| { |
| char *p = ARR_DATA_PTR(array); |
| bits8 *bitmap = ARR_NULLBITMAP(array); |
| int bitval = 0; |
| int bitmask = 1; |
| int i; |
| |
| if (typbyval) |
| freedata = false; |
| |
| for (i = 0; i < nitems; i++) |
| { |
| if (nulls && nulls[i]) |
| { |
| if (!bitmap) /* shouldn't happen */ |
| elog(ERROR, "null array element where not supported"); |
| /* bitmap bit stays 0 */ |
| } |
| else |
| { |
| bitval |= bitmask; |
| p += ArrayCastAndSet(values[i], typlen, typbyval, typalign, p); |
| if (freedata) |
| pfree(DatumGetPointer(values[i])); |
| } |
| if (bitmap) |
| { |
| bitmask <<= 1; |
| if (bitmask == 0x100 /* (1<<8) */) |
| { |
| *bitmap++ = bitval; |
| bitval = 0; |
| bitmask = 1; |
| } |
| } |
| } |
| |
| if (bitmap && bitmask != 1) |
| *bitmap = bitval; |
| } |
| |
| /* |
| * array_out : |
| * takes the internal representation of an array and returns a string |
| * containing the array in its external format. |
| */ |
| Datum |
| array_out(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| Oid element_type = AARR_ELEMTYPE(v); |
| int typlen; |
| bool typbyval; |
| char typalign; |
| char typdelim; |
| char *p, |
| *tmp, |
| *retval, |
| **values, |
| dims_str[(MAXDIM * 33) + 2]; |
| |
| /* |
| * 33 per dim since we assume 15 digits per number + ':' +'[]' |
| * |
| * +2 allows for assignment operator + trailing null |
| */ |
| bool *needquotes, |
| needdims = false; |
| size_t overall_length; |
| int nitems, |
| i, |
| j, |
| k, |
| indx[MAXDIM]; |
| int ndim, |
| *dims, |
| *lb; |
| array_iter iter; |
| ArrayMetaState *my_extra; |
| |
| /* |
| * We arrange to look up info about element type, including its output |
| * conversion proc, only once per series of calls, assuming the element |
| * type doesn't change underneath us. |
| */ |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| if (my_extra == NULL) |
| { |
| fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| sizeof(ArrayMetaState)); |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| my_extra->element_type = ~element_type; |
| } |
| |
| if (my_extra->element_type != element_type) |
| { |
| /* |
| * Get info about element type, including its output conversion proc |
| */ |
| get_type_io_data(element_type, IOFunc_output, |
| &my_extra->typlen, &my_extra->typbyval, |
| &my_extra->typalign, &my_extra->typdelim, |
| &my_extra->typioparam, &my_extra->typiofunc); |
| fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| fcinfo->flinfo->fn_mcxt); |
| my_extra->element_type = element_type; |
| } |
| typlen = my_extra->typlen; |
| typbyval = my_extra->typbyval; |
| typalign = my_extra->typalign; |
| typdelim = my_extra->typdelim; |
| |
| ndim = AARR_NDIM(v); |
| dims = AARR_DIMS(v); |
| lb = AARR_LBOUND(v); |
| nitems = ArrayGetNItems(ndim, dims); |
| |
| if (nitems == 0) |
| { |
| retval = pstrdup("{}"); |
| PG_RETURN_CSTRING(retval); |
| } |
| |
| /* |
| * we will need to add explicit dimensions if any dimension has a lower |
| * bound other than one |
| */ |
| for (i = 0; i < ndim; i++) |
| { |
| if (lb[i] != 1) |
| { |
| needdims = true; |
| break; |
| } |
| } |
| |
| /* |
| * Convert all values to string form, count total space needed (including |
| * any overhead such as escaping backslashes), and detect whether each |
| * item needs double quotes. |
| */ |
| values = (char **) palloc(nitems * sizeof(char *)); |
| needquotes = (bool *) palloc(nitems * sizeof(bool)); |
| overall_length = 0; |
| |
| array_iter_setup(&iter, v); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum itemvalue; |
| bool isnull; |
| bool needquote; |
| |
| /* Get source element, checking for NULL */ |
| itemvalue = array_iter_next(&iter, &isnull, i, |
| typlen, typbyval, typalign); |
| |
| if (isnull) |
| { |
| values[i] = pstrdup("NULL"); |
| overall_length += 4; |
| needquote = false; |
| } |
| else |
| { |
| values[i] = OutputFunctionCall(&my_extra->proc, itemvalue); |
| |
| /* count data plus backslashes; detect chars needing quotes */ |
| if (values[i][0] == '\0') |
| needquote = true; /* force quotes for empty string */ |
| else if (pg_strcasecmp(values[i], "NULL") == 0) |
| needquote = true; /* force quotes for literal NULL */ |
| else |
| needquote = false; |
| |
| for (tmp = values[i]; *tmp != '\0'; tmp++) |
| { |
| char ch = *tmp; |
| |
| overall_length += 1; |
| if (ch == '"' || ch == '\\') |
| { |
| needquote = true; |
| overall_length += 1; |
| } |
| else if (ch == '{' || ch == '}' || ch == typdelim || |
| array_isspace(ch)) |
| needquote = true; |
| } |
| } |
| |
| needquotes[i] = needquote; |
| |
| /* Count the pair of double quotes, if needed */ |
| if (needquote) |
| overall_length += 2; |
| /* and the comma (or other typdelim delimiter) */ |
| overall_length += 1; |
| } |
| |
| /* |
| * The very last array element doesn't have a typdelim delimiter after it, |
| * but that's OK; that space is needed for the trailing '\0'. |
| * |
| * Now count total number of curly brace pairs in output string. |
| */ |
| for (i = j = 0, k = 1; i < ndim; i++) |
| { |
| j += k, k *= dims[i]; |
| } |
| overall_length += 2 * j; |
| |
| /* Format explicit dimensions if required */ |
| dims_str[0] = '\0'; |
| if (needdims) |
| { |
| char *ptr = dims_str; |
| |
| for (i = 0; i < ndim; i++) |
| { |
| sprintf(ptr, "[%d:%d]", lb[i], lb[i] + dims[i] - 1); |
| ptr += strlen(ptr); |
| } |
| *ptr++ = *ASSGN; |
| *ptr = '\0'; |
| overall_length += ptr - dims_str; |
| } |
| |
| /* Now construct the output string */ |
| retval = (char *) palloc(overall_length); |
| p = retval; |
| |
| #define APPENDSTR(str) (strcpy(p, (str)), p += strlen(p)) |
| #define APPENDCHAR(ch) (*p++ = (ch), *p = '\0') |
| |
| if (needdims) |
| APPENDSTR(dims_str); |
| APPENDCHAR('{'); |
| for (i = 0; i < ndim; i++) |
| indx[i] = 0; |
| j = 0; |
| k = 0; |
| do |
| { |
| for (i = j; i < ndim - 1; i++) |
| APPENDCHAR('{'); |
| |
| if (needquotes[k]) |
| { |
| APPENDCHAR('"'); |
| for (tmp = values[k]; *tmp; tmp++) |
| { |
| char ch = *tmp; |
| |
| if (ch == '"' || ch == '\\') |
| *p++ = '\\'; |
| *p++ = ch; |
| } |
| *p = '\0'; |
| APPENDCHAR('"'); |
| } |
| else |
| APPENDSTR(values[k]); |
| pfree(values[k++]); |
| |
| for (i = ndim - 1; i >= 0; i--) |
| { |
| if (++(indx[i]) < dims[i]) |
| { |
| APPENDCHAR(typdelim); |
| break; |
| } |
| else |
| { |
| indx[i] = 0; |
| APPENDCHAR('}'); |
| } |
| } |
| j = i; |
| } while (j != -1); |
| |
| #undef APPENDSTR |
| #undef APPENDCHAR |
| |
| /* Assert that we calculated the string length accurately */ |
| Assert(overall_length == (p - retval + 1)); |
| |
| pfree(values); |
| pfree(needquotes); |
| |
| PG_RETURN_CSTRING(retval); |
| } |
| |
| /* |
| * array_recv : |
| * converts an array from the external binary format to |
| * its internal format. |
| * |
| * return value : |
| * the internal representation of the input array |
| */ |
| Datum |
| array_recv(PG_FUNCTION_ARGS) |
| { |
| StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| Oid spec_element_type = PG_GETARG_OID(1); /* type of an array |
| * element */ |
| int32 typmod = PG_GETARG_INT32(2); /* typmod for array elements */ |
| Oid element_type; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| Oid typioparam; |
| int i, |
| nitems; |
| Datum *dataPtr; |
| bool *nullsPtr; |
| bool hasnulls; |
| int32 nbytes; |
| int32 dataoffset; |
| ArrayType *retval; |
| int ndim, |
| flags, |
| dim[MAXDIM], |
| lBound[MAXDIM]; |
| ArrayMetaState *my_extra; |
| |
| /* Get the array header information */ |
| ndim = pq_getmsgint(buf, 4); |
| if (ndim < 0) /* we do allow zero-dimension arrays */ |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| errmsg("invalid number of dimensions: %d", ndim))); |
| if (ndim > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| ndim, MAXDIM))); |
| |
| flags = pq_getmsgint(buf, 4); |
| if (flags != 0 && flags != 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| errmsg("invalid array flags"))); |
| |
| /* Check element type recorded in the data */ |
| element_type = pq_getmsgint(buf, sizeof(Oid)); |
| |
| /* |
| * From a security standpoint, it doesn't matter whether the input's |
| * element type matches what we expect: the element type's receive |
| * function has to be robust enough to cope with invalid data. However, |
| * from a user-friendliness standpoint, it's nicer to complain about type |
| * mismatches than to throw "improper binary format" errors. But there's |
| * a problem: only built-in types have OIDs that are stable enough to |
| * believe that a mismatch is a real issue. So complain only if both OIDs |
| * are in the built-in range. Otherwise, carry on with the element type |
| * we "should" be getting. |
| */ |
| if (element_type != spec_element_type) |
| { |
| if (element_type < FirstGenbkiObjectId && |
| spec_element_type < FirstGenbkiObjectId) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("binary data has array element type %u (%s) instead of expected %u (%s)", |
| element_type, |
| format_type_extended(element_type, -1, |
| FORMAT_TYPE_ALLOW_INVALID), |
| spec_element_type, |
| format_type_extended(spec_element_type, -1, |
| FORMAT_TYPE_ALLOW_INVALID)))); |
| element_type = spec_element_type; |
| } |
| |
| for (i = 0; i < ndim; i++) |
| { |
| dim[i] = pq_getmsgint(buf, 4); |
| lBound[i] = pq_getmsgint(buf, 4); |
| } |
| |
| /* This checks for overflow of array dimensions */ |
| nitems = ArrayGetNItems(ndim, dim); |
| ArrayCheckBounds(ndim, dim, lBound); |
| |
| /* |
| * We arrange to look up info about element type, including its receive |
| * conversion proc, only once per series of calls, assuming the element |
| * type doesn't change underneath us. |
| */ |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| if (my_extra == NULL) |
| { |
| fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| sizeof(ArrayMetaState)); |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| my_extra->element_type = ~element_type; |
| } |
| |
| if (my_extra->element_type != element_type) |
| { |
| /* Get info about element type, including its receive proc */ |
| get_type_io_data(element_type, IOFunc_receive, |
| &my_extra->typlen, &my_extra->typbyval, |
| &my_extra->typalign, &my_extra->typdelim, |
| &my_extra->typioparam, &my_extra->typiofunc); |
| if (!OidIsValid(my_extra->typiofunc)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("no binary input function available for type %s", |
| format_type_be(element_type)))); |
| fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| fcinfo->flinfo->fn_mcxt); |
| my_extra->element_type = element_type; |
| } |
| |
| if (nitems == 0) |
| { |
| /* Return empty array ... but not till we've validated element_type */ |
| PG_RETURN_ARRAYTYPE_P(construct_empty_array(element_type)); |
| } |
| |
| typlen = my_extra->typlen; |
| typbyval = my_extra->typbyval; |
| typalign = my_extra->typalign; |
| typioparam = my_extra->typioparam; |
| |
| dataPtr = (Datum *) palloc(nitems * sizeof(Datum)); |
| nullsPtr = (bool *) palloc(nitems * sizeof(bool)); |
| ReadArrayBinary(buf, nitems, |
| &my_extra->proc, typioparam, typmod, |
| typlen, typbyval, typalign, |
| dataPtr, nullsPtr, |
| &hasnulls, &nbytes); |
| if (hasnulls) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| } |
| retval = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(retval, nbytes); |
| retval->ndim = ndim; |
| retval->dataoffset = dataoffset; |
| retval->elemtype = element_type; |
| memcpy(ARR_DIMS(retval), dim, ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(retval), lBound, ndim * sizeof(int)); |
| |
| CopyArrayEls(retval, |
| dataPtr, nullsPtr, nitems, |
| typlen, typbyval, typalign, |
| true); |
| |
| pfree(dataPtr); |
| pfree(nullsPtr); |
| |
| PG_RETURN_ARRAYTYPE_P(retval); |
| } |
| |
| /* |
| * ReadArrayBinary: |
| * collect the data elements of an array being read in binary style. |
| * |
| * Inputs: |
| * buf: the data buffer to read from. |
| * nitems: total number of array elements (already read). |
| * receiveproc: type-specific receive procedure for element datatype. |
| * typioparam, typmod: auxiliary values to pass to receiveproc. |
| * typlen, typbyval, typalign: storage parameters of element datatype. |
| * |
| * Outputs: |
| * values[]: filled with converted data values. |
| * nulls[]: filled with is-null markers. |
| * *hasnulls: set true iff there are any null elements. |
| * *nbytes: set to total size of data area needed (including alignment |
| * padding but not including array header overhead). |
| * |
| * Note that values[] and nulls[] are allocated by the caller, and must have |
| * nitems elements. |
| */ |
| static void |
| ReadArrayBinary(StringInfo buf, |
| int nitems, |
| FmgrInfo *receiveproc, |
| Oid typioparam, |
| int32 typmod, |
| int typlen, |
| bool typbyval, |
| char typalign, |
| Datum *values, |
| bool *nulls, |
| bool *hasnulls, |
| int32 *nbytes) |
| { |
| int i; |
| bool hasnull; |
| int32 totbytes; |
| |
| for (i = 0; i < nitems; i++) |
| { |
| int itemlen; |
| StringInfoData elem_buf; |
| char csave; |
| |
| /* Get and check the item length */ |
| itemlen = pq_getmsgint(buf, 4); |
| if (itemlen < -1 || itemlen > (buf->len - buf->cursor)) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| errmsg("insufficient data left in message"))); |
| |
| if (itemlen == -1) |
| { |
| /* -1 length means NULL */ |
| values[i] = ReceiveFunctionCall(receiveproc, NULL, |
| typioparam, typmod); |
| nulls[i] = true; |
| continue; |
| } |
| |
| /* |
| * Rather than copying data around, we just set up a phony StringInfo |
| * pointing to the correct portion of the input buffer. We assume we |
| * can scribble on the input buffer so as to maintain the convention |
| * that StringInfos have a trailing null. |
| */ |
| elem_buf.data = &buf->data[buf->cursor]; |
| elem_buf.maxlen = itemlen + 1; |
| elem_buf.len = itemlen; |
| elem_buf.cursor = 0; |
| |
| buf->cursor += itemlen; |
| |
| csave = buf->data[buf->cursor]; |
| buf->data[buf->cursor] = '\0'; |
| |
| /* Now call the element's receiveproc */ |
| values[i] = ReceiveFunctionCall(receiveproc, &elem_buf, |
| typioparam, typmod); |
| nulls[i] = false; |
| |
| /* Trouble if it didn't eat the whole buffer */ |
| if (elem_buf.cursor != itemlen) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_BINARY_REPRESENTATION), |
| errmsg("improper binary format in array element %d", |
| i + 1))); |
| |
| buf->data[buf->cursor] = csave; |
| } |
| |
| /* |
| * Check for nulls, compute total data space needed |
| */ |
| hasnull = false; |
| totbytes = 0; |
| for (i = 0; i < nitems; i++) |
| { |
| if (nulls[i]) |
| hasnull = true; |
| else |
| { |
| /* let's just make sure data is not toasted */ |
| if (typlen == -1) |
| values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| totbytes = att_addlength_datum(totbytes, typlen, values[i]); |
| totbytes = att_align_nominal(totbytes, typalign); |
| /* check for overflow of total request */ |
| if (!AllocSizeIsValid(totbytes)) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| } |
| } |
| *hasnulls = hasnull; |
| *nbytes = totbytes; |
| } |
| |
| |
| /* |
| * array_send : |
| * takes the internal representation of an array and returns a bytea |
| * containing the array in its external binary format. |
| */ |
| Datum |
| array_send(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| Oid element_type = AARR_ELEMTYPE(v); |
| int typlen; |
| bool typbyval; |
| char typalign; |
| int nitems, |
| i; |
| int ndim, |
| *dim, |
| *lb; |
| StringInfoData buf; |
| array_iter iter; |
| ArrayMetaState *my_extra; |
| |
| /* |
| * We arrange to look up info about element type, including its send |
| * conversion proc, only once per series of calls, assuming the element |
| * type doesn't change underneath us. |
| */ |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| if (my_extra == NULL) |
| { |
| fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| sizeof(ArrayMetaState)); |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| my_extra->element_type = ~element_type; |
| } |
| |
| if (my_extra->element_type != element_type) |
| { |
| /* Get info about element type, including its send proc */ |
| get_type_io_data(element_type, IOFunc_send, |
| &my_extra->typlen, &my_extra->typbyval, |
| &my_extra->typalign, &my_extra->typdelim, |
| &my_extra->typioparam, &my_extra->typiofunc); |
| if (!OidIsValid(my_extra->typiofunc)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("no binary output function available for type %s", |
| format_type_be(element_type)))); |
| fmgr_info_cxt(my_extra->typiofunc, &my_extra->proc, |
| fcinfo->flinfo->fn_mcxt); |
| my_extra->element_type = element_type; |
| } |
| typlen = my_extra->typlen; |
| typbyval = my_extra->typbyval; |
| typalign = my_extra->typalign; |
| |
| ndim = AARR_NDIM(v); |
| dim = AARR_DIMS(v); |
| lb = AARR_LBOUND(v); |
| nitems = ArrayGetNItems(ndim, dim); |
| |
| pq_begintypsend(&buf); |
| |
| /* Send the array header information */ |
| pq_sendint32(&buf, ndim); |
| pq_sendint32(&buf, AARR_HASNULL(v) ? 1 : 0); |
| pq_sendint32(&buf, element_type); |
| for (i = 0; i < ndim; i++) |
| { |
| pq_sendint32(&buf, dim[i]); |
| pq_sendint32(&buf, lb[i]); |
| } |
| |
| /* Send the array elements using the element's own sendproc */ |
| array_iter_setup(&iter, v); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum itemvalue; |
| bool isnull; |
| |
| /* Get source element, checking for NULL */ |
| itemvalue = array_iter_next(&iter, &isnull, i, |
| typlen, typbyval, typalign); |
| |
| if (isnull) |
| { |
| /* -1 length means a NULL */ |
| pq_sendint32(&buf, -1); |
| } |
| else |
| { |
| bytea *outputbytes; |
| |
| outputbytes = SendFunctionCall(&my_extra->proc, itemvalue); |
| pq_sendint32(&buf, VARSIZE(outputbytes) - VARHDRSZ); |
| pq_sendbytes(&buf, VARDATA(outputbytes), |
| VARSIZE(outputbytes) - VARHDRSZ); |
| pfree(outputbytes); |
| } |
| } |
| |
| PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| } |
| |
| /* |
| * array_ndims : |
| * returns the number of dimensions of the array pointed to by "v" |
| */ |
| Datum |
| array_ndims(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| PG_RETURN_NULL(); |
| |
| PG_RETURN_INT32(AARR_NDIM(v)); |
| } |
| |
| /* |
| * array_dims : |
| * returns the dimensions of the array pointed to by "v", as a "text" |
| */ |
| Datum |
| array_dims(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| char *p; |
| int i; |
| int *dimv, |
| *lb; |
| |
| /* |
| * 33 since we assume 15 digits per number + ':' +'[]' |
| * |
| * +1 for trailing null |
| */ |
| char buf[MAXDIM * 33 + 1]; |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| PG_RETURN_NULL(); |
| |
| dimv = AARR_DIMS(v); |
| lb = AARR_LBOUND(v); |
| |
| p = buf; |
| for (i = 0; i < AARR_NDIM(v); i++) |
| { |
| sprintf(p, "[%d:%d]", lb[i], dimv[i] + lb[i] - 1); |
| p += strlen(p); |
| } |
| |
| PG_RETURN_TEXT_P(cstring_to_text(buf)); |
| } |
| |
| /* |
| * array_lower : |
| * returns the lower dimension, of the DIM requested, for |
| * the array pointed to by "v", as an int4 |
| */ |
| Datum |
| array_lower(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| int reqdim = PG_GETARG_INT32(1); |
| int *lb; |
| int result; |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| PG_RETURN_NULL(); |
| |
| /* Sanity check: was the requested dim valid */ |
| if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| PG_RETURN_NULL(); |
| |
| lb = AARR_LBOUND(v); |
| result = lb[reqdim - 1]; |
| |
| PG_RETURN_INT32(result); |
| } |
| |
| /* |
| * array_upper : |
| * returns the upper dimension, of the DIM requested, for |
| * the array pointed to by "v", as an int4 |
| */ |
| Datum |
| array_upper(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| int reqdim = PG_GETARG_INT32(1); |
| int *dimv, |
| *lb; |
| int result; |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| PG_RETURN_NULL(); |
| |
| /* Sanity check: was the requested dim valid */ |
| if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| PG_RETURN_NULL(); |
| |
| lb = AARR_LBOUND(v); |
| dimv = AARR_DIMS(v); |
| |
| result = dimv[reqdim - 1] + lb[reqdim - 1] - 1; |
| |
| PG_RETURN_INT32(result); |
| } |
| |
| /* |
| * array_length : |
| * returns the length, of the dimension requested, for |
| * the array pointed to by "v", as an int4 |
| */ |
| Datum |
| array_length(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| int reqdim = PG_GETARG_INT32(1); |
| int *dimv; |
| int result; |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| PG_RETURN_NULL(); |
| |
| /* Sanity check: was the requested dim valid */ |
| if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| PG_RETURN_NULL(); |
| |
| dimv = AARR_DIMS(v); |
| |
| result = dimv[reqdim - 1]; |
| |
| PG_RETURN_INT32(result); |
| } |
| |
| /* |
| * array_cardinality: |
| * returns the total number of elements in an array |
| */ |
| Datum |
| array_cardinality(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| |
| PG_RETURN_INT32(ArrayGetNItems(AARR_NDIM(v), AARR_DIMS(v))); |
| } |
| |
| |
| /* |
| * array_get_element : |
| * This routine takes an array datum and a subscript array and returns |
| * the referenced item as a Datum. Note that for a pass-by-reference |
| * datatype, the returned Datum is a pointer into the array object. |
| * |
| * This handles both ordinary varlena arrays and fixed-length arrays. |
| * |
| * Inputs: |
| * arraydatum: the array object (mustn't be NULL) |
| * nSubscripts: number of subscripts supplied |
| * indx[]: the subscript values |
| * arraytyplen: pg_type.typlen for the array type |
| * elmlen: pg_type.typlen for the array's element type |
| * elmbyval: pg_type.typbyval for the array's element type |
| * elmalign: pg_type.typalign for the array's element type |
| * |
| * Outputs: |
| * The return value is the element Datum. |
| * *isNull is set to indicate whether the element is NULL. |
| */ |
| Datum |
| array_get_element(Datum arraydatum, |
| int nSubscripts, |
| int *indx, |
| int arraytyplen, |
| int elmlen, |
| bool elmbyval, |
| char elmalign, |
| bool *isNull) |
| { |
| int i, |
| ndim, |
| *dim, |
| *lb, |
| offset, |
| fixedDim[1], |
| fixedLb[1]; |
| char *arraydataptr, |
| *retptr; |
| bits8 *arraynullsptr; |
| |
| if (arraytyplen > 0) |
| { |
| /* |
| * fixed-length arrays -- these are assumed to be 1-d, 0-based |
| */ |
| ndim = 1; |
| fixedDim[0] = arraytyplen / elmlen; |
| fixedLb[0] = 0; |
| dim = fixedDim; |
| lb = fixedLb; |
| arraydataptr = (char *) DatumGetPointer(arraydatum); |
| arraynullsptr = NULL; |
| } |
| else if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) |
| { |
| /* expanded array: let's do this in a separate function */ |
| return array_get_element_expanded(arraydatum, |
| nSubscripts, |
| indx, |
| arraytyplen, |
| elmlen, |
| elmbyval, |
| elmalign, |
| isNull); |
| } |
| else |
| { |
| /* detoast array if necessary, producing normal varlena input */ |
| ArrayType *array = DatumGetArrayTypeP(arraydatum); |
| |
| ndim = ARR_NDIM(array); |
| dim = ARR_DIMS(array); |
| lb = ARR_LBOUND(array); |
| arraydataptr = ARR_DATA_PTR(array); |
| arraynullsptr = ARR_NULLBITMAP(array); |
| } |
| |
| /* |
| * Return NULL for invalid subscript |
| */ |
| if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| for (i = 0; i < ndim; i++) |
| { |
| if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| } |
| |
| /* |
| * Calculate the element number |
| */ |
| offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| |
| /* |
| * Check for NULL array element |
| */ |
| if (array_get_isnull(arraynullsptr, offset)) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| |
| /* |
| * OK, get the element |
| */ |
| *isNull = false; |
| retptr = array_seek(arraydataptr, 0, arraynullsptr, offset, |
| elmlen, elmbyval, elmalign); |
| return ArrayCast(retptr, elmbyval, elmlen); |
| } |
| |
| /* |
| * Implementation of array_get_element() for an expanded array |
| */ |
| static Datum |
| array_get_element_expanded(Datum arraydatum, |
| int nSubscripts, int *indx, |
| int arraytyplen, |
| int elmlen, bool elmbyval, char elmalign, |
| bool *isNull) |
| { |
| ExpandedArrayHeader *eah; |
| int i, |
| ndim, |
| *dim, |
| *lb, |
| offset; |
| Datum *dvalues; |
| bool *dnulls; |
| |
| eah = (ExpandedArrayHeader *) DatumGetEOHP(arraydatum); |
| Assert(eah->ea_magic == EA_MAGIC); |
| |
| /* sanity-check caller's info against object */ |
| Assert(arraytyplen == -1); |
| Assert(elmlen == eah->typlen); |
| Assert(elmbyval == eah->typbyval); |
| Assert(elmalign == eah->typalign); |
| |
| ndim = eah->ndims; |
| dim = eah->dims; |
| lb = eah->lbound; |
| |
| /* |
| * Return NULL for invalid subscript |
| */ |
| if (ndim != nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| for (i = 0; i < ndim; i++) |
| { |
| if (indx[i] < lb[i] || indx[i] >= (dim[i] + lb[i])) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| } |
| |
| /* |
| * Calculate the element number |
| */ |
| offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| |
| /* |
| * Deconstruct array if we didn't already. Note that we apply this even |
| * if the input is nominally read-only: it should be safe enough. |
| */ |
| deconstruct_expanded_array(eah); |
| |
| dvalues = eah->dvalues; |
| dnulls = eah->dnulls; |
| |
| /* |
| * Check for NULL array element |
| */ |
| if (dnulls && dnulls[offset]) |
| { |
| *isNull = true; |
| return (Datum) 0; |
| } |
| |
| /* |
| * OK, get the element. It's OK to return a pass-by-ref value as a |
| * pointer into the expanded array, for the same reason that regular |
| * array_get_element can return a pointer into flat arrays: the value is |
| * assumed not to change for as long as the Datum reference can exist. |
| */ |
| *isNull = false; |
| return dvalues[offset]; |
| } |
| |
| /* |
| * array_get_slice : |
| * This routine takes an array and a range of indices (upperIndx and |
| * lowerIndx), creates a new array structure for the referred elements |
| * and returns a pointer to it. |
| * |
| * This handles both ordinary varlena arrays and fixed-length arrays. |
| * |
| * Inputs: |
| * arraydatum: the array object (mustn't be NULL) |
| * nSubscripts: number of subscripts supplied (must be same for upper/lower) |
| * upperIndx[]: the upper subscript values |
| * lowerIndx[]: the lower subscript values |
| * upperProvided[]: true for provided upper subscript values |
| * lowerProvided[]: true for provided lower subscript values |
| * arraytyplen: pg_type.typlen for the array type |
| * elmlen: pg_type.typlen for the array's element type |
| * elmbyval: pg_type.typbyval for the array's element type |
| * elmalign: pg_type.typalign for the array's element type |
| * |
| * Outputs: |
| * The return value is the new array Datum (it's never NULL) |
| * |
| * Omitted upper and lower subscript values are replaced by the corresponding |
| * array bound. |
| * |
| * NOTE: we assume it is OK to scribble on the provided subscript arrays |
| * lowerIndx[] and upperIndx[]; also, these arrays must be of size MAXDIM |
| * even when nSubscripts is less. These are generally just temporaries. |
| */ |
| Datum |
| array_get_slice(Datum arraydatum, |
| int nSubscripts, |
| int *upperIndx, |
| int *lowerIndx, |
| bool *upperProvided, |
| bool *lowerProvided, |
| int arraytyplen, |
| int elmlen, |
| bool elmbyval, |
| char elmalign) |
| { |
| ArrayType *array; |
| ArrayType *newarray; |
| int i, |
| ndim, |
| *dim, |
| *lb, |
| *newlb; |
| int fixedDim[1], |
| fixedLb[1]; |
| Oid elemtype; |
| char *arraydataptr; |
| bits8 *arraynullsptr; |
| int32 dataoffset; |
| int bytes, |
| span[MAXDIM]; |
| |
| if (arraytyplen > 0) |
| { |
| /* |
| * fixed-length arrays -- currently, cannot slice these because parser |
| * labels output as being of the fixed-length array type! Code below |
| * shows how we could support it if the parser were changed to label |
| * output as a suitable varlena array type. |
| */ |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("slices of fixed-length arrays not implemented"))); |
| |
| /* |
| * fixed-length arrays -- these are assumed to be 1-d, 0-based |
| * |
| * XXX where would we get the correct ELEMTYPE from? |
| */ |
| ndim = 1; |
| fixedDim[0] = arraytyplen / elmlen; |
| fixedLb[0] = 0; |
| dim = fixedDim; |
| lb = fixedLb; |
| elemtype = InvalidOid; /* XXX */ |
| arraydataptr = (char *) DatumGetPointer(arraydatum); |
| arraynullsptr = NULL; |
| } |
| else |
| { |
| /* detoast input array if necessary */ |
| array = DatumGetArrayTypeP(arraydatum); |
| |
| ndim = ARR_NDIM(array); |
| dim = ARR_DIMS(array); |
| lb = ARR_LBOUND(array); |
| elemtype = ARR_ELEMTYPE(array); |
| arraydataptr = ARR_DATA_PTR(array); |
| arraynullsptr = ARR_NULLBITMAP(array); |
| } |
| |
| /* |
| * Check provided subscripts. A slice exceeding the current array limits |
| * is silently truncated to the array limits. If we end up with an empty |
| * slice, return an empty array. |
| */ |
| if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| return PointerGetDatum(construct_empty_array(elemtype)); |
| |
| for (i = 0; i < nSubscripts; i++) |
| { |
| if (!lowerProvided[i] || lowerIndx[i] < lb[i]) |
| lowerIndx[i] = lb[i]; |
| if (!upperProvided[i] || upperIndx[i] >= (dim[i] + lb[i])) |
| upperIndx[i] = dim[i] + lb[i] - 1; |
| if (lowerIndx[i] > upperIndx[i]) |
| return PointerGetDatum(construct_empty_array(elemtype)); |
| } |
| /* fill any missing subscript positions with full array range */ |
| for (; i < ndim; i++) |
| { |
| lowerIndx[i] = lb[i]; |
| upperIndx[i] = dim[i] + lb[i] - 1; |
| if (lowerIndx[i] > upperIndx[i]) |
| return PointerGetDatum(construct_empty_array(elemtype)); |
| } |
| |
| mda_get_range(ndim, span, lowerIndx, upperIndx); |
| |
| bytes = array_slice_size(arraydataptr, arraynullsptr, |
| ndim, dim, lb, |
| lowerIndx, upperIndx, |
| elmlen, elmbyval, elmalign); |
| |
| /* |
| * Currently, we put a null bitmap in the result if the source has one; |
| * could be smarter ... |
| */ |
| if (arraynullsptr) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, ArrayGetNItems(ndim, span)); |
| bytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| bytes += ARR_OVERHEAD_NONULLS(ndim); |
| } |
| |
| newarray = (ArrayType *) palloc0(bytes); |
| SET_VARSIZE(newarray, bytes); |
| newarray->ndim = ndim; |
| newarray->dataoffset = dataoffset; |
| newarray->elemtype = elemtype; |
| memcpy(ARR_DIMS(newarray), span, ndim * sizeof(int)); |
| |
| /* |
| * Lower bounds of the new array are set to 1. Formerly (before 7.3) we |
| * copied the given lowerIndx values ... but that seems confusing. |
| */ |
| newlb = ARR_LBOUND(newarray); |
| for (i = 0; i < ndim; i++) |
| newlb[i] = 1; |
| |
| array_extract_slice(newarray, |
| ndim, dim, lb, |
| arraydataptr, arraynullsptr, |
| lowerIndx, upperIndx, |
| elmlen, elmbyval, elmalign); |
| |
| return PointerGetDatum(newarray); |
| } |
| |
| /* |
| * array_set_element : |
| * This routine sets the value of one array element (specified by |
| * a subscript array) to a new value specified by "dataValue". |
| * |
| * This handles both ordinary varlena arrays and fixed-length arrays. |
| * |
| * Inputs: |
| * arraydatum: the initial array object (mustn't be NULL) |
| * nSubscripts: number of subscripts supplied |
| * indx[]: the subscript values |
| * dataValue: the datum to be inserted at the given position |
| * isNull: whether dataValue is NULL |
| * arraytyplen: pg_type.typlen for the array type |
| * elmlen: pg_type.typlen for the array's element type |
| * elmbyval: pg_type.typbyval for the array's element type |
| * elmalign: pg_type.typalign for the array's element type |
| * |
| * Result: |
| * A new array is returned, just like the old except for the one |
| * modified entry. The original array object is not changed, |
| * unless what is passed is a read-write reference to an expanded |
| * array object; in that case the expanded array is updated in-place. |
| * |
| * For one-dimensional arrays only, we allow the array to be extended |
| * by assigning to a position outside the existing subscript range; any |
| * positions between the existing elements and the new one are set to NULLs. |
| * (XXX TODO: allow a corresponding behavior for multidimensional arrays) |
| * |
| * NOTE: For assignments, we throw an error for invalid subscripts etc, |
| * rather than returning a NULL as the fetch operations do. |
| */ |
| Datum |
| array_set_element(Datum arraydatum, |
| int nSubscripts, |
| int *indx, |
| Datum dataValue, |
| bool isNull, |
| int arraytyplen, |
| int elmlen, |
| bool elmbyval, |
| char elmalign) |
| { |
| ArrayType *array; |
| ArrayType *newarray; |
| int i, |
| ndim, |
| dim[MAXDIM], |
| lb[MAXDIM], |
| offset; |
| char *elt_ptr; |
| bool newhasnulls; |
| bits8 *oldnullbitmap; |
| int oldnitems, |
| newnitems, |
| olddatasize, |
| newsize, |
| olditemlen, |
| newitemlen, |
| overheadlen, |
| oldoverheadlen, |
| addedbefore, |
| addedafter, |
| lenbefore, |
| lenafter; |
| |
| if (arraytyplen > 0) |
| { |
| /* |
| * fixed-length arrays -- these are assumed to be 1-d, 0-based. We |
| * cannot extend them, either. |
| */ |
| char *resultarray; |
| |
| if (nSubscripts != 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"))); |
| |
| if (indx[0] < 0 || indx[0] >= arraytyplen / elmlen) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("array subscript out of range"))); |
| |
| if (isNull) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("cannot assign null value to an element of a fixed-length array"))); |
| |
| resultarray = (char *) palloc(arraytyplen); |
| memcpy(resultarray, DatumGetPointer(arraydatum), arraytyplen); |
| elt_ptr = (char *) resultarray + indx[0] * elmlen; |
| ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, elt_ptr); |
| return PointerGetDatum(resultarray); |
| } |
| |
| if (nSubscripts <= 0 || nSubscripts > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"))); |
| |
| /* make sure item to be inserted is not toasted */ |
| if (elmlen == -1 && !isNull) |
| dataValue = PointerGetDatum(PG_DETOAST_DATUM(dataValue)); |
| |
| if (VARATT_IS_EXTERNAL_EXPANDED(DatumGetPointer(arraydatum))) |
| { |
| /* expanded array: let's do this in a separate function */ |
| return array_set_element_expanded(arraydatum, |
| nSubscripts, |
| indx, |
| dataValue, |
| isNull, |
| arraytyplen, |
| elmlen, |
| elmbyval, |
| elmalign); |
| } |
| |
| /* detoast input array if necessary */ |
| array = DatumGetArrayTypeP(arraydatum); |
| |
| ndim = ARR_NDIM(array); |
| |
| /* |
| * if number of dims is zero, i.e. an empty array, create an array with |
| * nSubscripts dimensions, and set the lower bounds to the supplied |
| * subscripts |
| */ |
| if (ndim == 0) |
| { |
| Oid elmtype = ARR_ELEMTYPE(array); |
| |
| for (i = 0; i < nSubscripts; i++) |
| { |
| dim[i] = 1; |
| lb[i] = indx[i]; |
| } |
| |
| return PointerGetDatum(construct_md_array(&dataValue, &isNull, |
| nSubscripts, dim, lb, |
| elmtype, |
| elmlen, elmbyval, elmalign)); |
| } |
| |
| if (ndim != nSubscripts) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"))); |
| |
| /* copy dim/lb since we may modify them */ |
| memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); |
| memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); |
| |
| newhasnulls = (ARR_HASNULL(array) || isNull); |
| addedbefore = addedafter = 0; |
| |
| /* |
| * Check subscripts. We assume the existing subscripts passed |
| * ArrayCheckBounds, so that dim[i] + lb[i] can be computed without |
| * overflow. But we must beware of other overflows in our calculations of |
| * new dim[] values. |
| */ |
| if (ndim == 1) |
| { |
| if (indx[0] < lb[0]) |
| { |
| /* addedbefore = lb[0] - indx[0]; */ |
| /* dim[0] += addedbefore; */ |
| if (pg_sub_s32_overflow(lb[0], indx[0], &addedbefore) || |
| pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| lb[0] = indx[0]; |
| if (addedbefore > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| if (indx[0] >= (dim[0] + lb[0])) |
| { |
| /* addedafter = indx[0] - (dim[0] + lb[0]) + 1; */ |
| /* dim[0] += addedafter; */ |
| if (pg_sub_s32_overflow(indx[0], dim[0] + lb[0], &addedafter) || |
| pg_add_s32_overflow(addedafter, 1, &addedafter) || |
| pg_add_s32_overflow(dim[0], addedafter, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| if (addedafter > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| } |
| else |
| { |
| /* |
| * XXX currently we do not support extending multi-dimensional arrays |
| * during assignment |
| */ |
| for (i = 0; i < ndim; i++) |
| { |
| if (indx[i] < lb[i] || |
| indx[i] >= (dim[i] + lb[i])) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("array subscript out of range"))); |
| } |
| } |
| |
| /* This checks for overflow of the array dimensions */ |
| newnitems = ArrayGetNItems(ndim, dim); |
| ArrayCheckBounds(ndim, dim, lb); |
| |
| /* |
| * Compute sizes of items and areas to copy |
| */ |
| if (newhasnulls) |
| overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, newnitems); |
| else |
| overheadlen = ARR_OVERHEAD_NONULLS(ndim); |
| oldnitems = ArrayGetNItems(ndim, ARR_DIMS(array)); |
| oldnullbitmap = ARR_NULLBITMAP(array); |
| oldoverheadlen = ARR_DATA_OFFSET(array); |
| olddatasize = ARR_SIZE(array) - oldoverheadlen; |
| if (addedbefore) |
| { |
| offset = 0; |
| lenbefore = 0; |
| olditemlen = 0; |
| lenafter = olddatasize; |
| } |
| else if (addedafter) |
| { |
| offset = oldnitems; |
| lenbefore = olddatasize; |
| olditemlen = 0; |
| lenafter = 0; |
| } |
| else |
| { |
| offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| elt_ptr = array_seek(ARR_DATA_PTR(array), 0, oldnullbitmap, offset, |
| elmlen, elmbyval, elmalign); |
| lenbefore = (int) (elt_ptr - ARR_DATA_PTR(array)); |
| if (array_get_isnull(oldnullbitmap, offset)) |
| olditemlen = 0; |
| else |
| { |
| olditemlen = att_addlength_pointer(0, elmlen, elt_ptr); |
| olditemlen = att_align_nominal(olditemlen, elmalign); |
| } |
| lenafter = (int) (olddatasize - lenbefore - olditemlen); |
| } |
| |
| if (isNull) |
| newitemlen = 0; |
| else |
| { |
| newitemlen = att_addlength_datum(0, elmlen, dataValue); |
| newitemlen = att_align_nominal(newitemlen, elmalign); |
| } |
| |
| newsize = overheadlen + lenbefore + newitemlen + lenafter; |
| |
| /* |
| * OK, create the new array and fill in header/dimensions |
| */ |
| newarray = (ArrayType *) palloc0(newsize); |
| SET_VARSIZE(newarray, newsize); |
| newarray->ndim = ndim; |
| newarray->dataoffset = newhasnulls ? overheadlen : 0; |
| newarray->elemtype = ARR_ELEMTYPE(array); |
| memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); |
| |
| /* |
| * Fill in data |
| */ |
| memcpy((char *) newarray + overheadlen, |
| (char *) array + oldoverheadlen, |
| lenbefore); |
| if (!isNull) |
| ArrayCastAndSet(dataValue, elmlen, elmbyval, elmalign, |
| (char *) newarray + overheadlen + lenbefore); |
| memcpy((char *) newarray + overheadlen + lenbefore + newitemlen, |
| (char *) array + oldoverheadlen + lenbefore + olditemlen, |
| lenafter); |
| |
| /* |
| * Fill in nulls bitmap if needed |
| * |
| * Note: it's possible we just replaced the last NULL with a non-NULL, and |
| * could get rid of the bitmap. Seems not worth testing for though. |
| */ |
| if (newhasnulls) |
| { |
| bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); |
| |
| /* palloc0 above already marked any inserted positions as nulls */ |
| /* Fix the inserted value */ |
| if (addedafter) |
| array_set_isnull(newnullbitmap, newnitems - 1, isNull); |
| else |
| array_set_isnull(newnullbitmap, offset, isNull); |
| /* Fix the copied range(s) */ |
| if (addedbefore) |
| array_bitmap_copy(newnullbitmap, addedbefore, |
| oldnullbitmap, 0, |
| oldnitems); |
| else |
| { |
| array_bitmap_copy(newnullbitmap, 0, |
| oldnullbitmap, 0, |
| offset); |
| if (addedafter == 0) |
| array_bitmap_copy(newnullbitmap, offset + 1, |
| oldnullbitmap, offset + 1, |
| oldnitems - offset - 1); |
| } |
| } |
| |
| return PointerGetDatum(newarray); |
| } |
| |
| /* |
| * Implementation of array_set_element() for an expanded array |
| * |
| * Note: as with any operation on a read/write expanded object, we must |
| * take pains not to leave the object in a corrupt state if we fail partway |
| * through. |
| */ |
| static Datum |
| array_set_element_expanded(Datum arraydatum, |
| int nSubscripts, int *indx, |
| Datum dataValue, bool isNull, |
| int arraytyplen, |
| int elmlen, bool elmbyval, char elmalign) |
| { |
| ExpandedArrayHeader *eah; |
| Datum *dvalues; |
| bool *dnulls; |
| int i, |
| ndim, |
| dim[MAXDIM], |
| lb[MAXDIM], |
| offset; |
| bool dimschanged, |
| newhasnulls; |
| int addedbefore, |
| addedafter; |
| char *oldValue; |
| |
| /* Convert to R/W object if not so already */ |
| eah = DatumGetExpandedArray(arraydatum); |
| |
| /* Sanity-check caller's info against object; we don't use it otherwise */ |
| Assert(arraytyplen == -1); |
| Assert(elmlen == eah->typlen); |
| Assert(elmbyval == eah->typbyval); |
| Assert(elmalign == eah->typalign); |
| |
| /* |
| * Copy dimension info into local storage. This allows us to modify the |
| * dimensions if needed, while not messing up the expanded value if we |
| * fail partway through. |
| */ |
| ndim = eah->ndims; |
| Assert(ndim >= 0 && ndim <= MAXDIM); |
| memcpy(dim, eah->dims, ndim * sizeof(int)); |
| memcpy(lb, eah->lbound, ndim * sizeof(int)); |
| dimschanged = false; |
| |
| /* |
| * if number of dims is zero, i.e. an empty array, create an array with |
| * nSubscripts dimensions, and set the lower bounds to the supplied |
| * subscripts. |
| */ |
| if (ndim == 0) |
| { |
| /* |
| * Allocate adequate space for new dimension info. This is harmless |
| * if we fail later. |
| */ |
| Assert(nSubscripts > 0 && nSubscripts <= MAXDIM); |
| eah->dims = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, |
| nSubscripts * sizeof(int)); |
| eah->lbound = (int *) MemoryContextAllocZero(eah->hdr.eoh_context, |
| nSubscripts * sizeof(int)); |
| |
| /* Update local copies of dimension info */ |
| ndim = nSubscripts; |
| for (i = 0; i < nSubscripts; i++) |
| { |
| dim[i] = 0; |
| lb[i] = indx[i]; |
| } |
| dimschanged = true; |
| } |
| else if (ndim != nSubscripts) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"))); |
| |
| /* |
| * Deconstruct array if we didn't already. (Someday maybe add a special |
| * case path for fixed-length, no-nulls cases, where we can overwrite an |
| * element in place without ever deconstructing. But today is not that |
| * day.) |
| */ |
| deconstruct_expanded_array(eah); |
| |
| /* |
| * Copy new element into array's context, if needed (we assume it's |
| * already detoasted, so no junk should be created). Doing this before |
| * we've made any significant changes ensures that our behavior is sane |
| * even when the source is a reference to some element of this same array. |
| * If we fail further down, this memory is leaked, but that's reasonably |
| * harmless. |
| */ |
| if (!eah->typbyval && !isNull) |
| { |
| MemoryContext oldcxt = MemoryContextSwitchTo(eah->hdr.eoh_context); |
| |
| dataValue = datumCopy(dataValue, false, eah->typlen); |
| MemoryContextSwitchTo(oldcxt); |
| } |
| |
| dvalues = eah->dvalues; |
| dnulls = eah->dnulls; |
| |
| newhasnulls = ((dnulls != NULL) || isNull); |
| addedbefore = addedafter = 0; |
| |
| /* |
| * Check subscripts (this logic must match array_set_element). We assume |
| * the existing subscripts passed ArrayCheckBounds, so that dim[i] + lb[i] |
| * can be computed without overflow. But we must beware of other |
| * overflows in our calculations of new dim[] values. |
| */ |
| if (ndim == 1) |
| { |
| if (indx[0] < lb[0]) |
| { |
| /* addedbefore = lb[0] - indx[0]; */ |
| /* dim[0] += addedbefore; */ |
| if (pg_sub_s32_overflow(lb[0], indx[0], &addedbefore) || |
| pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| lb[0] = indx[0]; |
| dimschanged = true; |
| if (addedbefore > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| if (indx[0] >= (dim[0] + lb[0])) |
| { |
| /* addedafter = indx[0] - (dim[0] + lb[0]) + 1; */ |
| /* dim[0] += addedafter; */ |
| if (pg_sub_s32_overflow(indx[0], dim[0] + lb[0], &addedafter) || |
| pg_add_s32_overflow(addedafter, 1, &addedafter) || |
| pg_add_s32_overflow(dim[0], addedafter, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| dimschanged = true; |
| if (addedafter > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| } |
| else |
| { |
| /* |
| * XXX currently we do not support extending multi-dimensional arrays |
| * during assignment |
| */ |
| for (i = 0; i < ndim; i++) |
| { |
| if (indx[i] < lb[i] || |
| indx[i] >= (dim[i] + lb[i])) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("array subscript out of range"))); |
| } |
| } |
| |
| /* Check for overflow of the array dimensions */ |
| if (dimschanged) |
| { |
| (void) ArrayGetNItems(ndim, dim); |
| ArrayCheckBounds(ndim, dim, lb); |
| } |
| |
| /* Now we can calculate linear offset of target item in array */ |
| offset = ArrayGetOffset(nSubscripts, dim, lb, indx); |
| |
| /* Physically enlarge existing dvalues/dnulls arrays if needed */ |
| if (dim[0] > eah->dvalueslen) |
| { |
| /* We want some extra space if we're enlarging */ |
| int newlen = dim[0] + dim[0] / 8; |
| |
| newlen = Max(newlen, dim[0]); /* integer overflow guard */ |
| eah->dvalues = dvalues = (Datum *) |
| repalloc(dvalues, newlen * sizeof(Datum)); |
| if (dnulls) |
| eah->dnulls = dnulls = (bool *) |
| repalloc(dnulls, newlen * sizeof(bool)); |
| eah->dvalueslen = newlen; |
| } |
| |
| /* |
| * If we need a nulls bitmap and don't already have one, create it, being |
| * sure to mark all existing entries as not null. |
| */ |
| if (newhasnulls && dnulls == NULL) |
| eah->dnulls = dnulls = (bool *) |
| MemoryContextAllocZero(eah->hdr.eoh_context, |
| eah->dvalueslen * sizeof(bool)); |
| |
| /* |
| * We now have all the needed space allocated, so we're ready to make |
| * irreversible changes. Be very wary of allowing failure below here. |
| */ |
| |
| /* Flattened value will no longer represent array accurately */ |
| eah->fvalue = NULL; |
| /* And we don't know the flattened size either */ |
| eah->flat_size = 0; |
| |
| /* Update dimensionality info if needed */ |
| if (dimschanged) |
| { |
| eah->ndims = ndim; |
| memcpy(eah->dims, dim, ndim * sizeof(int)); |
| memcpy(eah->lbound, lb, ndim * sizeof(int)); |
| } |
| |
| /* Reposition items if needed, and fill addedbefore items with nulls */ |
| if (addedbefore > 0) |
| { |
| memmove(dvalues + addedbefore, dvalues, eah->nelems * sizeof(Datum)); |
| for (i = 0; i < addedbefore; i++) |
| dvalues[i] = (Datum) 0; |
| if (dnulls) |
| { |
| memmove(dnulls + addedbefore, dnulls, eah->nelems * sizeof(bool)); |
| for (i = 0; i < addedbefore; i++) |
| dnulls[i] = true; |
| } |
| eah->nelems += addedbefore; |
| } |
| |
| /* fill addedafter items with nulls */ |
| if (addedafter > 0) |
| { |
| for (i = 0; i < addedafter; i++) |
| dvalues[eah->nelems + i] = (Datum) 0; |
| if (dnulls) |
| { |
| for (i = 0; i < addedafter; i++) |
| dnulls[eah->nelems + i] = true; |
| } |
| eah->nelems += addedafter; |
| } |
| |
| /* Grab old element value for pfree'ing, if needed. */ |
| if (!eah->typbyval && (dnulls == NULL || !dnulls[offset])) |
| oldValue = (char *) DatumGetPointer(dvalues[offset]); |
| else |
| oldValue = NULL; |
| |
| /* And finally we can insert the new element. */ |
| dvalues[offset] = dataValue; |
| if (dnulls) |
| dnulls[offset] = isNull; |
| |
| /* |
| * Free old element if needed; this keeps repeated element replacements |
| * from bloating the array's storage. If the pfree somehow fails, it |
| * won't corrupt the array. |
| */ |
| if (oldValue) |
| { |
| /* Don't try to pfree a part of the original flat array */ |
| if (oldValue < eah->fstartptr || oldValue >= eah->fendptr) |
| pfree(oldValue); |
| } |
| |
| /* Done, return standard TOAST pointer for object */ |
| return EOHPGetRWDatum(&eah->hdr); |
| } |
| |
| /* |
| * array_set_slice : |
| * This routine sets the value of a range of array locations (specified |
| * by upper and lower subscript values) to new values passed as |
| * another array. |
| * |
| * This handles both ordinary varlena arrays and fixed-length arrays. |
| * |
| * Inputs: |
| * arraydatum: the initial array object (mustn't be NULL) |
| * nSubscripts: number of subscripts supplied (must be same for upper/lower) |
| * upperIndx[]: the upper subscript values |
| * lowerIndx[]: the lower subscript values |
| * upperProvided[]: true for provided upper subscript values |
| * lowerProvided[]: true for provided lower subscript values |
| * srcArrayDatum: the source for the inserted values |
| * isNull: indicates whether srcArrayDatum is NULL |
| * arraytyplen: pg_type.typlen for the array type |
| * elmlen: pg_type.typlen for the array's element type |
| * elmbyval: pg_type.typbyval for the array's element type |
| * elmalign: pg_type.typalign for the array's element type |
| * |
| * Result: |
| * A new array is returned, just like the old except for the |
| * modified range. The original array object is not changed. |
| * |
| * Omitted upper and lower subscript values are replaced by the corresponding |
| * array bound. |
| * |
| * For one-dimensional arrays only, we allow the array to be extended |
| * by assigning to positions outside the existing subscript range; any |
| * positions between the existing elements and the new ones are set to NULLs. |
| * (XXX TODO: allow a corresponding behavior for multidimensional arrays) |
| * |
| * NOTE: we assume it is OK to scribble on the provided index arrays |
| * lowerIndx[] and upperIndx[]; also, these arrays must be of size MAXDIM |
| * even when nSubscripts is less. These are generally just temporaries. |
| * |
| * NOTE: For assignments, we throw an error for silly subscripts etc, |
| * rather than returning a NULL or empty array as the fetch operations do. |
| */ |
| Datum |
| array_set_slice(Datum arraydatum, |
| int nSubscripts, |
| int *upperIndx, |
| int *lowerIndx, |
| bool *upperProvided, |
| bool *lowerProvided, |
| Datum srcArrayDatum, |
| bool isNull, |
| int arraytyplen, |
| int elmlen, |
| bool elmbyval, |
| char elmalign) |
| { |
| ArrayType *array; |
| ArrayType *srcArray; |
| ArrayType *newarray; |
| int i, |
| ndim, |
| dim[MAXDIM], |
| lb[MAXDIM], |
| span[MAXDIM]; |
| bool newhasnulls; |
| int nitems, |
| nsrcitems, |
| olddatasize, |
| newsize, |
| olditemsize, |
| newitemsize, |
| overheadlen, |
| oldoverheadlen, |
| addedbefore, |
| addedafter, |
| lenbefore, |
| lenafter, |
| itemsbefore, |
| itemsafter, |
| nolditems; |
| |
| /* Currently, assignment from a NULL source array is a no-op */ |
| if (isNull) |
| return arraydatum; |
| |
| if (arraytyplen > 0) |
| { |
| /* |
| * fixed-length arrays -- not got round to doing this... |
| */ |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("updates on slices of fixed-length arrays not implemented"))); |
| } |
| |
| /* detoast arrays if necessary */ |
| array = DatumGetArrayTypeP(arraydatum); |
| srcArray = DatumGetArrayTypeP(srcArrayDatum); |
| |
| /* note: we assume srcArray contains no toasted elements */ |
| |
| ndim = ARR_NDIM(array); |
| |
| /* |
| * if number of dims is zero, i.e. an empty array, create an array with |
| * nSubscripts dimensions, and set the upper and lower bounds to the |
| * supplied subscripts |
| */ |
| if (ndim == 0) |
| { |
| Datum *dvalues; |
| bool *dnulls; |
| int nelems; |
| Oid elmtype = ARR_ELEMTYPE(array); |
| |
| deconstruct_array(srcArray, elmtype, elmlen, elmbyval, elmalign, |
| &dvalues, &dnulls, &nelems); |
| |
| for (i = 0; i < nSubscripts; i++) |
| { |
| if (!upperProvided[i] || !lowerProvided[i]) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("array slice subscript must provide both boundaries"), |
| errdetail("When assigning to a slice of an empty array value," |
| " slice boundaries must be fully specified."))); |
| |
| /* compute "upperIndx[i] - lowerIndx[i] + 1", detecting overflow */ |
| if (pg_sub_s32_overflow(upperIndx[i], lowerIndx[i], &dim[i]) || |
| pg_add_s32_overflow(dim[i], 1, &dim[i])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| |
| lb[i] = lowerIndx[i]; |
| } |
| |
| /* complain if too few source items; we ignore extras, however */ |
| if (nelems < ArrayGetNItems(nSubscripts, dim)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("source array too small"))); |
| |
| return PointerGetDatum(construct_md_array(dvalues, dnulls, nSubscripts, |
| dim, lb, elmtype, |
| elmlen, elmbyval, elmalign)); |
| } |
| |
| if (ndim < nSubscripts || ndim <= 0 || ndim > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"))); |
| |
| /* copy dim/lb since we may modify them */ |
| memcpy(dim, ARR_DIMS(array), ndim * sizeof(int)); |
| memcpy(lb, ARR_LBOUND(array), ndim * sizeof(int)); |
| |
| newhasnulls = (ARR_HASNULL(array) || ARR_HASNULL(srcArray)); |
| addedbefore = addedafter = 0; |
| |
| /* |
| * Check subscripts. We assume the existing subscripts passed |
| * ArrayCheckBounds, so that dim[i] + lb[i] can be computed without |
| * overflow. But we must beware of other overflows in our calculations of |
| * new dim[] values. |
| */ |
| if (ndim == 1) |
| { |
| Assert(nSubscripts == 1); |
| if (!lowerProvided[0]) |
| lowerIndx[0] = lb[0]; |
| if (!upperProvided[0]) |
| upperIndx[0] = dim[0] + lb[0] - 1; |
| if (lowerIndx[0] > upperIndx[0]) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("upper bound cannot be less than lower bound"))); |
| if (lowerIndx[0] < lb[0]) |
| { |
| /* addedbefore = lb[0] - lowerIndx[0]; */ |
| /* dim[0] += addedbefore; */ |
| if (pg_sub_s32_overflow(lb[0], lowerIndx[0], &addedbefore) || |
| pg_add_s32_overflow(dim[0], addedbefore, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| lb[0] = lowerIndx[0]; |
| if (addedbefore > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| if (upperIndx[0] >= (dim[0] + lb[0])) |
| { |
| /* addedafter = upperIndx[0] - (dim[0] + lb[0]) + 1; */ |
| /* dim[0] += addedafter; */ |
| if (pg_sub_s32_overflow(upperIndx[0], dim[0] + lb[0], &addedafter) || |
| pg_add_s32_overflow(addedafter, 1, &addedafter) || |
| pg_add_s32_overflow(dim[0], addedafter, &dim[0])) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxArraySize))); |
| if (addedafter > 1) |
| newhasnulls = true; /* will insert nulls */ |
| } |
| } |
| else |
| { |
| /* |
| * XXX currently we do not support extending multi-dimensional arrays |
| * during assignment |
| */ |
| for (i = 0; i < nSubscripts; i++) |
| { |
| if (!lowerProvided[i]) |
| lowerIndx[i] = lb[i]; |
| if (!upperProvided[i]) |
| upperIndx[i] = dim[i] + lb[i] - 1; |
| if (lowerIndx[i] > upperIndx[i]) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("upper bound cannot be less than lower bound"))); |
| if (lowerIndx[i] < lb[i] || |
| upperIndx[i] >= (dim[i] + lb[i])) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("array subscript out of range"))); |
| } |
| /* fill any missing subscript positions with full array range */ |
| for (; i < ndim; i++) |
| { |
| lowerIndx[i] = lb[i]; |
| upperIndx[i] = dim[i] + lb[i] - 1; |
| if (lowerIndx[i] > upperIndx[i]) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("upper bound cannot be less than lower bound"))); |
| } |
| } |
| |
| /* Do this mainly to check for overflow */ |
| nitems = ArrayGetNItems(ndim, dim); |
| ArrayCheckBounds(ndim, dim, lb); |
| |
| /* |
| * Make sure source array has enough entries. Note we ignore the shape of |
| * the source array and just read entries serially. |
| */ |
| mda_get_range(ndim, span, lowerIndx, upperIndx); |
| nsrcitems = ArrayGetNItems(ndim, span); |
| if (nsrcitems > ArrayGetNItems(ARR_NDIM(srcArray), ARR_DIMS(srcArray))) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("source array too small"))); |
| |
| /* |
| * Compute space occupied by new entries, space occupied by replaced |
| * entries, and required space for new array. |
| */ |
| if (newhasnulls) |
| overheadlen = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| else |
| overheadlen = ARR_OVERHEAD_NONULLS(ndim); |
| newitemsize = array_nelems_size(ARR_DATA_PTR(srcArray), 0, |
| ARR_NULLBITMAP(srcArray), nsrcitems, |
| elmlen, elmbyval, elmalign); |
| oldoverheadlen = ARR_DATA_OFFSET(array); |
| olddatasize = ARR_SIZE(array) - oldoverheadlen; |
| if (ndim > 1) |
| { |
| /* |
| * here we do not need to cope with extension of the array; it would |
| * be a lot more complicated if we had to do so... |
| */ |
| olditemsize = array_slice_size(ARR_DATA_PTR(array), |
| ARR_NULLBITMAP(array), |
| ndim, dim, lb, |
| lowerIndx, upperIndx, |
| elmlen, elmbyval, elmalign); |
| lenbefore = lenafter = 0; /* keep compiler quiet */ |
| itemsbefore = itemsafter = nolditems = 0; |
| } |
| else |
| { |
| /* |
| * here we must allow for possibility of slice larger than orig array |
| * and/or not adjacent to orig array subscripts |
| */ |
| int oldlb = ARR_LBOUND(array)[0]; |
| int oldub = oldlb + ARR_DIMS(array)[0] - 1; |
| int slicelb = Max(oldlb, lowerIndx[0]); |
| int sliceub = Min(oldub, upperIndx[0]); |
| char *oldarraydata = ARR_DATA_PTR(array); |
| bits8 *oldarraybitmap = ARR_NULLBITMAP(array); |
| |
| /* count/size of old array entries that will go before the slice */ |
| itemsbefore = Min(slicelb, oldub + 1) - oldlb; |
| lenbefore = array_nelems_size(oldarraydata, 0, oldarraybitmap, |
| itemsbefore, |
| elmlen, elmbyval, elmalign); |
| /* count/size of old array entries that will be replaced by slice */ |
| if (slicelb > sliceub) |
| { |
| nolditems = 0; |
| olditemsize = 0; |
| } |
| else |
| { |
| nolditems = sliceub - slicelb + 1; |
| olditemsize = array_nelems_size(oldarraydata + lenbefore, |
| itemsbefore, oldarraybitmap, |
| nolditems, |
| elmlen, elmbyval, elmalign); |
| } |
| /* count/size of old array entries that will go after the slice */ |
| itemsafter = oldub + 1 - Max(sliceub + 1, oldlb); |
| lenafter = olddatasize - lenbefore - olditemsize; |
| } |
| |
| newsize = overheadlen + olddatasize - olditemsize + newitemsize; |
| |
| newarray = (ArrayType *) palloc0(newsize); |
| SET_VARSIZE(newarray, newsize); |
| newarray->ndim = ndim; |
| newarray->dataoffset = newhasnulls ? overheadlen : 0; |
| newarray->elemtype = ARR_ELEMTYPE(array); |
| memcpy(ARR_DIMS(newarray), dim, ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(newarray), lb, ndim * sizeof(int)); |
| |
| if (ndim > 1) |
| { |
| /* |
| * here we do not need to cope with extension of the array; it would |
| * be a lot more complicated if we had to do so... |
| */ |
| array_insert_slice(newarray, array, srcArray, |
| ndim, dim, lb, |
| lowerIndx, upperIndx, |
| elmlen, elmbyval, elmalign); |
| } |
| else |
| { |
| /* fill in data */ |
| memcpy((char *) newarray + overheadlen, |
| (char *) array + oldoverheadlen, |
| lenbefore); |
| memcpy((char *) newarray + overheadlen + lenbefore, |
| ARR_DATA_PTR(srcArray), |
| newitemsize); |
| memcpy((char *) newarray + overheadlen + lenbefore + newitemsize, |
| (char *) array + oldoverheadlen + lenbefore + olditemsize, |
| lenafter); |
| /* fill in nulls bitmap if needed */ |
| if (newhasnulls) |
| { |
| bits8 *newnullbitmap = ARR_NULLBITMAP(newarray); |
| bits8 *oldnullbitmap = ARR_NULLBITMAP(array); |
| |
| /* palloc0 above already marked any inserted positions as nulls */ |
| array_bitmap_copy(newnullbitmap, addedbefore, |
| oldnullbitmap, 0, |
| itemsbefore); |
| array_bitmap_copy(newnullbitmap, lowerIndx[0] - lb[0], |
| ARR_NULLBITMAP(srcArray), 0, |
| nsrcitems); |
| array_bitmap_copy(newnullbitmap, addedbefore + itemsbefore + nolditems, |
| oldnullbitmap, itemsbefore + nolditems, |
| itemsafter); |
| } |
| } |
| |
| return PointerGetDatum(newarray); |
| } |
| |
| /* |
| * array_ref : backwards compatibility wrapper for array_get_element |
| * |
| * This only works for detoasted/flattened varlena arrays, since the array |
| * argument is declared as "ArrayType *". However there's enough code like |
| * that to justify preserving this API. |
| */ |
| Datum |
| array_ref(ArrayType *array, int nSubscripts, int *indx, |
| int arraytyplen, int elmlen, bool elmbyval, char elmalign, |
| bool *isNull) |
| { |
| return array_get_element(PointerGetDatum(array), nSubscripts, indx, |
| arraytyplen, elmlen, elmbyval, elmalign, |
| isNull); |
| } |
| |
| /* |
| * array_set : backwards compatibility wrapper for array_set_element |
| * |
| * This only works for detoasted/flattened varlena arrays, since the array |
| * argument and result are declared as "ArrayType *". However there's enough |
| * code like that to justify preserving this API. |
| */ |
| ArrayType * |
| array_set(ArrayType *array, int nSubscripts, int *indx, |
| Datum dataValue, bool isNull, |
| int arraytyplen, int elmlen, bool elmbyval, char elmalign) |
| { |
| return DatumGetArrayTypeP(array_set_element(PointerGetDatum(array), |
| nSubscripts, indx, |
| dataValue, isNull, |
| arraytyplen, |
| elmlen, elmbyval, elmalign)); |
| } |
| |
| /* |
| * array_map() |
| * |
| * Map an array through an arbitrary expression. Return a new array with |
| * the same dimensions and each source element transformed by the given, |
| * already-compiled expression. Each source element is placed in the |
| * innermost_caseval/innermost_casenull fields of the ExprState. |
| * |
| * Parameters are: |
| * * arrayd: Datum representing array argument. |
| * * exprstate: ExprState representing the per-element transformation. |
| * * econtext: context for expression evaluation. |
| * * retType: OID of element type of output array. This must be the same as, |
| * or binary-compatible with, the result type of the expression. It might |
| * be different from the input array's element type. |
| * * amstate: workspace for array_map. Must be zeroed by caller before |
| * first call, and not touched after that. |
| * |
| * It is legitimate to pass a freshly-zeroed ArrayMapState on each call, |
| * but better performance can be had if the state can be preserved across |
| * a series of calls. |
| * |
| * NB: caller must assure that input array is not NULL. NULL elements in |
| * the array are OK however. |
| * NB: caller should be running in econtext's per-tuple memory context. |
| */ |
| Datum |
| array_map(Datum arrayd, |
| ExprState *exprstate, ExprContext *econtext, |
| Oid retType, ArrayMapState *amstate) |
| { |
| AnyArrayType *v = DatumGetAnyArrayP(arrayd); |
| ArrayType *result; |
| Datum *values; |
| bool *nulls; |
| int *dim; |
| int ndim; |
| int nitems; |
| int i; |
| int32 nbytes = 0; |
| int32 dataoffset; |
| bool hasnulls; |
| Oid inpType; |
| int inp_typlen; |
| bool inp_typbyval; |
| char inp_typalign; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| array_iter iter; |
| ArrayMetaState *inp_extra; |
| ArrayMetaState *ret_extra; |
| Datum *transform_source = exprstate->innermost_caseval; |
| bool *transform_source_isnull = exprstate->innermost_casenull; |
| |
| inpType = AARR_ELEMTYPE(v); |
| ndim = AARR_NDIM(v); |
| dim = AARR_DIMS(v); |
| nitems = ArrayGetNItems(ndim, dim); |
| |
| /* Check for empty array */ |
| if (nitems <= 0) |
| { |
| /* Return empty array */ |
| return PointerGetDatum(construct_empty_array(retType)); |
| } |
| |
| /* |
| * We arrange to look up info about input and return element types only |
| * once per series of calls, assuming the element type doesn't change |
| * underneath us. |
| */ |
| inp_extra = &amstate->inp_extra; |
| ret_extra = &amstate->ret_extra; |
| |
| if (inp_extra->element_type != inpType) |
| { |
| get_typlenbyvalalign(inpType, |
| &inp_extra->typlen, |
| &inp_extra->typbyval, |
| &inp_extra->typalign); |
| inp_extra->element_type = inpType; |
| } |
| inp_typlen = inp_extra->typlen; |
| inp_typbyval = inp_extra->typbyval; |
| inp_typalign = inp_extra->typalign; |
| |
| if (ret_extra->element_type != retType) |
| { |
| get_typlenbyvalalign(retType, |
| &ret_extra->typlen, |
| &ret_extra->typbyval, |
| &ret_extra->typalign); |
| ret_extra->element_type = retType; |
| } |
| typlen = ret_extra->typlen; |
| typbyval = ret_extra->typbyval; |
| typalign = ret_extra->typalign; |
| |
| /* Allocate temporary arrays for new values */ |
| values = (Datum *) palloc(nitems * sizeof(Datum)); |
| nulls = (bool *) palloc(nitems * sizeof(bool)); |
| |
| /* Loop over source data */ |
| array_iter_setup(&iter, v); |
| hasnulls = false; |
| |
| for (i = 0; i < nitems; i++) |
| { |
| /* Get source element, checking for NULL */ |
| *transform_source = |
| array_iter_next(&iter, transform_source_isnull, i, |
| inp_typlen, inp_typbyval, inp_typalign); |
| |
| /* Apply the given expression to source element */ |
| values[i] = ExecEvalExpr(exprstate, econtext, &nulls[i]); |
| |
| if (nulls[i]) |
| hasnulls = true; |
| else |
| { |
| /* Ensure data is not toasted */ |
| if (typlen == -1) |
| values[i] = PointerGetDatum(PG_DETOAST_DATUM(values[i])); |
| /* Update total result size */ |
| nbytes = att_addlength_datum(nbytes, typlen, values[i]); |
| nbytes = att_align_nominal(nbytes, typalign); |
| /* check for overflow of total request */ |
| if (!AllocSizeIsValid(nbytes)) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| } |
| } |
| |
| /* Allocate and fill the result array */ |
| if (hasnulls) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nitems); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| } |
| result = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(result, nbytes); |
| result->ndim = ndim; |
| result->dataoffset = dataoffset; |
| result->elemtype = retType; |
| memcpy(ARR_DIMS(result), AARR_DIMS(v), ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(result), AARR_LBOUND(v), ndim * sizeof(int)); |
| |
| CopyArrayEls(result, |
| values, nulls, nitems, |
| typlen, typbyval, typalign, |
| false); |
| |
| /* |
| * Note: do not risk trying to pfree the results of the called expression |
| */ |
| pfree(values); |
| pfree(nulls); |
| |
| return PointerGetDatum(result); |
| } |
| |
| /* |
| * construct_array --- simple method for constructing an array object |
| * |
| * elems: array of Datum items to become the array contents |
| * (NULL element values are not supported). |
| * nelems: number of items |
| * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| * |
| * A palloc'd 1-D array object is constructed and returned. Note that |
| * elem values will be copied into the object even if pass-by-ref type. |
| * Also note the result will be 0-D not 1-D if nelems = 0. |
| * |
| * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| * from the system catalogs, given the elmtype. However, the caller is |
| * in a better position to cache this info across multiple uses, or even |
| * to hard-wire values if the element type is hard-wired. |
| */ |
| ArrayType * |
| construct_array(Datum *elems, int nelems, |
| Oid elmtype, |
| int elmlen, bool elmbyval, char elmalign) |
| { |
| int dims[1]; |
| int lbs[1]; |
| |
| dims[0] = nelems; |
| lbs[0] = 1; |
| |
| return construct_md_array(elems, NULL, 1, dims, lbs, |
| elmtype, elmlen, elmbyval, elmalign); |
| } |
| |
| /* |
| * Like construct_array(), where elmtype must be a built-in type, and |
| * elmlen/elmbyval/elmalign is looked up from hardcoded data. This is often |
| * useful when manipulating arrays from/for system catalogs. |
| */ |
| ArrayType * |
| construct_array_builtin(Datum *elems, int nelems, Oid elmtype) |
| { |
| int elmlen; |
| bool elmbyval; |
| char elmalign; |
| |
| switch (elmtype) |
| { |
| case CHAROID: |
| elmlen = 1; |
| elmbyval = true; |
| elmalign = TYPALIGN_CHAR; |
| break; |
| |
| case CSTRINGOID: |
| elmlen = -2; |
| elmbyval = false; |
| elmalign = TYPALIGN_CHAR; |
| break; |
| |
| case FLOAT4OID: |
| elmlen = sizeof(float4); |
| elmbyval = true; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case INT2OID: |
| elmlen = sizeof(int16); |
| elmbyval = true; |
| elmalign = TYPALIGN_SHORT; |
| break; |
| |
| case INT4OID: |
| elmlen = sizeof(int32); |
| elmbyval = true; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case INT8OID: |
| elmlen = sizeof(int64); |
| elmbyval = FLOAT8PASSBYVAL; |
| elmalign = TYPALIGN_DOUBLE; |
| break; |
| |
| case NAMEOID: |
| elmlen = NAMEDATALEN; |
| elmbyval = false; |
| elmalign = TYPALIGN_CHAR; |
| break; |
| |
| case OIDOID: |
| case REGTYPEOID: |
| elmlen = sizeof(Oid); |
| elmbyval = true; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case TEXTOID: |
| elmlen = -1; |
| elmbyval = false; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case TIDOID: |
| elmlen = sizeof(ItemPointerData); |
| elmbyval = false; |
| elmalign = TYPALIGN_SHORT; |
| break; |
| |
| default: |
| elog(ERROR, "type %u not supported by construct_array_builtin()", elmtype); |
| /* keep compiler quiet */ |
| elmlen = 0; |
| elmbyval = false; |
| elmalign = 0; |
| } |
| |
| return construct_array(elems, nelems, elmtype, elmlen, elmbyval, elmalign); |
| } |
| |
| /* |
| * construct_md_array --- simple method for constructing an array object |
| * with arbitrary dimensions and possible NULLs |
| * |
| * elems: array of Datum items to become the array contents |
| * nulls: array of is-null flags (can be NULL if no nulls) |
| * ndims: number of dimensions |
| * dims: integer array with size of each dimension |
| * lbs: integer array with lower bound of each dimension |
| * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| * |
| * A palloc'd ndims-D array object is constructed and returned. Note that |
| * elem values will be copied into the object even if pass-by-ref type. |
| * Also note the result will be 0-D not ndims-D if any dims[i] = 0. |
| * |
| * If the "elems" array is NULL and an array of fixed width type is requested, |
| * a newly allocated array will be used. This removes the O(array_size) behavior |
| * of this routine in the cases where a fixed length datum is being used. In this |
| * case, this path will result in O(1) behavior. |
| * |
| * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| * from the system catalogs, given the elmtype. However, the caller is |
| * in a better position to cache this info across multiple uses, or even |
| * to hard-wire values if the element type is hard-wired. |
| */ |
| ArrayType * |
| construct_md_array(Datum *elems, |
| bool *nulls, |
| int ndims, |
| int *dims, |
| int *lbs, |
| Oid elmtype, int elmlen, bool elmbyval, char elmalign) |
| { |
| ArrayType *result; |
| bool hasnulls; |
| int32 nbytes; |
| int32 dataoffset; |
| int i; |
| int nelems; |
| bool fixedwidthtype; |
| |
| if (ndims < 0) /* we do allow zero-dimension arrays */ |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("invalid number of dimensions: %d", ndims))); |
| if (ndims > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| ndims, MAXDIM))); |
| |
| /* This checks for overflow of the array dimensions */ |
| nelems = ArrayGetNItems(ndims, dims); |
| ArrayCheckBounds(ndims, dims, lbs); |
| |
| /* if ndims <= 0 or any dims[i] == 0, return empty array */ |
| if (nelems <= 0) |
| return construct_empty_array(elmtype); |
| |
| /* compute required space */ |
| nbytes = 0; |
| |
| /* fast path for fixed width types */ |
| switch (elmtype) |
| { |
| case INT2OID: |
| case INT4OID: |
| case INT8OID: |
| case FLOAT4OID: |
| case FLOAT8OID: |
| fixedwidthtype=true; |
| break; |
| default: |
| fixedwidthtype=false; |
| } |
| hasnulls = false; |
| if (fixedwidthtype) |
| { |
| nbytes = nelems * elmlen; |
| |
| /* Still need to handle the possibility of nulls */ |
| if (nulls) |
| { |
| for (i = 0; i < nelems; i++) |
| { |
| if (nulls[i]) |
| { |
| hasnulls = true; |
| nbytes -= elmlen; |
| } |
| } |
| } |
| |
| nbytes = att_align_nominal(nbytes, elmalign); |
| } |
| else |
| { |
| for (i = 0; i < nelems; i++) |
| { |
| /* make sure data is not toasted */ |
| if (nulls && nulls[i]) |
| { |
| hasnulls = true; |
| continue; |
| } |
| else if (elmlen == -1) |
| elems[i] = PointerGetDatum(PG_DETOAST_DATUM(elems[i])); |
| nbytes = att_addlength_datum(nbytes, elmlen, elems[i]); |
| nbytes = att_align_nominal(nbytes, elmalign); |
| /* check for overflow of total request */ |
| if (!AllocSizeIsValid(nbytes)) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| } |
| } |
| |
| /* Allocate and initialize result array */ |
| if (hasnulls) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nelems); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| nbytes += ARR_OVERHEAD_NONULLS(ndims); |
| } |
| result = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(result, nbytes); |
| result->ndim = ndims; |
| result->dataoffset = dataoffset; |
| result->elemtype = elmtype; |
| memcpy(ARR_DIMS(result), dims, ndims * sizeof(int)); |
| memcpy(ARR_LBOUND(result), lbs, ndims * sizeof(int)); |
| |
| if (elems==NULL && fixedwidthtype) |
| { |
| /* do nothing */ |
| } |
| else |
| { |
| CopyArrayEls(result, |
| elems, nulls, nelems, |
| elmlen, elmbyval, elmalign, |
| false); |
| } |
| |
| return result; |
| } |
| |
| /* |
| * construct_empty_array --- make a zero-dimensional array of given type |
| */ |
| ArrayType * |
| construct_empty_array(Oid elmtype) |
| { |
| ArrayType *result; |
| |
| result = (ArrayType *) palloc0(sizeof(ArrayType)); |
| SET_VARSIZE(result, sizeof(ArrayType)); |
| result->ndim = 0; |
| result->dataoffset = 0; |
| result->elemtype = elmtype; |
| return result; |
| } |
| |
| /* |
| * construct_empty_expanded_array: make an empty expanded array |
| * given only type information. (metacache can be NULL if not needed.) |
| */ |
| ExpandedArrayHeader * |
| construct_empty_expanded_array(Oid element_type, |
| MemoryContext parentcontext, |
| ArrayMetaState *metacache) |
| { |
| ArrayType *array = construct_empty_array(element_type); |
| Datum d; |
| |
| d = expand_array(PointerGetDatum(array), parentcontext, metacache); |
| pfree(array); |
| return (ExpandedArrayHeader *) DatumGetEOHP(d); |
| } |
| |
| /* |
| * deconstruct_array --- simple method for extracting data from an array |
| * |
| * array: array object to examine (must not be NULL) |
| * elmtype, elmlen, elmbyval, elmalign: info for the datatype of the items |
| * elemsp: return value, set to point to palloc'd array of Datum values |
| * nullsp: return value, set to point to palloc'd array of isnull markers |
| * nelemsp: return value, set to number of extracted values |
| * |
| * The caller may pass nullsp == NULL if it does not support NULLs in the |
| * array. Note that this produces a very uninformative error message, |
| * so do it only in cases where a NULL is really not expected. |
| * |
| * If array elements are pass-by-ref data type, the returned Datums will |
| * be pointers into the array object. |
| * |
| * NOTE: it would be cleaner to look up the elmlen/elmbval/elmalign info |
| * from the system catalogs, given the elmtype. However, the caller is |
| * in a better position to cache this info across multiple uses, or even |
| * to hard-wire values if the element type is hard-wired. |
| */ |
| void |
| deconstruct_array(ArrayType *array, |
| Oid elmtype, |
| int elmlen, bool elmbyval, char elmalign, |
| Datum **elemsp, bool **nullsp, int *nelemsp) |
| { |
| Datum *elems; |
| bool *nulls; |
| int nelems; |
| char *p; |
| bits8 *bitmap; |
| int bitmask; |
| int i; |
| |
| Assert(ARR_ELEMTYPE(array) == elmtype); |
| |
| nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); |
| *elemsp = elems = (Datum *) palloc(nelems * sizeof(Datum)); |
| if (nullsp) |
| *nullsp = nulls = (bool *) palloc0(nelems * sizeof(bool)); |
| else |
| nulls = NULL; |
| *nelemsp = nelems; |
| |
| p = ARR_DATA_PTR(array); |
| bitmap = ARR_NULLBITMAP(array); |
| bitmask = 1; |
| |
| for (i = 0; i < nelems; i++) |
| { |
| /* Get source element, checking for NULL */ |
| if (bitmap && (*bitmap & bitmask) == 0) |
| { |
| elems[i] = (Datum) 0; |
| if (nulls) |
| nulls[i] = true; |
| else |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("null array element not allowed in this context"))); |
| } |
| else |
| { |
| elems[i] = fetch_att(p, elmbyval, elmlen); |
| p = att_addlength_pointer(p, elmlen, p); |
| p = (char *) att_align_nominal(p, elmalign); |
| } |
| |
| /* advance bitmap pointer if any */ |
| if (bitmap) |
| { |
| bitmask <<= 1; |
| if (bitmask == 0x100 /* (1<<8) */) |
| { |
| bitmap++; |
| bitmask = 1; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Like deconstruct_array(), where elmtype must be a built-in type, and |
| * elmlen/elmbyval/elmalign is looked up from hardcoded data. This is often |
| * useful when manipulating arrays from/for system catalogs. |
| */ |
| void |
| deconstruct_array_builtin(ArrayType *array, |
| Oid elmtype, |
| Datum **elemsp, bool **nullsp, int *nelemsp) |
| { |
| int elmlen; |
| bool elmbyval; |
| char elmalign; |
| |
| switch (elmtype) |
| { |
| case CHAROID: |
| elmlen = 1; |
| elmbyval = true; |
| elmalign = TYPALIGN_CHAR; |
| break; |
| |
| case CSTRINGOID: |
| elmlen = -2; |
| elmbyval = false; |
| elmalign = TYPALIGN_CHAR; |
| break; |
| |
| case FLOAT8OID: |
| elmlen = sizeof(float8); |
| elmbyval = FLOAT8PASSBYVAL; |
| elmalign = TYPALIGN_DOUBLE; |
| break; |
| |
| case INT2OID: |
| elmlen = sizeof(int16); |
| elmbyval = true; |
| elmalign = TYPALIGN_SHORT; |
| break; |
| |
| case OIDOID: |
| elmlen = sizeof(Oid); |
| elmbyval = true; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case TEXTOID: |
| elmlen = -1; |
| elmbyval = false; |
| elmalign = TYPALIGN_INT; |
| break; |
| |
| case TIDOID: |
| elmlen = sizeof(ItemPointerData); |
| elmbyval = false; |
| elmalign = TYPALIGN_SHORT; |
| break; |
| |
| default: |
| elog(ERROR, "type %u not supported by deconstruct_array_builtin()", elmtype); |
| /* keep compiler quiet */ |
| elmlen = 0; |
| elmbyval = false; |
| elmalign = 0; |
| } |
| |
| deconstruct_array(array, elmtype, elmlen, elmbyval, elmalign, elemsp, nullsp, nelemsp); |
| } |
| |
| /* |
| * array_contains_nulls --- detect whether an array has any null elements |
| * |
| * This gives an accurate answer, whereas testing ARR_HASNULL only tells |
| * if the array *might* contain a null. |
| */ |
| bool |
| array_contains_nulls(ArrayType *array) |
| { |
| int nelems; |
| bits8 *bitmap; |
| int bitmask; |
| |
| /* Easy answer if there's no null bitmap */ |
| if (!ARR_HASNULL(array)) |
| return false; |
| |
| nelems = ArrayGetNItems(ARR_NDIM(array), ARR_DIMS(array)); |
| |
| bitmap = ARR_NULLBITMAP(array); |
| |
| /* check whole bytes of the bitmap byte-at-a-time */ |
| while (nelems >= 8) |
| { |
| if (*bitmap != 0xFF) |
| return true; |
| bitmap++; |
| nelems -= 8; |
| } |
| |
| /* check last partial byte */ |
| bitmask = 1; |
| while (nelems > 0) |
| { |
| if ((*bitmap & bitmask) == 0) |
| return true; |
| bitmask <<= 1; |
| nelems--; |
| } |
| |
| return false; |
| } |
| |
| |
| /* |
| * array_eq : |
| * compares two arrays for equality |
| * result : |
| * returns true if the arrays are equal, false otherwise. |
| * |
| * Note: we do not use array_cmp here, since equality may be meaningful in |
| * datatypes that don't have a total ordering (and hence no btree support). |
| */ |
| Datum |
| array_eq(PG_FUNCTION_ARGS) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| int ndims1 = AARR_NDIM(array1); |
| int ndims2 = AARR_NDIM(array2); |
| int *dims1 = AARR_DIMS(array1); |
| int *dims2 = AARR_DIMS(array2); |
| int *lbs1 = AARR_LBOUND(array1); |
| int *lbs2 = AARR_LBOUND(array2); |
| Oid element_type = AARR_ELEMTYPE(array1); |
| bool result = true; |
| int nitems; |
| TypeCacheEntry *typentry; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| array_iter it1; |
| array_iter it2; |
| int i; |
| |
| if (element_type != AARR_ELEMTYPE(array2)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("cannot compare arrays of different element types"))); |
| |
| /* fast path if the arrays do not have the same dimensionality */ |
| if (ndims1 != ndims2 || |
| memcmp(dims1, dims2, ndims1 * sizeof(int)) != 0 || |
| memcmp(lbs1, lbs2, ndims1 * sizeof(int)) != 0) |
| result = false; |
| else |
| { |
| /* |
| * We arrange to look up the equality function only once per series of |
| * calls, assuming the element type doesn't change underneath us. The |
| * typcache is used so that we have no memory leakage when being used |
| * as an index support function. |
| */ |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_EQ_OPR_FINFO); |
| if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify an equality operator for type %s", |
| format_type_be(element_type)))); |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| /* |
| * apply the operator to each pair of array elements. |
| */ |
| InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Loop over source data */ |
| nitems = ArrayGetNItems(ndims1, dims1); |
| array_iter_setup(&it1, array1); |
| array_iter_setup(&it2, array2); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum elt1; |
| Datum elt2; |
| bool isnull1; |
| bool isnull2; |
| bool oprresult; |
| |
| /* Get elements, checking for NULL */ |
| elt1 = array_iter_next(&it1, &isnull1, i, |
| typlen, typbyval, typalign); |
| elt2 = array_iter_next(&it2, &isnull2, i, |
| typlen, typbyval, typalign); |
| |
| /* |
| * We consider two NULLs equal; NULL and not-NULL are unequal. |
| */ |
| if (isnull1 && isnull2) |
| continue; |
| if (isnull1 || isnull2) |
| { |
| result = false; |
| break; |
| } |
| |
| /* |
| * Apply the operator to the element pair; treat NULL as false |
| */ |
| locfcinfo->args[0].value = elt1; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = elt2; |
| locfcinfo->args[1].isnull = false; |
| locfcinfo->isnull = false; |
| oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| if (locfcinfo->isnull || !oprresult) |
| { |
| result = false; |
| break; |
| } |
| } |
| } |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array1, 0); |
| AARR_FREE_IF_COPY(array2, 1); |
| |
| PG_RETURN_BOOL(result); |
| } |
| |
| |
| /*----------------------------------------------------------------------------- |
| * array-array bool operators: |
| * Given two arrays, iterate comparison operators |
| * over the array. Uses logic similar to text comparison |
| * functions, except element-by-element instead of |
| * character-by-character. |
| *---------------------------------------------------------------------------- |
| */ |
| |
| Datum |
| array_ne(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_BOOL(!DatumGetBool(array_eq(fcinfo))); |
| } |
| |
| Datum |
| array_lt(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_BOOL(array_cmp(fcinfo) < 0); |
| } |
| |
| Datum |
| array_gt(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_BOOL(array_cmp(fcinfo) > 0); |
| } |
| |
| Datum |
| array_le(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_BOOL(array_cmp(fcinfo) <= 0); |
| } |
| |
| Datum |
| array_ge(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_BOOL(array_cmp(fcinfo) >= 0); |
| } |
| |
| Datum |
| btarraycmp(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_INT32(array_cmp(fcinfo)); |
| } |
| |
| /* |
| * array_cmp() |
| * Internal comparison function for arrays. |
| * |
| * Returns -1, 0 or 1 |
| */ |
| static int |
| array_cmp(FunctionCallInfo fcinfo) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| int ndims1 = AARR_NDIM(array1); |
| int ndims2 = AARR_NDIM(array2); |
| int *dims1 = AARR_DIMS(array1); |
| int *dims2 = AARR_DIMS(array2); |
| int nitems1 = ArrayGetNItems(ndims1, dims1); |
| int nitems2 = ArrayGetNItems(ndims2, dims2); |
| Oid element_type = AARR_ELEMTYPE(array1); |
| int result = 0; |
| TypeCacheEntry *typentry; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| int min_nitems; |
| array_iter it1; |
| array_iter it2; |
| int i; |
| |
| if (element_type != AARR_ELEMTYPE(array2)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("cannot compare arrays of different element types"))); |
| |
| /* |
| * We arrange to look up the comparison function only once per series of |
| * calls, assuming the element type doesn't change underneath us. The |
| * typcache is used so that we have no memory leakage when being used as |
| * an index support function. |
| */ |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_CMP_PROC_FINFO); |
| if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify a comparison function for type %s", |
| format_type_be(element_type)))); |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| /* |
| * apply the operator to each pair of array elements. |
| */ |
| InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Loop over source data */ |
| min_nitems = Min(nitems1, nitems2); |
| array_iter_setup(&it1, array1); |
| array_iter_setup(&it2, array2); |
| |
| for (i = 0; i < min_nitems; i++) |
| { |
| Datum elt1; |
| Datum elt2; |
| bool isnull1; |
| bool isnull2; |
| int32 cmpresult; |
| |
| /* Get elements, checking for NULL */ |
| elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); |
| elt2 = array_iter_next(&it2, &isnull2, i, typlen, typbyval, typalign); |
| |
| /* |
| * We consider two NULLs equal; NULL > not-NULL. |
| */ |
| if (isnull1 && isnull2) |
| continue; |
| if (isnull1) |
| { |
| /* arg1 is greater than arg2 */ |
| result = 1; |
| break; |
| } |
| if (isnull2) |
| { |
| /* arg1 is less than arg2 */ |
| result = -1; |
| break; |
| } |
| |
| /* Compare the pair of elements */ |
| locfcinfo->args[0].value = elt1; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = elt2; |
| locfcinfo->args[1].isnull = false; |
| cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| |
| /* We don't expect comparison support functions to return null */ |
| Assert(!locfcinfo->isnull); |
| |
| if (cmpresult == 0) |
| continue; /* equal */ |
| |
| if (cmpresult < 0) |
| { |
| /* arg1 is less than arg2 */ |
| result = -1; |
| break; |
| } |
| else |
| { |
| /* arg1 is greater than arg2 */ |
| result = 1; |
| break; |
| } |
| } |
| |
| /* |
| * If arrays contain same data (up to end of shorter one), apply |
| * additional rules to sort by dimensionality. The relative significance |
| * of the different bits of information is historical; mainly we just care |
| * that we don't say "equal" for arrays of different dimensionality. |
| */ |
| if (result == 0) |
| { |
| if (nitems1 != nitems2) |
| result = (nitems1 < nitems2) ? -1 : 1; |
| else if (ndims1 != ndims2) |
| result = (ndims1 < ndims2) ? -1 : 1; |
| else |
| { |
| for (i = 0; i < ndims1; i++) |
| { |
| if (dims1[i] != dims2[i]) |
| { |
| result = (dims1[i] < dims2[i]) ? -1 : 1; |
| break; |
| } |
| } |
| if (result == 0) |
| { |
| int *lbound1 = AARR_LBOUND(array1); |
| int *lbound2 = AARR_LBOUND(array2); |
| |
| for (i = 0; i < ndims1; i++) |
| { |
| if (lbound1[i] != lbound2[i]) |
| { |
| result = (lbound1[i] < lbound2[i]) ? -1 : 1; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array1, 0); |
| AARR_FREE_IF_COPY(array2, 1); |
| |
| return result; |
| } |
| |
| |
| /*----------------------------------------------------------------------------- |
| * array hashing |
| * Hash the elements and combine the results. |
| *---------------------------------------------------------------------------- |
| */ |
| |
| Datum |
| hash_array(PG_FUNCTION_ARGS) |
| { |
| LOCAL_FCINFO(locfcinfo, 1); |
| AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); |
| int ndims = AARR_NDIM(array); |
| int *dims = AARR_DIMS(array); |
| Oid element_type = AARR_ELEMTYPE(array); |
| uint32 result = 1; |
| int nitems; |
| TypeCacheEntry *typentry; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| int i; |
| array_iter iter; |
| |
| /* |
| * We arrange to look up the hash function only once per series of calls, |
| * assuming the element type doesn't change underneath us. The typcache |
| * is used so that we have no memory leakage when being used as an index |
| * support function. |
| */ |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_HASH_PROC_FINFO); |
| if (!OidIsValid(typentry->hash_proc_finfo.fn_oid) && element_type != RECORDOID) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify a hash function for type %s", |
| format_type_be(element_type)))); |
| |
| /* |
| * The type cache doesn't believe that record is hashable (see |
| * cache_record_field_properties()), but since we're here, we're |
| * committed to hashing, so we can assume it does. Worst case, if any |
| * components of the record don't support hashing, we will fail at |
| * execution. |
| */ |
| if (element_type == RECORDOID) |
| { |
| MemoryContext oldcontext; |
| TypeCacheEntry *record_typentry; |
| |
| oldcontext = MemoryContextSwitchTo(fcinfo->flinfo->fn_mcxt); |
| |
| /* |
| * Make fake type cache entry structure. Note that we can't just |
| * modify typentry, since that points directly into the type |
| * cache. |
| */ |
| record_typentry = palloc0(sizeof(*record_typentry)); |
| record_typentry->type_id = element_type; |
| |
| /* fill in what we need below */ |
| record_typentry->typlen = typentry->typlen; |
| record_typentry->typbyval = typentry->typbyval; |
| record_typentry->typalign = typentry->typalign; |
| fmgr_info(F_HASH_RECORD, &record_typentry->hash_proc_finfo); |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| typentry = record_typentry; |
| } |
| |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| /* |
| * apply the hash function to each array element. |
| */ |
| InitFunctionCallInfoData(*locfcinfo, &typentry->hash_proc_finfo, 1, |
| PG_GET_COLLATION(), NULL, NULL); |
| |
| /* Loop over source data */ |
| nitems = ArrayGetNItems(ndims, dims); |
| array_iter_setup(&iter, array); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum elt; |
| bool isnull; |
| uint32 elthash; |
| |
| /* Get element, checking for NULL */ |
| elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); |
| |
| if (isnull) |
| { |
| /* Treat nulls as having hashvalue 0 */ |
| elthash = 0; |
| } |
| else |
| { |
| /* Apply the hash function */ |
| locfcinfo->args[0].value = elt; |
| locfcinfo->args[0].isnull = false; |
| elthash = DatumGetUInt32(FunctionCallInvoke(locfcinfo)); |
| /* We don't expect hash functions to return null */ |
| Assert(!locfcinfo->isnull); |
| } |
| |
| /* |
| * Combine hash values of successive elements by multiplying the |
| * current value by 31 and adding on the new element's hash value. |
| * |
| * The result is a sum in which each element's hash value is |
| * multiplied by a different power of 31. This is modulo 2^32 |
| * arithmetic, and the powers of 31 modulo 2^32 form a cyclic group of |
| * order 2^27. So for arrays of up to 2^27 elements, each element's |
| * hash value is multiplied by a different (odd) number, resulting in |
| * a good mixing of all the elements' hash values. |
| */ |
| result = (result << 5) - result + elthash; |
| } |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array, 0); |
| |
| PG_RETURN_UINT32(result); |
| } |
| |
| /* |
| * Returns 64-bit value by hashing a value to a 64-bit value, with a seed. |
| * Otherwise, similar to hash_array. |
| */ |
| Datum |
| hash_array_extended(PG_FUNCTION_ARGS) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| AnyArrayType *array = PG_GETARG_ANY_ARRAY_P(0); |
| uint64 seed = PG_GETARG_INT64(1); |
| int ndims = AARR_NDIM(array); |
| int *dims = AARR_DIMS(array); |
| Oid element_type = AARR_ELEMTYPE(array); |
| uint64 result = 1; |
| int nitems; |
| TypeCacheEntry *typentry; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| int i; |
| array_iter iter; |
| |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_HASH_EXTENDED_PROC_FINFO); |
| if (!OidIsValid(typentry->hash_extended_proc_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify an extended hash function for type %s", |
| format_type_be(element_type)))); |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| InitFunctionCallInfoData(*locfcinfo, &typentry->hash_extended_proc_finfo, 2, |
| PG_GET_COLLATION(), NULL, NULL); |
| |
| /* Loop over source data */ |
| nitems = ArrayGetNItems(ndims, dims); |
| array_iter_setup(&iter, array); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum elt; |
| bool isnull; |
| uint64 elthash; |
| |
| /* Get element, checking for NULL */ |
| elt = array_iter_next(&iter, &isnull, i, typlen, typbyval, typalign); |
| |
| if (isnull) |
| { |
| elthash = 0; |
| } |
| else |
| { |
| /* Apply the hash function */ |
| locfcinfo->args[0].value = elt; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = Int64GetDatum(seed); |
| locfcinfo->args[1].isnull = false; |
| elthash = DatumGetUInt64(FunctionCallInvoke(locfcinfo)); |
| /* We don't expect hash functions to return null */ |
| Assert(!locfcinfo->isnull); |
| } |
| |
| result = (result << 5) - result + elthash; |
| } |
| |
| AARR_FREE_IF_COPY(array, 0); |
| |
| PG_RETURN_UINT64(result); |
| } |
| |
| |
| /*----------------------------------------------------------------------------- |
| * array overlap/containment comparisons |
| * These use the same methods of comparing array elements as array_eq. |
| * We consider only the elements of the arrays, ignoring dimensionality. |
| *---------------------------------------------------------------------------- |
| */ |
| |
| /* |
| * array_contain_compare : |
| * compares two arrays for overlap/containment |
| * |
| * When matchall is true, return true if all members of array1 are in array2. |
| * When matchall is false, return true if any members of array1 are in array2. |
| */ |
| static bool |
| array_contain_compare(AnyArrayType *array1, AnyArrayType *array2, Oid collation, |
| bool matchall, void **fn_extra) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| bool result = matchall; |
| Oid element_type = AARR_ELEMTYPE(array1); |
| TypeCacheEntry *typentry; |
| int nelems1; |
| Datum *values2; |
| bool *nulls2; |
| int nelems2; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| int i; |
| int j; |
| array_iter it1; |
| |
| if (element_type != AARR_ELEMTYPE(array2)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("cannot compare arrays of different element types"))); |
| |
| /* |
| * We arrange to look up the equality function only once per series of |
| * calls, assuming the element type doesn't change underneath us. The |
| * typcache is used so that we have no memory leakage when being used as |
| * an index support function. |
| */ |
| typentry = (TypeCacheEntry *) *fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_EQ_OPR_FINFO); |
| if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify an equality operator for type %s", |
| format_type_be(element_type)))); |
| *fn_extra = (void *) typentry; |
| } |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| /* |
| * Since we probably will need to scan array2 multiple times, it's |
| * worthwhile to use deconstruct_array on it. We scan array1 the hard way |
| * however, since we very likely won't need to look at all of it. |
| */ |
| if (VARATT_IS_EXPANDED_HEADER(array2)) |
| { |
| /* This should be safe even if input is read-only */ |
| deconstruct_expanded_array(&(array2->xpn)); |
| values2 = array2->xpn.dvalues; |
| nulls2 = array2->xpn.dnulls; |
| nelems2 = array2->xpn.nelems; |
| } |
| else |
| deconstruct_array((ArrayType *) array2, |
| element_type, typlen, typbyval, typalign, |
| &values2, &nulls2, &nelems2); |
| |
| /* |
| * Apply the comparison operator to each pair of array elements. |
| */ |
| InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Loop over source data */ |
| nelems1 = ArrayGetNItems(AARR_NDIM(array1), AARR_DIMS(array1)); |
| array_iter_setup(&it1, array1); |
| |
| for (i = 0; i < nelems1; i++) |
| { |
| Datum elt1; |
| bool isnull1; |
| |
| /* Get element, checking for NULL */ |
| elt1 = array_iter_next(&it1, &isnull1, i, typlen, typbyval, typalign); |
| |
| /* |
| * We assume that the comparison operator is strict, so a NULL can't |
| * match anything. XXX this diverges from the "NULL=NULL" behavior of |
| * array_eq, should we act like that? |
| */ |
| if (isnull1) |
| { |
| if (matchall) |
| { |
| result = false; |
| break; |
| } |
| continue; |
| } |
| |
| for (j = 0; j < nelems2; j++) |
| { |
| Datum elt2 = values2[j]; |
| bool isnull2 = nulls2 ? nulls2[j] : false; |
| bool oprresult; |
| |
| if (isnull2) |
| continue; /* can't match */ |
| |
| /* |
| * Apply the operator to the element pair; treat NULL as false |
| */ |
| locfcinfo->args[0].value = elt1; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = elt2; |
| locfcinfo->args[1].isnull = false; |
| locfcinfo->isnull = false; |
| oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| if (!locfcinfo->isnull && oprresult) |
| break; |
| } |
| |
| if (j < nelems2) |
| { |
| /* found a match for elt1 */ |
| if (!matchall) |
| { |
| result = true; |
| break; |
| } |
| } |
| else |
| { |
| /* no match for elt1 */ |
| if (matchall) |
| { |
| result = false; |
| break; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| Datum |
| arrayoverlap(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| bool result; |
| |
| result = array_contain_compare(array1, array2, collation, false, |
| &fcinfo->flinfo->fn_extra); |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array1, 0); |
| AARR_FREE_IF_COPY(array2, 1); |
| |
| PG_RETURN_BOOL(result); |
| } |
| |
| Datum |
| arraycontains(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| bool result; |
| |
| result = array_contain_compare(array2, array1, collation, true, |
| &fcinfo->flinfo->fn_extra); |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array1, 0); |
| AARR_FREE_IF_COPY(array2, 1); |
| |
| PG_RETURN_BOOL(result); |
| } |
| |
| Datum |
| arraycontained(PG_FUNCTION_ARGS) |
| { |
| AnyArrayType *array1 = PG_GETARG_ANY_ARRAY_P(0); |
| AnyArrayType *array2 = PG_GETARG_ANY_ARRAY_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| bool result; |
| |
| result = array_contain_compare(array1, array2, collation, true, |
| &fcinfo->flinfo->fn_extra); |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| AARR_FREE_IF_COPY(array1, 0); |
| AARR_FREE_IF_COPY(array2, 1); |
| |
| PG_RETURN_BOOL(result); |
| } |
| |
| |
| /*----------------------------------------------------------------------------- |
| * Array iteration functions |
| * These functions are used to iterate efficiently through arrays |
| *----------------------------------------------------------------------------- |
| */ |
| |
| /* |
| * array_create_iterator --- set up to iterate through an array |
| * |
| * If slice_ndim is zero, we will iterate element-by-element; the returned |
| * datums are of the array's element type. |
| * |
| * If slice_ndim is 1..ARR_NDIM(arr), we will iterate by slices: the |
| * returned datums are of the same array type as 'arr', but of size |
| * equal to the rightmost N dimensions of 'arr'. |
| * |
| * The passed-in array must remain valid for the lifetime of the iterator. |
| */ |
| ArrayIterator |
| array_create_iterator(ArrayType *arr, int slice_ndim, ArrayMetaState *mstate) |
| { |
| ArrayIterator iterator = palloc0(sizeof(ArrayIteratorData)); |
| |
| /* |
| * Sanity-check inputs --- caller should have got this right already |
| */ |
| Assert(PointerIsValid(arr)); |
| if (slice_ndim < 0 || slice_ndim > ARR_NDIM(arr)) |
| elog(ERROR, "invalid arguments to array_create_iterator"); |
| |
| /* |
| * Remember basic info about the array and its element type |
| */ |
| iterator->arr = arr; |
| iterator->nullbitmap = ARR_NULLBITMAP(arr); |
| iterator->nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr)); |
| |
| if (mstate != NULL) |
| { |
| Assert(mstate->element_type == ARR_ELEMTYPE(arr)); |
| |
| iterator->typlen = mstate->typlen; |
| iterator->typbyval = mstate->typbyval; |
| iterator->typalign = mstate->typalign; |
| } |
| else |
| get_typlenbyvalalign(ARR_ELEMTYPE(arr), |
| &iterator->typlen, |
| &iterator->typbyval, |
| &iterator->typalign); |
| |
| /* |
| * Remember the slicing parameters. |
| */ |
| iterator->slice_ndim = slice_ndim; |
| |
| if (slice_ndim > 0) |
| { |
| /* |
| * Get pointers into the array's dims and lbound arrays to represent |
| * the dims/lbound arrays of a slice. These are the same as the |
| * rightmost N dimensions of the array. |
| */ |
| iterator->slice_dims = ARR_DIMS(arr) + ARR_NDIM(arr) - slice_ndim; |
| iterator->slice_lbound = ARR_LBOUND(arr) + ARR_NDIM(arr) - slice_ndim; |
| |
| /* |
| * Compute number of elements in a slice. |
| */ |
| iterator->slice_len = ArrayGetNItems(slice_ndim, |
| iterator->slice_dims); |
| |
| /* |
| * Create workspace for building sub-arrays. |
| */ |
| iterator->slice_values = (Datum *) |
| palloc(iterator->slice_len * sizeof(Datum)); |
| iterator->slice_nulls = (bool *) |
| palloc(iterator->slice_len * sizeof(bool)); |
| } |
| |
| /* |
| * Initialize our data pointer and linear element number. These will |
| * advance through the array during array_iterate(). |
| */ |
| iterator->data_ptr = ARR_DATA_PTR(arr); |
| iterator->current_item = 0; |
| |
| return iterator; |
| } |
| |
| /* |
| * Iterate through the array referenced by 'iterator'. |
| * |
| * As long as there is another element (or slice), return it into |
| * *value / *isnull, and return true. Return false when no more data. |
| */ |
| bool |
| array_iterate(ArrayIterator iterator, Datum *value, bool *isnull) |
| { |
| /* Done if we have reached the end of the array */ |
| if (iterator->current_item >= iterator->nitems) |
| return false; |
| |
| if (iterator->slice_ndim == 0) |
| { |
| /* |
| * Scalar case: return one element. |
| */ |
| if (array_get_isnull(iterator->nullbitmap, iterator->current_item++)) |
| { |
| *isnull = true; |
| *value = (Datum) 0; |
| } |
| else |
| { |
| /* non-NULL, so fetch the individual Datum to return */ |
| char *p = iterator->data_ptr; |
| |
| *isnull = false; |
| *value = fetch_att(p, iterator->typbyval, iterator->typlen); |
| |
| /* Move our data pointer forward to the next element */ |
| p = att_addlength_pointer(p, iterator->typlen, p); |
| p = (char *) att_align_nominal(p, iterator->typalign); |
| iterator->data_ptr = p; |
| } |
| } |
| else |
| { |
| /* |
| * Slice case: build and return an array of the requested size. |
| */ |
| ArrayType *result; |
| Datum *values = iterator->slice_values; |
| bool *nulls = iterator->slice_nulls; |
| char *p = iterator->data_ptr; |
| int i; |
| |
| for (i = 0; i < iterator->slice_len; i++) |
| { |
| if (array_get_isnull(iterator->nullbitmap, |
| iterator->current_item++)) |
| { |
| nulls[i] = true; |
| values[i] = (Datum) 0; |
| } |
| else |
| { |
| nulls[i] = false; |
| values[i] = fetch_att(p, iterator->typbyval, iterator->typlen); |
| |
| /* Move our data pointer forward to the next element */ |
| p = att_addlength_pointer(p, iterator->typlen, p); |
| p = (char *) att_align_nominal(p, iterator->typalign); |
| } |
| } |
| |
| iterator->data_ptr = p; |
| |
| result = construct_md_array(values, |
| nulls, |
| iterator->slice_ndim, |
| iterator->slice_dims, |
| iterator->slice_lbound, |
| ARR_ELEMTYPE(iterator->arr), |
| iterator->typlen, |
| iterator->typbyval, |
| iterator->typalign); |
| |
| *isnull = false; |
| *value = PointerGetDatum(result); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Release an ArrayIterator data structure |
| */ |
| void |
| array_free_iterator(ArrayIterator iterator) |
| { |
| if (iterator->slice_ndim > 0) |
| { |
| pfree(iterator->slice_values); |
| pfree(iterator->slice_nulls); |
| } |
| pfree(iterator); |
| } |
| |
| |
| /***************************************************************************/ |
| /******************| Support Routines |*****************/ |
| /***************************************************************************/ |
| |
| /* |
| * Check whether a specific array element is NULL |
| * |
| * nullbitmap: pointer to array's null bitmap (NULL if none) |
| * offset: 0-based linear element number of array element |
| */ |
| static bool |
| array_get_isnull(const bits8 *nullbitmap, int offset) |
| { |
| if (nullbitmap == NULL) |
| return false; /* assume not null */ |
| if (nullbitmap[offset / 8] & (1 << (offset % 8))) |
| return false; /* not null */ |
| return true; |
| } |
| |
| /* |
| * Set a specific array element's null-bitmap entry |
| * |
| * nullbitmap: pointer to array's null bitmap (mustn't be NULL) |
| * offset: 0-based linear element number of array element |
| * isNull: null status to set |
| */ |
| static void |
| array_set_isnull(bits8 *nullbitmap, int offset, bool isNull) |
| { |
| int bitmask; |
| |
| nullbitmap += offset / 8; |
| bitmask = 1 << (offset % 8); |
| if (isNull) |
| *nullbitmap &= ~bitmask; |
| else |
| *nullbitmap |= bitmask; |
| } |
| |
| /* |
| * Fetch array element at pointer, converted correctly to a Datum |
| * |
| * Caller must have handled case of NULL element |
| */ |
| static Datum |
| ArrayCast(char *value, bool byval, int len) |
| { |
| return fetch_att(value, byval, len); |
| } |
| |
| /* |
| * Copy datum to *dest and return total space used (including align padding) |
| * |
| * Caller must have handled case of NULL element |
| */ |
| static int |
| ArrayCastAndSet(Datum src, |
| int typlen, |
| bool typbyval, |
| char typalign, |
| char *dest) |
| { |
| int inc; |
| |
| if (typlen > 0) |
| { |
| if (typbyval) |
| store_att_byval(dest, src, typlen); |
| else |
| memmove(dest, DatumGetPointer(src), typlen); |
| inc = att_align_nominal(typlen, typalign); |
| } |
| else |
| { |
| Assert(!typbyval); |
| inc = att_addlength_datum(0, typlen, src); |
| memmove(dest, DatumGetPointer(src), inc); |
| inc = att_align_nominal(inc, typalign); |
| } |
| |
| return inc; |
| } |
| |
| /* |
| * Advance ptr over nitems array elements |
| * |
| * ptr: starting location in array |
| * offset: 0-based linear element number of first element (the one at *ptr) |
| * nullbitmap: start of array's null bitmap, or NULL if none |
| * nitems: number of array elements to advance over (>= 0) |
| * typlen, typbyval, typalign: storage parameters of array element datatype |
| * |
| * It is caller's responsibility to ensure that nitems is within range |
| */ |
| static char * |
| array_seek(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| int typlen, bool typbyval, char typalign) |
| { |
| int bitmask; |
| int i; |
| |
| /* easy if fixed-size elements and no NULLs */ |
| if (typlen > 0 && !nullbitmap) |
| return ptr + nitems * ((Size) att_align_nominal(typlen, typalign)); |
| |
| /* seems worth having separate loops for NULL and no-NULLs cases */ |
| if (nullbitmap) |
| { |
| nullbitmap += offset / 8; |
| bitmask = 1 << (offset % 8); |
| |
| for (i = 0; i < nitems; i++) |
| { |
| if (*nullbitmap & bitmask) |
| { |
| ptr = att_addlength_pointer(ptr, typlen, ptr); |
| ptr = (char *) att_align_nominal(ptr, typalign); |
| } |
| bitmask <<= 1; |
| if (bitmask == 0x100 /* (1<<8) */) |
| { |
| nullbitmap++; |
| bitmask = 1; |
| } |
| } |
| } |
| else |
| { |
| for (i = 0; i < nitems; i++) |
| { |
| ptr = att_addlength_pointer(ptr, typlen, ptr); |
| ptr = (char *) att_align_nominal(ptr, typalign); |
| } |
| } |
| return ptr; |
| } |
| |
| /* |
| * Compute total size of the nitems array elements starting at *ptr |
| * |
| * Parameters same as for array_seek |
| */ |
| static int |
| array_nelems_size(char *ptr, int offset, bits8 *nullbitmap, int nitems, |
| int typlen, bool typbyval, char typalign) |
| { |
| return array_seek(ptr, offset, nullbitmap, nitems, |
| typlen, typbyval, typalign) - ptr; |
| } |
| |
| /* |
| * Copy nitems array elements from srcptr to destptr |
| * |
| * destptr: starting destination location (must be enough room!) |
| * nitems: number of array elements to copy (>= 0) |
| * srcptr: starting location in source array |
| * offset: 0-based linear element number of first element (the one at *srcptr) |
| * nullbitmap: start of source array's null bitmap, or NULL if none |
| * typlen, typbyval, typalign: storage parameters of array element datatype |
| * |
| * Returns number of bytes copied |
| * |
| * NB: this does not take care of setting up the destination's null bitmap! |
| */ |
| static int |
| array_copy(char *destptr, int nitems, |
| char *srcptr, int offset, bits8 *nullbitmap, |
| int typlen, bool typbyval, char typalign) |
| { |
| int numbytes; |
| |
| numbytes = array_nelems_size(srcptr, offset, nullbitmap, nitems, |
| typlen, typbyval, typalign); |
| memcpy(destptr, srcptr, numbytes); |
| return numbytes; |
| } |
| |
| /* |
| * Copy nitems null-bitmap bits from source to destination |
| * |
| * destbitmap: start of destination array's null bitmap (mustn't be NULL) |
| * destoffset: 0-based linear element number of first dest element |
| * srcbitmap: start of source array's null bitmap, or NULL if none |
| * srcoffset: 0-based linear element number of first source element |
| * nitems: number of bits to copy (>= 0) |
| * |
| * If srcbitmap is NULL then we assume the source is all-non-NULL and |
| * fill 1's into the destination bitmap. Note that only the specified |
| * bits in the destination map are changed, not any before or after. |
| * |
| * Note: this could certainly be optimized using standard bitblt methods. |
| * However, it's not clear that the typical Postgres array has enough elements |
| * to make it worth worrying too much. For the moment, KISS. |
| */ |
| void |
| array_bitmap_copy(bits8 *destbitmap, int destoffset, |
| const bits8 *srcbitmap, int srcoffset, |
| int nitems) |
| { |
| int destbitmask, |
| destbitval, |
| srcbitmask, |
| srcbitval; |
| |
| Assert(destbitmap); |
| if (nitems <= 0) |
| return; /* don't risk fetch off end of memory */ |
| destbitmap += destoffset / 8; |
| destbitmask = 1 << (destoffset % 8); |
| destbitval = *destbitmap; |
| if (srcbitmap) |
| { |
| srcbitmap += srcoffset / 8; |
| srcbitmask = 1 << (srcoffset % 8); |
| srcbitval = *srcbitmap; |
| while (nitems-- > 0) |
| { |
| if (srcbitval & srcbitmask) |
| destbitval |= destbitmask; |
| else |
| destbitval &= ~destbitmask; |
| destbitmask <<= 1; |
| if (destbitmask == 0x100 /* (1<<8) */) |
| { |
| *destbitmap++ = destbitval; |
| destbitmask = 1; |
| if (nitems > 0) |
| destbitval = *destbitmap; |
| } |
| srcbitmask <<= 1; |
| if (srcbitmask == 0x100 /* (1<<8) */) |
| { |
| srcbitmap++; |
| srcbitmask = 1; |
| if (nitems > 0) |
| srcbitval = *srcbitmap; |
| } |
| } |
| if (destbitmask != 1) |
| *destbitmap = destbitval; |
| } |
| else |
| { |
| while (nitems-- > 0) |
| { |
| destbitval |= destbitmask; |
| destbitmask <<= 1; |
| if (destbitmask == 0x100 /* (1<<8) */) |
| { |
| *destbitmap++ = destbitval; |
| destbitmask = 1; |
| if (nitems > 0) |
| destbitval = *destbitmap; |
| } |
| } |
| if (destbitmask != 1) |
| *destbitmap = destbitval; |
| } |
| } |
| |
| /* |
| * Compute space needed for a slice of an array |
| * |
| * We assume the caller has verified that the slice coordinates are valid. |
| */ |
| static int |
| array_slice_size(char *arraydataptr, bits8 *arraynullsptr, |
| int ndim, int *dim, int *lb, |
| int *st, int *endp, |
| int typlen, bool typbyval, char typalign) |
| { |
| int src_offset, |
| span[MAXDIM], |
| prod[MAXDIM], |
| dist[MAXDIM], |
| indx[MAXDIM]; |
| char *ptr; |
| int i, |
| j, |
| inc; |
| int count = 0; |
| |
| mda_get_range(ndim, span, st, endp); |
| |
| /* Pretty easy for fixed element length without nulls ... */ |
| if (typlen > 0 && !arraynullsptr) |
| return ArrayGetNItems(ndim, span) * att_align_nominal(typlen, typalign); |
| |
| /* Else gotta do it the hard way */ |
| src_offset = ArrayGetOffset(ndim, dim, lb, st); |
| ptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, |
| typlen, typbyval, typalign); |
| mda_get_prod(ndim, dim, prod); |
| mda_get_offset_values(ndim, dist, prod, span); |
| for (i = 0; i < ndim; i++) |
| indx[i] = 0; |
| j = ndim - 1; |
| do |
| { |
| if (dist[j]) |
| { |
| ptr = array_seek(ptr, src_offset, arraynullsptr, dist[j], |
| typlen, typbyval, typalign); |
| src_offset += dist[j]; |
| } |
| if (!array_get_isnull(arraynullsptr, src_offset)) |
| { |
| inc = att_addlength_pointer(0, typlen, ptr); |
| inc = att_align_nominal(inc, typalign); |
| ptr += inc; |
| count += inc; |
| } |
| src_offset++; |
| } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| return count; |
| } |
| |
| /* |
| * Extract a slice of an array into consecutive elements in the destination |
| * array. |
| * |
| * We assume the caller has verified that the slice coordinates are valid, |
| * allocated enough storage for the result, and initialized the header |
| * of the new array. |
| */ |
| static void |
| array_extract_slice(ArrayType *newarray, |
| int ndim, |
| int *dim, |
| int *lb, |
| char *arraydataptr, |
| bits8 *arraynullsptr, |
| int *st, |
| int *endp, |
| int typlen, |
| bool typbyval, |
| char typalign) |
| { |
| char *destdataptr = ARR_DATA_PTR(newarray); |
| bits8 *destnullsptr = ARR_NULLBITMAP(newarray); |
| char *srcdataptr; |
| int src_offset, |
| dest_offset, |
| prod[MAXDIM], |
| span[MAXDIM], |
| dist[MAXDIM], |
| indx[MAXDIM]; |
| int i, |
| j, |
| inc; |
| |
| src_offset = ArrayGetOffset(ndim, dim, lb, st); |
| srcdataptr = array_seek(arraydataptr, 0, arraynullsptr, src_offset, |
| typlen, typbyval, typalign); |
| mda_get_prod(ndim, dim, prod); |
| mda_get_range(ndim, span, st, endp); |
| mda_get_offset_values(ndim, dist, prod, span); |
| for (i = 0; i < ndim; i++) |
| indx[i] = 0; |
| dest_offset = 0; |
| j = ndim - 1; |
| do |
| { |
| if (dist[j]) |
| { |
| /* skip unwanted elements */ |
| srcdataptr = array_seek(srcdataptr, src_offset, arraynullsptr, |
| dist[j], |
| typlen, typbyval, typalign); |
| src_offset += dist[j]; |
| } |
| inc = array_copy(destdataptr, 1, |
| srcdataptr, src_offset, arraynullsptr, |
| typlen, typbyval, typalign); |
| if (destnullsptr) |
| array_bitmap_copy(destnullsptr, dest_offset, |
| arraynullsptr, src_offset, |
| 1); |
| destdataptr += inc; |
| srcdataptr += inc; |
| src_offset++; |
| dest_offset++; |
| } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| } |
| |
| /* |
| * Insert a slice into an array. |
| * |
| * ndim/dim[]/lb[] are dimensions of the original array. A new array with |
| * those same dimensions is to be constructed. destArray must already |
| * have been allocated and its header initialized. |
| * |
| * st[]/endp[] identify the slice to be replaced. Elements within the slice |
| * volume are taken from consecutive elements of the srcArray; elements |
| * outside it are copied from origArray. |
| * |
| * We assume the caller has verified that the slice coordinates are valid. |
| */ |
| static void |
| array_insert_slice(ArrayType *destArray, |
| ArrayType *origArray, |
| ArrayType *srcArray, |
| int ndim, |
| int *dim, |
| int *lb, |
| int *st, |
| int *endp, |
| int typlen, |
| bool typbyval, |
| char typalign) |
| { |
| char *destPtr = ARR_DATA_PTR(destArray); |
| char *origPtr = ARR_DATA_PTR(origArray); |
| char *srcPtr = ARR_DATA_PTR(srcArray); |
| bits8 *destBitmap = ARR_NULLBITMAP(destArray); |
| bits8 *origBitmap = ARR_NULLBITMAP(origArray); |
| bits8 *srcBitmap = ARR_NULLBITMAP(srcArray); |
| int orignitems = ArrayGetNItems(ARR_NDIM(origArray), |
| ARR_DIMS(origArray)); |
| int dest_offset, |
| orig_offset, |
| src_offset, |
| prod[MAXDIM], |
| span[MAXDIM], |
| dist[MAXDIM], |
| indx[MAXDIM]; |
| int i, |
| j, |
| inc; |
| |
| dest_offset = ArrayGetOffset(ndim, dim, lb, st); |
| /* copy items before the slice start */ |
| inc = array_copy(destPtr, dest_offset, |
| origPtr, 0, origBitmap, |
| typlen, typbyval, typalign); |
| destPtr += inc; |
| origPtr += inc; |
| if (destBitmap) |
| array_bitmap_copy(destBitmap, 0, origBitmap, 0, dest_offset); |
| orig_offset = dest_offset; |
| mda_get_prod(ndim, dim, prod); |
| mda_get_range(ndim, span, st, endp); |
| mda_get_offset_values(ndim, dist, prod, span); |
| for (i = 0; i < ndim; i++) |
| indx[i] = 0; |
| src_offset = 0; |
| j = ndim - 1; |
| do |
| { |
| /* Copy/advance over elements between here and next part of slice */ |
| if (dist[j]) |
| { |
| inc = array_copy(destPtr, dist[j], |
| origPtr, orig_offset, origBitmap, |
| typlen, typbyval, typalign); |
| destPtr += inc; |
| origPtr += inc; |
| if (destBitmap) |
| array_bitmap_copy(destBitmap, dest_offset, |
| origBitmap, orig_offset, |
| dist[j]); |
| dest_offset += dist[j]; |
| orig_offset += dist[j]; |
| } |
| /* Copy new element at this slice position */ |
| inc = array_copy(destPtr, 1, |
| srcPtr, src_offset, srcBitmap, |
| typlen, typbyval, typalign); |
| if (destBitmap) |
| array_bitmap_copy(destBitmap, dest_offset, |
| srcBitmap, src_offset, |
| 1); |
| destPtr += inc; |
| srcPtr += inc; |
| dest_offset++; |
| src_offset++; |
| /* Advance over old element at this slice position */ |
| origPtr = array_seek(origPtr, orig_offset, origBitmap, 1, |
| typlen, typbyval, typalign); |
| orig_offset++; |
| } while ((j = mda_next_tuple(ndim, indx, span)) != -1); |
| |
| /* don't miss any data at the end */ |
| array_copy(destPtr, orignitems - orig_offset, |
| origPtr, orig_offset, origBitmap, |
| typlen, typbyval, typalign); |
| if (destBitmap) |
| array_bitmap_copy(destBitmap, dest_offset, |
| origBitmap, orig_offset, |
| orignitems - orig_offset); |
| } |
| |
| /* |
| * initArrayResult - initialize an empty ArrayBuildState |
| * |
| * element_type is the array element type (must be a valid array element type) |
| * rcontext is where to keep working state |
| * subcontext is a flag determining whether to use a separate memory context |
| * |
| * Note: there are two common schemes for using accumArrayResult(). |
| * In the older scheme, you start with a NULL ArrayBuildState pointer, and |
| * call accumArrayResult once per element. In this scheme you end up with |
| * a NULL pointer if there were no elements, which you need to special-case. |
| * In the newer scheme, call initArrayResultWithSize and then call accumArrayResult |
| * once per element. In this scheme you always end with a non-NULL pointer |
| * that you can pass to makeArrayResult; you get an empty array if there |
| * were no elements. This is preferred if an empty array is what you want. |
| * |
| * It's possible to choose whether to create a separate memory context for the |
| * array build state, or whether to allocate it directly within rcontext. |
| * |
| * When there are many concurrent small states (e.g. array_agg() using hash |
| * aggregation of many small groups), using a separate memory context for each |
| * one may result in severe memory bloat. In such cases, use the same memory |
| * context to initialize all such array build states, and pass |
| * subcontext=false. |
| * |
| * In cases when the array build states have different lifetimes, using a |
| * single memory context is impractical. Instead, pass subcontext=true so that |
| * the array build states can be freed individually. |
| */ |
| |
| ArrayBuildState * |
| initArrayResult(Oid element_type, MemoryContext rcontext, bool subcontext) |
| { |
| /* |
| * When using a subcontext, we can afford to start with a somewhat larger |
| * initial array size. Without subcontexts, we'd better hope that most of |
| * the states stay small ... |
| */ |
| return initArrayResultWithSize(element_type, rcontext, subcontext, |
| subcontext ? 64 : 8); |
| } |
| |
| /* |
| * initArrayResultWithSize |
| * As initArrayResult, but allow the initial size of the allocated arrays |
| * to be specified. |
| */ |
| ArrayBuildState * |
| initArrayResultWithSize(Oid element_type, MemoryContext rcontext, |
| bool subcontext, int initsize) |
| { |
| ArrayBuildState *astate; |
| MemoryContext arr_context = rcontext; |
| |
| /* Make a temporary context to hold all the junk */ |
| if (subcontext) |
| arr_context = AllocSetContextCreate(rcontext, |
| "accumArrayResult", |
| ALLOCSET_DEFAULT_SIZES); |
| |
| astate = (ArrayBuildState *) |
| MemoryContextAlloc(arr_context, sizeof(ArrayBuildState)); |
| astate->mcontext = arr_context; |
| astate->private_cxt = subcontext; |
| astate->alen = initsize; |
| astate->dvalues = (Datum *) |
| MemoryContextAlloc(arr_context, astate->alen * sizeof(Datum)); |
| astate->dnulls = (bool *) |
| MemoryContextAlloc(arr_context, astate->alen * sizeof(bool)); |
| astate->nelems = 0; |
| astate->element_type = element_type; |
| get_typlenbyvalalign(element_type, |
| &astate->typlen, |
| &astate->typbyval, |
| &astate->typalign); |
| |
| return astate; |
| } |
| |
| /* |
| * accumArrayResult - accumulate one (more) Datum for an array result |
| * |
| * astate is working state (can be NULL on first call) |
| * dvalue/disnull represent the new Datum to append to the array |
| * element_type is the Datum's type (must be a valid array element type) |
| * rcontext is where to keep working state |
| */ |
| ArrayBuildState * |
| accumArrayResult(ArrayBuildState *astate, |
| Datum dvalue, bool disnull, |
| Oid element_type, |
| MemoryContext rcontext) |
| { |
| MemoryContext oldcontext; |
| |
| if (astate == NULL) |
| { |
| /* First time through --- initialize */ |
| astate = initArrayResult(element_type, rcontext, true); |
| } |
| else |
| { |
| Assert(astate->element_type == element_type); |
| } |
| |
| oldcontext = MemoryContextSwitchTo(astate->mcontext); |
| |
| /* enlarge dvalues[]/dnulls[] if needed */ |
| if (astate->nelems >= astate->alen) |
| { |
| astate->alen *= 2; |
| astate->dvalues = (Datum *) |
| repalloc(astate->dvalues, astate->alen * sizeof(Datum)); |
| astate->dnulls = (bool *) |
| repalloc(astate->dnulls, astate->alen * sizeof(bool)); |
| } |
| |
| /* |
| * Ensure pass-by-ref stuff is copied into mcontext; and detoast it too if |
| * it's varlena. (You might think that detoasting is not needed here |
| * because construct_md_array can detoast the array elements later. |
| * However, we must not let construct_md_array modify the ArrayBuildState |
| * because that would mean array_agg_finalfn damages its input, which is |
| * verboten. Also, this way frequently saves one copying step.) |
| */ |
| if (!disnull && !astate->typbyval) |
| { |
| if (astate->typlen == -1) |
| dvalue = PointerGetDatum(PG_DETOAST_DATUM_COPY(dvalue)); |
| else |
| dvalue = datumCopy(dvalue, astate->typbyval, astate->typlen); |
| } |
| |
| astate->dvalues[astate->nelems] = dvalue; |
| astate->dnulls[astate->nelems] = disnull; |
| astate->nelems++; |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| return astate; |
| } |
| |
| /* |
| * makeArrayResult - produce 1-D final result of accumArrayResult |
| * |
| * Note: only releases astate if it was initialized within a separate memory |
| * context (i.e. using subcontext=true when calling initArrayResultWithSize). |
| * |
| * astate is working state (must not be NULL) |
| * rcontext is where to construct result |
| */ |
| Datum |
| makeArrayResult(ArrayBuildState *astate, |
| MemoryContext rcontext) |
| { |
| int ndims; |
| int dims[1]; |
| int lbs[1]; |
| |
| /* If no elements were presented, we want to create an empty array */ |
| ndims = (astate->nelems > 0) ? 1 : 0; |
| dims[0] = astate->nelems; |
| lbs[0] = 1; |
| |
| return makeMdArrayResult(astate, ndims, dims, lbs, rcontext, |
| astate->private_cxt); |
| } |
| |
| /* |
| * makeMdArrayResult - produce multi-D final result of accumArrayResult |
| * |
| * beware: no check that specified dimensions match the number of values |
| * accumulated. |
| * |
| * Note: if the astate was not initialized within a separate memory context |
| * (that is, initArrayResultWithSize was called with subcontext=false), then using |
| * release=true is illegal. Instead, release astate along with the rest of its |
| * context when appropriate. |
| * |
| * astate is working state (must not be NULL) |
| * rcontext is where to construct result |
| * release is true if okay to release working state |
| */ |
| Datum |
| makeMdArrayResult(ArrayBuildState *astate, |
| int ndims, |
| int *dims, |
| int *lbs, |
| MemoryContext rcontext, |
| bool release) |
| { |
| ArrayType *result; |
| MemoryContext oldcontext; |
| |
| /* Build the final array result in rcontext */ |
| oldcontext = MemoryContextSwitchTo(rcontext); |
| |
| result = construct_md_array(astate->dvalues, |
| astate->dnulls, |
| ndims, |
| dims, |
| lbs, |
| astate->element_type, |
| astate->typlen, |
| astate->typbyval, |
| astate->typalign); |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* Clean up all the junk */ |
| if (release) |
| { |
| Assert(astate->private_cxt); |
| MemoryContextDelete(astate->mcontext); |
| } |
| |
| return PointerGetDatum(result); |
| } |
| |
| /* |
| * The following three functions provide essentially the same API as |
| * initArrayResultWithSize/accumArrayResult/makeArrayResult, but instead of accepting |
| * inputs that are array elements, they accept inputs that are arrays and |
| * produce an output array having N+1 dimensions. The inputs must all have |
| * identical dimensionality as well as element type. |
| */ |
| |
| /* |
| * initArrayResultArr - initialize an empty ArrayBuildStateArr |
| * |
| * array_type is the array type (must be a valid varlena array type) |
| * element_type is the type of the array's elements (lookup if InvalidOid) |
| * rcontext is where to keep working state |
| * subcontext is a flag determining whether to use a separate memory context |
| */ |
| ArrayBuildStateArr * |
| initArrayResultArr(Oid array_type, Oid element_type, MemoryContext rcontext, |
| bool subcontext) |
| { |
| ArrayBuildStateArr *astate; |
| MemoryContext arr_context = rcontext; /* by default use the parent ctx */ |
| |
| /* Lookup element type, unless element_type already provided */ |
| if (!OidIsValid(element_type)) |
| { |
| element_type = get_element_type(array_type); |
| |
| if (!OidIsValid(element_type)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("data type %s is not an array type", |
| format_type_be(array_type)))); |
| } |
| |
| /* Make a temporary context to hold all the junk */ |
| if (subcontext) |
| arr_context = AllocSetContextCreate(rcontext, |
| "accumArrayResultArr", |
| ALLOCSET_DEFAULT_SIZES); |
| |
| /* Note we initialize all fields to zero */ |
| astate = (ArrayBuildStateArr *) |
| MemoryContextAllocZero(arr_context, sizeof(ArrayBuildStateArr)); |
| astate->mcontext = arr_context; |
| astate->private_cxt = subcontext; |
| |
| /* Save relevant datatype information */ |
| astate->array_type = array_type; |
| astate->element_type = element_type; |
| |
| return astate; |
| } |
| |
| /* |
| * accumArrayResultArr - accumulate one (more) sub-array for an array result |
| * |
| * astate is working state (can be NULL on first call) |
| * dvalue/disnull represent the new sub-array to append to the array |
| * array_type is the array type (must be a valid varlena array type) |
| * rcontext is where to keep working state |
| */ |
| ArrayBuildStateArr * |
| accumArrayResultArr(ArrayBuildStateArr *astate, |
| Datum dvalue, bool disnull, |
| Oid array_type, |
| MemoryContext rcontext) |
| { |
| ArrayType *arg; |
| MemoryContext oldcontext; |
| int *dims, |
| *lbs, |
| ndims, |
| nitems, |
| ndatabytes; |
| char *data; |
| int i; |
| |
| /* |
| * We disallow accumulating null subarrays. Another plausible definition |
| * is to ignore them, but callers that want that can just skip calling |
| * this function. |
| */ |
| if (disnull) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("cannot accumulate null arrays"))); |
| |
| /* Detoast input array in caller's context */ |
| arg = DatumGetArrayTypeP(dvalue); |
| |
| if (astate == NULL) |
| astate = initArrayResultArr(array_type, InvalidOid, rcontext, true); |
| else |
| Assert(astate->array_type == array_type); |
| |
| oldcontext = MemoryContextSwitchTo(astate->mcontext); |
| |
| /* Collect this input's dimensions */ |
| ndims = ARR_NDIM(arg); |
| dims = ARR_DIMS(arg); |
| lbs = ARR_LBOUND(arg); |
| data = ARR_DATA_PTR(arg); |
| nitems = ArrayGetNItems(ndims, dims); |
| ndatabytes = ARR_SIZE(arg) - ARR_DATA_OFFSET(arg); |
| |
| if (astate->ndims == 0) |
| { |
| /* First input; check/save the dimensionality info */ |
| |
| /* Should we allow empty inputs and just produce an empty output? */ |
| if (ndims == 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("cannot accumulate empty arrays"))); |
| if (ndims + 1 > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| ndims + 1, MAXDIM))); |
| |
| /* |
| * The output array will have n+1 dimensions, with the ones after the |
| * first matching the input's dimensions. |
| */ |
| astate->ndims = ndims + 1; |
| astate->dims[0] = 0; |
| memcpy(&astate->dims[1], dims, ndims * sizeof(int)); |
| astate->lbs[0] = 1; |
| memcpy(&astate->lbs[1], lbs, ndims * sizeof(int)); |
| |
| /* Allocate at least enough data space for this item */ |
| astate->abytes = pg_nextpower2_32(Max(1024, ndatabytes + 1)); |
| astate->data = (char *) palloc(astate->abytes); |
| } |
| else |
| { |
| /* Second or later input: must match first input's dimensionality */ |
| if (astate->ndims != ndims + 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("cannot accumulate arrays of different dimensionality"))); |
| for (i = 0; i < ndims; i++) |
| { |
| if (astate->dims[i + 1] != dims[i] || astate->lbs[i + 1] != lbs[i]) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("cannot accumulate arrays of different dimensionality"))); |
| } |
| |
| /* Enlarge data space if needed */ |
| if (astate->nbytes + ndatabytes > astate->abytes) |
| { |
| astate->abytes = Max(astate->abytes * 2, |
| astate->nbytes + ndatabytes); |
| astate->data = (char *) repalloc(astate->data, astate->abytes); |
| } |
| } |
| |
| /* |
| * Copy the data portion of the sub-array. Note we assume that the |
| * advertised data length of the sub-array is properly aligned. We do not |
| * have to worry about detoasting elements since whatever's in the |
| * sub-array should be OK already. |
| */ |
| memcpy(astate->data + astate->nbytes, data, ndatabytes); |
| astate->nbytes += ndatabytes; |
| |
| /* Deal with null bitmap if needed */ |
| if (astate->nullbitmap || ARR_HASNULL(arg)) |
| { |
| int newnitems = astate->nitems + nitems; |
| |
| if (astate->nullbitmap == NULL) |
| { |
| /* |
| * First input with nulls; we must retrospectively handle any |
| * previous inputs by marking all their items non-null. |
| */ |
| astate->aitems = pg_nextpower2_32(Max(256, newnitems + 1)); |
| astate->nullbitmap = (bits8 *) palloc((astate->aitems + 7) / 8); |
| array_bitmap_copy(astate->nullbitmap, 0, |
| NULL, 0, |
| astate->nitems); |
| } |
| else if (newnitems > astate->aitems) |
| { |
| astate->aitems = Max(astate->aitems * 2, newnitems); |
| astate->nullbitmap = (bits8 *) |
| repalloc(astate->nullbitmap, (astate->aitems + 7) / 8); |
| } |
| array_bitmap_copy(astate->nullbitmap, astate->nitems, |
| ARR_NULLBITMAP(arg), 0, |
| nitems); |
| } |
| |
| astate->nitems += nitems; |
| astate->dims[0] += 1; |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* Release detoasted copy if any */ |
| if ((Pointer) arg != DatumGetPointer(dvalue)) |
| pfree(arg); |
| |
| return astate; |
| } |
| |
| /* |
| * makeArrayResultArr - produce N+1-D final result of accumArrayResultArr |
| * |
| * astate is working state (must not be NULL) |
| * rcontext is where to construct result |
| * release is true if okay to release working state |
| */ |
| Datum |
| makeArrayResultArr(ArrayBuildStateArr *astate, |
| MemoryContext rcontext, |
| bool release) |
| { |
| ArrayType *result; |
| MemoryContext oldcontext; |
| |
| /* Build the final array result in rcontext */ |
| oldcontext = MemoryContextSwitchTo(rcontext); |
| |
| if (astate->ndims == 0) |
| { |
| /* No inputs, return empty array */ |
| result = construct_empty_array(astate->element_type); |
| } |
| else |
| { |
| int dataoffset, |
| nbytes; |
| |
| /* Check for overflow of the array dimensions */ |
| (void) ArrayGetNItems(astate->ndims, astate->dims); |
| ArrayCheckBounds(astate->ndims, astate->dims, astate->lbs); |
| |
| /* Compute required space */ |
| nbytes = astate->nbytes; |
| if (astate->nullbitmap != NULL) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(astate->ndims, astate->nitems); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; |
| nbytes += ARR_OVERHEAD_NONULLS(astate->ndims); |
| } |
| |
| result = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(result, nbytes); |
| result->ndim = astate->ndims; |
| result->dataoffset = dataoffset; |
| result->elemtype = astate->element_type; |
| |
| memcpy(ARR_DIMS(result), astate->dims, astate->ndims * sizeof(int)); |
| memcpy(ARR_LBOUND(result), astate->lbs, astate->ndims * sizeof(int)); |
| memcpy(ARR_DATA_PTR(result), astate->data, astate->nbytes); |
| |
| if (astate->nullbitmap != NULL) |
| array_bitmap_copy(ARR_NULLBITMAP(result), 0, |
| astate->nullbitmap, 0, |
| astate->nitems); |
| } |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* Clean up all the junk */ |
| if (release) |
| { |
| Assert(astate->private_cxt); |
| MemoryContextDelete(astate->mcontext); |
| } |
| |
| return PointerGetDatum(result); |
| } |
| |
| /* |
| * The following three functions provide essentially the same API as |
| * initArrayResultWithSize/accumArrayResult/makeArrayResult, but can accept either |
| * scalar or array inputs, invoking the appropriate set of functions above. |
| */ |
| |
| /* |
| * initArrayResultAny - initialize an empty ArrayBuildStateAny |
| * |
| * input_type is the input datatype (either element or array type) |
| * rcontext is where to keep working state |
| * subcontext is a flag determining whether to use a separate memory context |
| */ |
| ArrayBuildStateAny * |
| initArrayResultAny(Oid input_type, MemoryContext rcontext, bool subcontext) |
| { |
| ArrayBuildStateAny *astate; |
| |
| /* |
| * int2vector and oidvector will satisfy both get_element_type and |
| * get_array_type. We prefer to treat them as scalars, to be consistent |
| * with get_promoted_array_type. Hence, check get_array_type not |
| * get_element_type. |
| */ |
| if (!OidIsValid(get_array_type(input_type))) |
| { |
| /* Array case */ |
| ArrayBuildStateArr *arraystate; |
| |
| arraystate = initArrayResultArr(input_type, InvalidOid, rcontext, subcontext); |
| astate = (ArrayBuildStateAny *) |
| MemoryContextAlloc(arraystate->mcontext, |
| sizeof(ArrayBuildStateAny)); |
| astate->scalarstate = NULL; |
| astate->arraystate = arraystate; |
| } |
| else |
| { |
| /* Scalar case */ |
| ArrayBuildState *scalarstate; |
| |
| scalarstate = initArrayResult(input_type, rcontext, subcontext); |
| astate = (ArrayBuildStateAny *) |
| MemoryContextAlloc(scalarstate->mcontext, |
| sizeof(ArrayBuildStateAny)); |
| astate->scalarstate = scalarstate; |
| astate->arraystate = NULL; |
| } |
| |
| return astate; |
| } |
| |
| /* |
| * accumArrayResultAny - accumulate one (more) input for an array result |
| * |
| * astate is working state (can be NULL on first call) |
| * dvalue/disnull represent the new input to append to the array |
| * input_type is the input datatype (either element or array type) |
| * rcontext is where to keep working state |
| */ |
| ArrayBuildStateAny * |
| accumArrayResultAny(ArrayBuildStateAny *astate, |
| Datum dvalue, bool disnull, |
| Oid input_type, |
| MemoryContext rcontext) |
| { |
| if (astate == NULL) |
| astate = initArrayResultAny(input_type, rcontext, true); |
| |
| if (astate->scalarstate) |
| (void) accumArrayResult(astate->scalarstate, |
| dvalue, disnull, |
| input_type, rcontext); |
| else |
| (void) accumArrayResultArr(astate->arraystate, |
| dvalue, disnull, |
| input_type, rcontext); |
| |
| return astate; |
| } |
| |
| /* |
| * makeArrayResultAny - produce final result of accumArrayResultAny |
| * |
| * astate is working state (must not be NULL) |
| * rcontext is where to construct result |
| * release is true if okay to release working state |
| */ |
| Datum |
| makeArrayResultAny(ArrayBuildStateAny *astate, |
| MemoryContext rcontext, bool release) |
| { |
| Datum result; |
| |
| if (astate->scalarstate) |
| { |
| /* Must use makeMdArrayResult to support "release" parameter */ |
| int ndims; |
| int dims[1]; |
| int lbs[1]; |
| |
| /* If no elements were presented, we want to create an empty array */ |
| ndims = (astate->scalarstate->nelems > 0) ? 1 : 0; |
| dims[0] = astate->scalarstate->nelems; |
| lbs[0] = 1; |
| |
| result = makeMdArrayResult(astate->scalarstate, ndims, dims, lbs, |
| rcontext, release); |
| } |
| else |
| { |
| result = makeArrayResultArr(astate->arraystate, |
| rcontext, release); |
| } |
| return result; |
| } |
| |
| |
| Datum |
| array_larger(PG_FUNCTION_ARGS) |
| { |
| if (array_cmp(fcinfo) > 0) |
| PG_RETURN_DATUM(PG_GETARG_DATUM(0)); |
| else |
| PG_RETURN_DATUM(PG_GETARG_DATUM(1)); |
| } |
| |
| Datum |
| array_smaller(PG_FUNCTION_ARGS) |
| { |
| if (array_cmp(fcinfo) < 0) |
| PG_RETURN_DATUM(PG_GETARG_DATUM(0)); |
| else |
| PG_RETURN_DATUM(PG_GETARG_DATUM(1)); |
| } |
| |
| |
| typedef struct generate_subscripts_fctx |
| { |
| int32 lower; |
| int32 upper; |
| bool reverse; |
| } generate_subscripts_fctx; |
| |
| /* |
| * generate_subscripts(array anyarray, dim int [, reverse bool]) |
| * Returns all subscripts of the array for any dimension |
| */ |
| Datum |
| generate_subscripts(PG_FUNCTION_ARGS) |
| { |
| FuncCallContext *funcctx; |
| MemoryContext oldcontext; |
| generate_subscripts_fctx *fctx; |
| |
| /* stuff done only on the first call of the function */ |
| if (SRF_IS_FIRSTCALL()) |
| { |
| AnyArrayType *v = PG_GETARG_ANY_ARRAY_P(0); |
| int reqdim = PG_GETARG_INT32(1); |
| int *lb, |
| *dimv; |
| |
| /* create a function context for cross-call persistence */ |
| funcctx = SRF_FIRSTCALL_INIT(); |
| |
| /* Sanity check: does it look like an array at all? */ |
| if (AARR_NDIM(v) <= 0 || AARR_NDIM(v) > MAXDIM) |
| SRF_RETURN_DONE(funcctx); |
| |
| /* Sanity check: was the requested dim valid */ |
| if (reqdim <= 0 || reqdim > AARR_NDIM(v)) |
| SRF_RETURN_DONE(funcctx); |
| |
| /* |
| * switch to memory context appropriate for multiple function calls |
| */ |
| oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| fctx = (generate_subscripts_fctx *) palloc(sizeof(generate_subscripts_fctx)); |
| |
| lb = AARR_LBOUND(v); |
| dimv = AARR_DIMS(v); |
| |
| fctx->lower = lb[reqdim - 1]; |
| fctx->upper = dimv[reqdim - 1] + lb[reqdim - 1] - 1; |
| fctx->reverse = (PG_NARGS() < 3) ? false : PG_GETARG_BOOL(2); |
| |
| funcctx->user_fctx = fctx; |
| |
| MemoryContextSwitchTo(oldcontext); |
| } |
| |
| funcctx = SRF_PERCALL_SETUP(); |
| |
| fctx = funcctx->user_fctx; |
| |
| if (fctx->lower <= fctx->upper) |
| { |
| if (!fctx->reverse) |
| SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->lower++)); |
| else |
| SRF_RETURN_NEXT(funcctx, Int32GetDatum(fctx->upper--)); |
| } |
| else |
| /* done when there are no more elements left */ |
| SRF_RETURN_DONE(funcctx); |
| } |
| |
| /* |
| * generate_subscripts_nodir |
| * Implements the 2-argument version of generate_subscripts |
| */ |
| Datum |
| generate_subscripts_nodir(PG_FUNCTION_ARGS) |
| { |
| /* just call the other one -- it can handle both cases */ |
| return generate_subscripts(fcinfo); |
| } |
| |
| /* |
| * array_fill_with_lower_bounds |
| * Create and fill array with defined lower bounds. |
| */ |
| Datum |
| array_fill_with_lower_bounds(PG_FUNCTION_ARGS) |
| { |
| ArrayType *dims; |
| ArrayType *lbs; |
| ArrayType *result; |
| Oid elmtype; |
| Datum value; |
| bool isnull; |
| |
| if (PG_ARGISNULL(1) || PG_ARGISNULL(2)) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("dimension array or low bound array cannot be null"))); |
| |
| dims = PG_GETARG_ARRAYTYPE_P(1); |
| lbs = PG_GETARG_ARRAYTYPE_P(2); |
| |
| if (!PG_ARGISNULL(0)) |
| { |
| value = PG_GETARG_DATUM(0); |
| isnull = false; |
| } |
| else |
| { |
| value = 0; |
| isnull = true; |
| } |
| |
| elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); |
| if (!OidIsValid(elmtype)) |
| elog(ERROR, "could not determine data type of input"); |
| |
| result = array_fill_internal(dims, lbs, value, isnull, elmtype, fcinfo); |
| PG_RETURN_ARRAYTYPE_P(result); |
| } |
| |
| /* |
| * array_fill |
| * Create and fill array with default lower bounds. |
| */ |
| Datum |
| array_fill(PG_FUNCTION_ARGS) |
| { |
| ArrayType *dims; |
| ArrayType *result; |
| Oid elmtype; |
| Datum value; |
| bool isnull; |
| |
| if (PG_ARGISNULL(1)) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("dimension array or low bound array cannot be null"))); |
| |
| dims = PG_GETARG_ARRAYTYPE_P(1); |
| |
| if (!PG_ARGISNULL(0)) |
| { |
| value = PG_GETARG_DATUM(0); |
| isnull = false; |
| } |
| else |
| { |
| value = 0; |
| isnull = true; |
| } |
| |
| elmtype = get_fn_expr_argtype(fcinfo->flinfo, 0); |
| if (!OidIsValid(elmtype)) |
| elog(ERROR, "could not determine data type of input"); |
| |
| result = array_fill_internal(dims, NULL, value, isnull, elmtype, fcinfo); |
| PG_RETURN_ARRAYTYPE_P(result); |
| } |
| |
| static ArrayType * |
| create_array_envelope(int ndims, int *dimv, int *lbsv, int nbytes, |
| Oid elmtype, int dataoffset) |
| { |
| ArrayType *result; |
| |
| result = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(result, nbytes); |
| result->ndim = ndims; |
| result->dataoffset = dataoffset; |
| result->elemtype = elmtype; |
| memcpy(ARR_DIMS(result), dimv, ndims * sizeof(int)); |
| memcpy(ARR_LBOUND(result), lbsv, ndims * sizeof(int)); |
| |
| return result; |
| } |
| |
| static ArrayType * |
| array_fill_internal(ArrayType *dims, ArrayType *lbs, |
| Datum value, bool isnull, Oid elmtype, |
| FunctionCallInfo fcinfo) |
| { |
| ArrayType *result; |
| int *dimv; |
| int *lbsv; |
| int ndims; |
| int nitems; |
| int deflbs[MAXDIM]; |
| int16 elmlen; |
| bool elmbyval; |
| char elmalign; |
| ArrayMetaState *my_extra; |
| |
| /* |
| * Params checks |
| */ |
| if (ARR_NDIM(dims) > 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"), |
| errdetail("Dimension array must be one dimensional."))); |
| |
| if (array_contains_nulls(dims)) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("dimension values cannot be null"))); |
| |
| dimv = (int *) ARR_DATA_PTR(dims); |
| ndims = (ARR_NDIM(dims) > 0) ? ARR_DIMS(dims)[0] : 0; |
| |
| if (ndims < 0) /* we do allow zero-dimension arrays */ |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("invalid number of dimensions: %d", ndims))); |
| if (ndims > MAXDIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("number of array dimensions (%d) exceeds the maximum allowed (%d)", |
| ndims, MAXDIM))); |
| |
| if (lbs != NULL) |
| { |
| if (ARR_NDIM(lbs) > 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"), |
| errdetail("Dimension array must be one dimensional."))); |
| |
| if (array_contains_nulls(lbs)) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("dimension values cannot be null"))); |
| |
| if (ndims != ((ARR_NDIM(lbs) > 0) ? ARR_DIMS(lbs)[0] : 0)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("wrong number of array subscripts"), |
| errdetail("Low bound array has different size than dimensions array."))); |
| |
| lbsv = (int *) ARR_DATA_PTR(lbs); |
| } |
| else |
| { |
| int i; |
| |
| for (i = 0; i < MAXDIM; i++) |
| deflbs[i] = 1; |
| |
| lbsv = deflbs; |
| } |
| |
| /* This checks for overflow of the array dimensions */ |
| nitems = ArrayGetNItems(ndims, dimv); |
| ArrayCheckBounds(ndims, dimv, lbsv); |
| |
| /* fast track for empty array */ |
| if (nitems <= 0) |
| return construct_empty_array(elmtype); |
| |
| /* |
| * We arrange to look up info about element type only once per series of |
| * calls, assuming the element type doesn't change underneath us. |
| */ |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| if (my_extra == NULL) |
| { |
| fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, |
| sizeof(ArrayMetaState)); |
| my_extra = (ArrayMetaState *) fcinfo->flinfo->fn_extra; |
| my_extra->element_type = InvalidOid; |
| } |
| |
| if (my_extra->element_type != elmtype) |
| { |
| /* Get info about element type */ |
| get_typlenbyvalalign(elmtype, |
| &my_extra->typlen, |
| &my_extra->typbyval, |
| &my_extra->typalign); |
| my_extra->element_type = elmtype; |
| } |
| |
| elmlen = my_extra->typlen; |
| elmbyval = my_extra->typbyval; |
| elmalign = my_extra->typalign; |
| |
| /* compute required space */ |
| if (!isnull) |
| { |
| int i; |
| char *p; |
| int nbytes; |
| int totbytes; |
| |
| /* make sure data is not toasted */ |
| if (elmlen == -1) |
| value = PointerGetDatum(PG_DETOAST_DATUM(value)); |
| |
| nbytes = att_addlength_datum(0, elmlen, value); |
| nbytes = att_align_nominal(nbytes, elmalign); |
| Assert(nbytes > 0); |
| |
| totbytes = nbytes * nitems; |
| |
| /* check for overflow of multiplication or total request */ |
| if (totbytes / nbytes != nitems || |
| !AllocSizeIsValid(totbytes)) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| |
| /* |
| * This addition can't overflow, but it might cause us to go past |
| * MaxAllocSize. We leave it to palloc to complain in that case. |
| */ |
| totbytes += ARR_OVERHEAD_NONULLS(ndims); |
| |
| result = create_array_envelope(ndims, dimv, lbsv, totbytes, |
| elmtype, 0); |
| |
| p = ARR_DATA_PTR(result); |
| for (i = 0; i < nitems; i++) |
| p += ArrayCastAndSet(value, elmlen, elmbyval, elmalign, p); |
| } |
| else |
| { |
| int nbytes; |
| int dataoffset; |
| |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndims, nitems); |
| nbytes = dataoffset; |
| |
| result = create_array_envelope(ndims, dimv, lbsv, nbytes, |
| elmtype, dataoffset); |
| |
| /* create_array_envelope already zeroed the bitmap, so we're done */ |
| } |
| |
| return result; |
| } |
| |
| |
| /* |
| * UNNEST |
| */ |
| Datum |
| array_unnest(PG_FUNCTION_ARGS) |
| { |
| typedef struct |
| { |
| array_iter iter; |
| int nextelem; |
| int numelems; |
| int16 elmlen; |
| bool elmbyval; |
| char elmalign; |
| } array_unnest_fctx; |
| |
| FuncCallContext *funcctx; |
| array_unnest_fctx *fctx; |
| MemoryContext oldcontext; |
| |
| /* stuff done only on the first call of the function */ |
| if (SRF_IS_FIRSTCALL()) |
| { |
| AnyArrayType *arr; |
| |
| /* create a function context for cross-call persistence */ |
| funcctx = SRF_FIRSTCALL_INIT(); |
| |
| /* |
| * switch to memory context appropriate for multiple function calls |
| */ |
| oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| |
| /* |
| * Get the array value and detoast if needed. We can't do this |
| * earlier because if we have to detoast, we want the detoasted copy |
| * to be in multi_call_memory_ctx, so it will go away when we're done |
| * and not before. (If no detoast happens, we assume the originally |
| * passed array will stick around till then.) |
| */ |
| arr = PG_GETARG_ANY_ARRAY_P(0); |
| |
| /* allocate memory for user context */ |
| fctx = (array_unnest_fctx *) palloc(sizeof(array_unnest_fctx)); |
| |
| /* initialize state */ |
| array_iter_setup(&fctx->iter, arr); |
| fctx->nextelem = 0; |
| fctx->numelems = ArrayGetNItems(AARR_NDIM(arr), AARR_DIMS(arr)); |
| |
| if (VARATT_IS_EXPANDED_HEADER(arr)) |
| { |
| /* we can just grab the type data from expanded array */ |
| fctx->elmlen = arr->xpn.typlen; |
| fctx->elmbyval = arr->xpn.typbyval; |
| fctx->elmalign = arr->xpn.typalign; |
| } |
| else |
| get_typlenbyvalalign(AARR_ELEMTYPE(arr), |
| &fctx->elmlen, |
| &fctx->elmbyval, |
| &fctx->elmalign); |
| |
| funcctx->user_fctx = fctx; |
| MemoryContextSwitchTo(oldcontext); |
| } |
| |
| /* stuff done on every call of the function */ |
| funcctx = SRF_PERCALL_SETUP(); |
| fctx = funcctx->user_fctx; |
| |
| if (fctx->nextelem < fctx->numelems) |
| { |
| int offset = fctx->nextelem++; |
| Datum elem; |
| |
| elem = array_iter_next(&fctx->iter, &fcinfo->isnull, offset, |
| fctx->elmlen, fctx->elmbyval, fctx->elmalign); |
| |
| SRF_RETURN_NEXT(funcctx, elem); |
| } |
| else |
| { |
| /* do when there is no more left */ |
| SRF_RETURN_DONE(funcctx); |
| } |
| } |
| |
| /* |
| * Planner support function for array_unnest(anyarray) |
| */ |
| Datum |
| array_unnest_support(PG_FUNCTION_ARGS) |
| { |
| Node *rawreq = (Node *) PG_GETARG_POINTER(0); |
| Node *ret = NULL; |
| |
| if (IsA(rawreq, SupportRequestRows)) |
| { |
| /* Try to estimate the number of rows returned */ |
| SupportRequestRows *req = (SupportRequestRows *) rawreq; |
| |
| if (is_funcclause(req->node)) /* be paranoid */ |
| { |
| List *args = ((FuncExpr *) req->node)->args; |
| Node *arg1; |
| |
| /* We can use estimated argument values here */ |
| arg1 = estimate_expression_value(req->root, linitial(args)); |
| |
| req->rows = estimate_array_length(arg1); |
| ret = (Node *) req; |
| } |
| } |
| |
| PG_RETURN_POINTER(ret); |
| } |
| |
| |
| /* |
| * array_replace/array_remove support |
| * |
| * Find all array entries matching (not distinct from) search/search_isnull, |
| * and delete them if remove is true, else replace them with |
| * replace/replace_isnull. Comparisons are done using the specified |
| * collation. fcinfo is passed only for caching purposes. |
| */ |
| static ArrayType * |
| array_replace_internal(ArrayType *array, |
| Datum search, bool search_isnull, |
| Datum replace, bool replace_isnull, |
| bool remove, Oid collation, |
| FunctionCallInfo fcinfo) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| ArrayType *result; |
| Oid element_type; |
| Datum *values; |
| bool *nulls; |
| int *dim; |
| int ndim; |
| int nitems, |
| nresult; |
| int i; |
| int32 nbytes = 0; |
| int32 dataoffset; |
| bool hasnulls; |
| int typlen; |
| bool typbyval; |
| char typalign; |
| char *arraydataptr; |
| bits8 *bitmap; |
| int bitmask; |
| bool changed = false; |
| TypeCacheEntry *typentry; |
| |
| element_type = ARR_ELEMTYPE(array); |
| ndim = ARR_NDIM(array); |
| dim = ARR_DIMS(array); |
| nitems = ArrayGetNItems(ndim, dim); |
| |
| /* Return input array unmodified if it is empty */ |
| if (nitems <= 0) |
| return array; |
| |
| /* |
| * We can't remove elements from multi-dimensional arrays, since the |
| * result might not be rectangular. |
| */ |
| if (remove && ndim > 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("removing elements from multidimensional arrays is not supported"))); |
| |
| /* |
| * We arrange to look up the equality function only once per series of |
| * calls, assuming the element type doesn't change underneath us. |
| */ |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_EQ_OPR_FINFO); |
| if (!OidIsValid(typentry->eq_opr_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify an equality operator for type %s", |
| format_type_be(element_type)))); |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| typlen = typentry->typlen; |
| typbyval = typentry->typbyval; |
| typalign = typentry->typalign; |
| |
| /* |
| * Detoast values if they are toasted. The replacement value must be |
| * detoasted for insertion into the result array, while detoasting the |
| * search value only once saves cycles. |
| */ |
| if (typlen == -1) |
| { |
| if (!search_isnull) |
| search = PointerGetDatum(PG_DETOAST_DATUM(search)); |
| if (!replace_isnull) |
| replace = PointerGetDatum(PG_DETOAST_DATUM(replace)); |
| } |
| |
| /* Prepare to apply the comparison operator */ |
| InitFunctionCallInfoData(*locfcinfo, &typentry->eq_opr_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Allocate temporary arrays for new values */ |
| values = (Datum *) palloc(nitems * sizeof(Datum)); |
| nulls = (bool *) palloc(nitems * sizeof(bool)); |
| |
| /* Loop over source data */ |
| arraydataptr = ARR_DATA_PTR(array); |
| bitmap = ARR_NULLBITMAP(array); |
| bitmask = 1; |
| hasnulls = false; |
| nresult = 0; |
| |
| for (i = 0; i < nitems; i++) |
| { |
| Datum elt; |
| bool isNull; |
| bool oprresult; |
| bool skip = false; |
| |
| /* Get source element, checking for NULL */ |
| if (bitmap && (*bitmap & bitmask) == 0) |
| { |
| isNull = true; |
| /* If searching for NULL, we have a match */ |
| if (search_isnull) |
| { |
| if (remove) |
| { |
| skip = true; |
| changed = true; |
| } |
| else if (!replace_isnull) |
| { |
| values[nresult] = replace; |
| isNull = false; |
| changed = true; |
| } |
| } |
| } |
| else |
| { |
| isNull = false; |
| elt = fetch_att(arraydataptr, typbyval, typlen); |
| arraydataptr = att_addlength_datum(arraydataptr, typlen, elt); |
| arraydataptr = (char *) att_align_nominal(arraydataptr, typalign); |
| |
| if (search_isnull) |
| { |
| /* no match possible, keep element */ |
| values[nresult] = elt; |
| } |
| else |
| { |
| /* |
| * Apply the operator to the element pair; treat NULL as false |
| */ |
| locfcinfo->args[0].value = elt; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = search; |
| locfcinfo->args[1].isnull = false; |
| locfcinfo->isnull = false; |
| oprresult = DatumGetBool(FunctionCallInvoke(locfcinfo)); |
| if (locfcinfo->isnull || !oprresult) |
| { |
| /* no match, keep element */ |
| values[nresult] = elt; |
| } |
| else |
| { |
| /* match, so replace or delete */ |
| changed = true; |
| if (remove) |
| skip = true; |
| else |
| { |
| values[nresult] = replace; |
| isNull = replace_isnull; |
| } |
| } |
| } |
| } |
| |
| if (!skip) |
| { |
| nulls[nresult] = isNull; |
| if (isNull) |
| hasnulls = true; |
| else |
| { |
| /* Update total result size */ |
| nbytes = att_addlength_datum(nbytes, typlen, values[nresult]); |
| nbytes = att_align_nominal(nbytes, typalign); |
| /* check for overflow of total request */ |
| if (!AllocSizeIsValid(nbytes)) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array size exceeds the maximum allowed (%d)", |
| (int) MaxAllocSize))); |
| } |
| nresult++; |
| } |
| |
| /* advance bitmap pointer if any */ |
| if (bitmap) |
| { |
| bitmask <<= 1; |
| if (bitmask == 0x100) |
| { |
| bitmap++; |
| bitmask = 1; |
| } |
| } |
| } |
| |
| /* |
| * If not changed just return the original array |
| */ |
| if (!changed) |
| { |
| pfree(values); |
| pfree(nulls); |
| return array; |
| } |
| |
| /* If all elements were removed return an empty array */ |
| if (nresult == 0) |
| { |
| pfree(values); |
| pfree(nulls); |
| return construct_empty_array(element_type); |
| } |
| |
| /* Allocate and initialize the result array */ |
| if (hasnulls) |
| { |
| dataoffset = ARR_OVERHEAD_WITHNULLS(ndim, nresult); |
| nbytes += dataoffset; |
| } |
| else |
| { |
| dataoffset = 0; /* marker for no null bitmap */ |
| nbytes += ARR_OVERHEAD_NONULLS(ndim); |
| } |
| result = (ArrayType *) palloc0(nbytes); |
| SET_VARSIZE(result, nbytes); |
| result->ndim = ndim; |
| result->dataoffset = dataoffset; |
| result->elemtype = element_type; |
| memcpy(ARR_DIMS(result), ARR_DIMS(array), ndim * sizeof(int)); |
| memcpy(ARR_LBOUND(result), ARR_LBOUND(array), ndim * sizeof(int)); |
| |
| if (remove) |
| { |
| /* Adjust the result length */ |
| ARR_DIMS(result)[0] = nresult; |
| } |
| |
| /* Insert data into result array */ |
| CopyArrayEls(result, |
| values, nulls, nresult, |
| typlen, typbyval, typalign, |
| false); |
| |
| pfree(values); |
| pfree(nulls); |
| |
| return result; |
| } |
| |
| /* |
| * Remove any occurrences of an element from an array |
| * |
| * If used on a multi-dimensional array this will raise an error. |
| */ |
| Datum |
| array_remove(PG_FUNCTION_ARGS) |
| { |
| ArrayType *array; |
| Datum search = PG_GETARG_DATUM(1); |
| bool search_isnull = PG_ARGISNULL(1); |
| |
| if (PG_ARGISNULL(0)) |
| PG_RETURN_NULL(); |
| array = PG_GETARG_ARRAYTYPE_P(0); |
| |
| array = array_replace_internal(array, |
| search, search_isnull, |
| (Datum) 0, true, |
| true, PG_GET_COLLATION(), |
| fcinfo); |
| PG_RETURN_ARRAYTYPE_P(array); |
| } |
| |
| /* |
| * Replace any occurrences of an element in an array |
| */ |
| Datum |
| array_replace(PG_FUNCTION_ARGS) |
| { |
| ArrayType *array; |
| Datum search = PG_GETARG_DATUM(1); |
| bool search_isnull = PG_ARGISNULL(1); |
| Datum replace = PG_GETARG_DATUM(2); |
| bool replace_isnull = PG_ARGISNULL(2); |
| |
| if (PG_ARGISNULL(0)) |
| PG_RETURN_NULL(); |
| array = PG_GETARG_ARRAYTYPE_P(0); |
| |
| array = array_replace_internal(array, |
| search, search_isnull, |
| replace, replace_isnull, |
| false, PG_GET_COLLATION(), |
| fcinfo); |
| PG_RETURN_ARRAYTYPE_P(array); |
| } |
| |
| /* |
| * Implements width_bucket(anyelement, anyarray). |
| * |
| * 'thresholds' is an array containing lower bound values for each bucket; |
| * these must be sorted from smallest to largest, or bogus results will be |
| * produced. If N thresholds are supplied, the output is from 0 to N: |
| * 0 is for inputs < first threshold, N is for inputs >= last threshold. |
| */ |
| Datum |
| width_bucket_array(PG_FUNCTION_ARGS) |
| { |
| Datum operand = PG_GETARG_DATUM(0); |
| ArrayType *thresholds = PG_GETARG_ARRAYTYPE_P(1); |
| Oid collation = PG_GET_COLLATION(); |
| Oid element_type = ARR_ELEMTYPE(thresholds); |
| int result; |
| |
| /* Check input */ |
| if (ARR_NDIM(thresholds) > 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), |
| errmsg("thresholds must be one-dimensional array"))); |
| |
| if (array_contains_nulls(thresholds)) |
| ereport(ERROR, |
| (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), |
| errmsg("thresholds array must not contain NULLs"))); |
| |
| /* We have a dedicated implementation for float8 data */ |
| if (element_type == FLOAT8OID) |
| result = width_bucket_array_float8(operand, thresholds); |
| else |
| { |
| TypeCacheEntry *typentry; |
| |
| /* Cache information about the input type */ |
| typentry = (TypeCacheEntry *) fcinfo->flinfo->fn_extra; |
| if (typentry == NULL || |
| typentry->type_id != element_type) |
| { |
| typentry = lookup_type_cache(element_type, |
| TYPECACHE_CMP_PROC_FINFO); |
| if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| ereport(ERROR, |
| (errcode(ERRCODE_UNDEFINED_FUNCTION), |
| errmsg("could not identify a comparison function for type %s", |
| format_type_be(element_type)))); |
| fcinfo->flinfo->fn_extra = (void *) typentry; |
| } |
| |
| /* |
| * We have separate implementation paths for fixed- and variable-width |
| * types, since indexing the array is a lot cheaper in the first case. |
| */ |
| if (typentry->typlen > 0) |
| result = width_bucket_array_fixed(operand, thresholds, |
| collation, typentry); |
| else |
| result = width_bucket_array_variable(operand, thresholds, |
| collation, typentry); |
| } |
| |
| /* Avoid leaking memory when handed toasted input. */ |
| PG_FREE_IF_COPY(thresholds, 1); |
| |
| PG_RETURN_INT32(result); |
| } |
| |
| /* |
| * width_bucket_array for float8 data. |
| */ |
| static int |
| width_bucket_array_float8(Datum operand, ArrayType *thresholds) |
| { |
| float8 op = DatumGetFloat8(operand); |
| float8 *thresholds_data; |
| int left; |
| int right; |
| |
| /* |
| * Since we know the array contains no NULLs, we can just index it |
| * directly. |
| */ |
| thresholds_data = (float8 *) ARR_DATA_PTR(thresholds); |
| |
| left = 0; |
| right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| |
| /* |
| * If the probe value is a NaN, it's greater than or equal to all possible |
| * threshold values (including other NaNs), so we need not search. Note |
| * that this would give the same result as searching even if the array |
| * contains multiple NaNs (as long as they're correctly sorted), since the |
| * loop logic will find the rightmost of multiple equal threshold values. |
| */ |
| if (isnan(op)) |
| return right; |
| |
| /* Find the bucket */ |
| while (left < right) |
| { |
| int mid = (left + right) / 2; |
| |
| if (isnan(thresholds_data[mid]) || op < thresholds_data[mid]) |
| right = mid; |
| else |
| left = mid + 1; |
| } |
| |
| return left; |
| } |
| |
| /* |
| * width_bucket_array for generic fixed-width data types. |
| */ |
| static int |
| width_bucket_array_fixed(Datum operand, |
| ArrayType *thresholds, |
| Oid collation, |
| TypeCacheEntry *typentry) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| char *thresholds_data; |
| int typlen = typentry->typlen; |
| bool typbyval = typentry->typbyval; |
| int left; |
| int right; |
| |
| /* |
| * Since we know the array contains no NULLs, we can just index it |
| * directly. |
| */ |
| thresholds_data = (char *) ARR_DATA_PTR(thresholds); |
| |
| InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Find the bucket */ |
| left = 0; |
| right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| while (left < right) |
| { |
| int mid = (left + right) / 2; |
| char *ptr; |
| int32 cmpresult; |
| |
| ptr = thresholds_data + mid * typlen; |
| |
| locfcinfo->args[0].value = operand; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); |
| locfcinfo->args[1].isnull = false; |
| |
| cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| |
| /* We don't expect comparison support functions to return null */ |
| Assert(!locfcinfo->isnull); |
| |
| if (cmpresult < 0) |
| right = mid; |
| else |
| left = mid + 1; |
| } |
| |
| return left; |
| } |
| |
| /* |
| * width_bucket_array for generic variable-width data types. |
| */ |
| static int |
| width_bucket_array_variable(Datum operand, |
| ArrayType *thresholds, |
| Oid collation, |
| TypeCacheEntry *typentry) |
| { |
| LOCAL_FCINFO(locfcinfo, 2); |
| char *thresholds_data; |
| int typlen = typentry->typlen; |
| bool typbyval = typentry->typbyval; |
| char typalign = typentry->typalign; |
| int left; |
| int right; |
| |
| thresholds_data = (char *) ARR_DATA_PTR(thresholds); |
| |
| InitFunctionCallInfoData(*locfcinfo, &typentry->cmp_proc_finfo, 2, |
| collation, NULL, NULL); |
| |
| /* Find the bucket */ |
| left = 0; |
| right = ArrayGetNItems(ARR_NDIM(thresholds), ARR_DIMS(thresholds)); |
| while (left < right) |
| { |
| int mid = (left + right) / 2; |
| char *ptr; |
| int i; |
| int32 cmpresult; |
| |
| /* Locate mid'th array element by advancing from left element */ |
| ptr = thresholds_data; |
| for (i = left; i < mid; i++) |
| { |
| ptr = att_addlength_pointer(ptr, typlen, ptr); |
| ptr = (char *) att_align_nominal(ptr, typalign); |
| } |
| |
| locfcinfo->args[0].value = operand; |
| locfcinfo->args[0].isnull = false; |
| locfcinfo->args[1].value = fetch_att(ptr, typbyval, typlen); |
| locfcinfo->args[1].isnull = false; |
| |
| cmpresult = DatumGetInt32(FunctionCallInvoke(locfcinfo)); |
| |
| /* We don't expect comparison support functions to return null */ |
| Assert(!locfcinfo->isnull); |
| |
| if (cmpresult < 0) |
| right = mid; |
| else |
| { |
| left = mid + 1; |
| |
| /* |
| * Move the thresholds pointer to match new "left" index, so we |
| * don't have to seek over those elements again. This trick |
| * ensures we do only O(N) array indexing work, not O(N^2). |
| */ |
| ptr = att_addlength_pointer(ptr, typlen, ptr); |
| thresholds_data = (char *) att_align_nominal(ptr, typalign); |
| } |
| } |
| |
| return left; |
| } |
| |
| /* |
| * Trim the last N elements from an array by building an appropriate slice. |
| * Only the first dimension is trimmed. |
| */ |
| Datum |
| trim_array(PG_FUNCTION_ARGS) |
| { |
| ArrayType *v = PG_GETARG_ARRAYTYPE_P(0); |
| int n = PG_GETARG_INT32(1); |
| int array_length = (ARR_NDIM(v) > 0) ? ARR_DIMS(v)[0] : 0; |
| int16 elmlen; |
| bool elmbyval; |
| char elmalign; |
| int lower[MAXDIM]; |
| int upper[MAXDIM]; |
| bool lowerProvided[MAXDIM]; |
| bool upperProvided[MAXDIM]; |
| Datum result; |
| |
| /* Per spec, throw an error if out of bounds */ |
| if (n < 0 || n > array_length) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("number of elements to trim must be between 0 and %d", |
| array_length))); |
| |
| /* Set all the bounds as unprovided except the first upper bound */ |
| memset(lowerProvided, false, sizeof(lowerProvided)); |
| memset(upperProvided, false, sizeof(upperProvided)); |
| if (ARR_NDIM(v) > 0) |
| { |
| upper[0] = ARR_LBOUND(v)[0] + array_length - n - 1; |
| upperProvided[0] = true; |
| } |
| |
| /* Fetch the needed information about the element type */ |
| get_typlenbyvalalign(ARR_ELEMTYPE(v), &elmlen, &elmbyval, &elmalign); |
| |
| /* Get the slice */ |
| result = array_get_slice(PointerGetDatum(v), 1, |
| upper, lower, upperProvided, lowerProvided, |
| -1, elmlen, elmbyval, elmalign); |
| |
| PG_RETURN_DATUM(result); |
| } |