| /*------------------------------------------------------------------------- |
| * |
| * array_selfuncs.c |
| * Functions for selectivity estimation of array operators |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/utils/adt/array_selfuncs.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include <math.h> |
| |
| #include "access/htup_details.h" |
| #include "catalog/pg_collation.h" |
| #include "catalog/pg_operator.h" |
| #include "catalog/pg_statistic.h" |
| #include "utils/array.h" |
| #include "utils/builtins.h" |
| #include "utils/lsyscache.h" |
| #include "utils/selfuncs.h" |
| #include "utils/typcache.h" |
| |
| |
| /* Default selectivity constant for "@>" and "<@" operators */ |
| #define DEFAULT_CONTAIN_SEL 0.005 |
| |
| /* Default selectivity constant for "&&" operator */ |
| #define DEFAULT_OVERLAP_SEL 0.01 |
| |
| /* Default selectivity for given operator */ |
| #define DEFAULT_SEL(operator) \ |
| ((operator) == OID_ARRAY_OVERLAP_OP ? \ |
| DEFAULT_OVERLAP_SEL : DEFAULT_CONTAIN_SEL) |
| |
| static Selectivity calc_arraycontsel(VariableStatData *vardata, Datum constval, |
| Oid elemtype, Oid operator); |
| static Selectivity mcelem_array_selec(ArrayType *array, |
| TypeCacheEntry *typentry, |
| Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| float4 *hist, int nhist, |
| Oid operator); |
| static Selectivity mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| Datum *array_data, int nitems, |
| Oid operator, TypeCacheEntry *typentry); |
| static Selectivity mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| Datum *array_data, int nitems, |
| float4 *hist, int nhist, |
| Oid operator, TypeCacheEntry *typentry); |
| static float *calc_hist(const float4 *hist, int nhist, int n); |
| static float *calc_distr(const float *p, int n, int m, float rest); |
| static int floor_log2(uint32 n); |
| static bool find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, |
| int *index, TypeCacheEntry *typentry); |
| static int element_compare(const void *key1, const void *key2, void *arg); |
| static int float_compare_desc(const void *key1, const void *key2); |
| |
| |
| /* |
| * scalararraysel_containment |
| * Estimate selectivity of ScalarArrayOpExpr via array containment. |
| * |
| * If we have const =/<> ANY/ALL (array_var) then we can estimate the |
| * selectivity as though this were an array containment operator, |
| * array_var op ARRAY[const]. |
| * |
| * scalararraysel() has already verified that the ScalarArrayOpExpr's operator |
| * is the array element type's default equality or inequality operator, and |
| * has aggressively simplified both inputs to constants. |
| * |
| * Returns selectivity (0..1), or -1 if we fail to estimate selectivity. |
| */ |
| Selectivity |
| scalararraysel_containment(PlannerInfo *root, |
| Node *leftop, Node *rightop, |
| Oid elemtype, bool isEquality, bool useOr, |
| int varRelid) |
| { |
| Selectivity selec; |
| VariableStatData vardata; |
| Datum constval; |
| TypeCacheEntry *typentry; |
| FmgrInfo *cmpfunc; |
| |
| /* |
| * rightop must be a variable, else punt. |
| */ |
| examine_variable(root, rightop, varRelid, &vardata); |
| if (!vardata.rel) |
| { |
| ReleaseVariableStats(vardata); |
| return -1.0; |
| } |
| |
| /* |
| * leftop must be a constant, else punt. |
| */ |
| if (!IsA(leftop, Const)) |
| { |
| ReleaseVariableStats(vardata); |
| return -1.0; |
| } |
| if (((Const *) leftop)->constisnull) |
| { |
| /* qual can't succeed if null on left */ |
| ReleaseVariableStats(vardata); |
| return (Selectivity) 0.0; |
| } |
| constval = ((Const *) leftop)->constvalue; |
| |
| /* Get element type's default comparison function */ |
| typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
| if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| { |
| ReleaseVariableStats(vardata); |
| return -1.0; |
| } |
| cmpfunc = &typentry->cmp_proc_finfo; |
| |
| /* |
| * If the operator is <>, swap ANY/ALL, then invert the result later. |
| */ |
| if (!isEquality) |
| useOr = !useOr; |
| |
| /* Get array element stats for var, if available */ |
| if (HeapTupleIsValid(vardata.statsTuple) && |
| statistic_proc_security_check(&vardata, cmpfunc->fn_oid)) |
| { |
| Form_pg_statistic stats; |
| AttStatsSlot sslot; |
| AttStatsSlot hslot; |
| |
| stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple); |
| |
| /* MCELEM will be an array of same type as element */ |
| if (get_attstatsslot(&sslot, vardata.statsTuple, |
| STATISTIC_KIND_MCELEM, InvalidOid, |
| ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| { |
| /* For ALL case, also get histogram of distinct-element counts */ |
| if (useOr || |
| !get_attstatsslot(&hslot, vardata.statsTuple, |
| STATISTIC_KIND_DECHIST, InvalidOid, |
| ATTSTATSSLOT_NUMBERS)) |
| memset(&hslot, 0, sizeof(hslot)); |
| |
| /* |
| * For = ANY, estimate as var @> ARRAY[const]. |
| * |
| * For = ALL, estimate as var <@ ARRAY[const]. |
| */ |
| if (useOr) |
| selec = mcelem_array_contain_overlap_selec(sslot.values, |
| sslot.nvalues, |
| sslot.numbers, |
| sslot.nnumbers, |
| &constval, 1, |
| OID_ARRAY_CONTAINS_OP, |
| typentry); |
| else |
| selec = mcelem_array_contained_selec(sslot.values, |
| sslot.nvalues, |
| sslot.numbers, |
| sslot.nnumbers, |
| &constval, 1, |
| hslot.numbers, |
| hslot.nnumbers, |
| OID_ARRAY_CONTAINED_OP, |
| typentry); |
| |
| free_attstatsslot(&hslot); |
| free_attstatsslot(&sslot); |
| } |
| else |
| { |
| /* No most-common-elements info, so do without */ |
| if (useOr) |
| selec = mcelem_array_contain_overlap_selec(NULL, 0, |
| NULL, 0, |
| &constval, 1, |
| OID_ARRAY_CONTAINS_OP, |
| typentry); |
| else |
| selec = mcelem_array_contained_selec(NULL, 0, |
| NULL, 0, |
| &constval, 1, |
| NULL, 0, |
| OID_ARRAY_CONTAINED_OP, |
| typentry); |
| } |
| |
| /* |
| * MCE stats count only non-null rows, so adjust for null rows. |
| */ |
| selec *= (1.0 - stats->stanullfrac); |
| } |
| else |
| { |
| /* No stats at all, so do without */ |
| if (useOr) |
| selec = mcelem_array_contain_overlap_selec(NULL, 0, |
| NULL, 0, |
| &constval, 1, |
| OID_ARRAY_CONTAINS_OP, |
| typentry); |
| else |
| selec = mcelem_array_contained_selec(NULL, 0, |
| NULL, 0, |
| &constval, 1, |
| NULL, 0, |
| OID_ARRAY_CONTAINED_OP, |
| typentry); |
| /* we assume no nulls here, so no stanullfrac correction */ |
| } |
| |
| ReleaseVariableStats(vardata); |
| |
| /* |
| * If the operator is <>, invert the results. |
| */ |
| if (!isEquality) |
| selec = 1.0 - selec; |
| |
| CLAMP_PROBABILITY(selec); |
| |
| return selec; |
| } |
| |
| /* |
| * arraycontsel -- restriction selectivity for array @>, &&, <@ operators |
| */ |
| Datum |
| arraycontsel(PG_FUNCTION_ARGS) |
| { |
| PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0); |
| Oid operator = PG_GETARG_OID(1); |
| List *args = (List *) PG_GETARG_POINTER(2); |
| int varRelid = PG_GETARG_INT32(3); |
| VariableStatData vardata; |
| Node *other; |
| bool varonleft; |
| Selectivity selec; |
| Oid element_typeid; |
| |
| /* |
| * If expression is not (variable op something) or (something op |
| * variable), then punt and return a default estimate. |
| */ |
| if (!get_restriction_variable(root, args, varRelid, |
| &vardata, &other, &varonleft)) |
| PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| |
| /* |
| * Can't do anything useful if the something is not a constant, either. |
| */ |
| if (!IsA(other, Const)) |
| { |
| ReleaseVariableStats(vardata); |
| PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| } |
| |
| /* |
| * The "&&", "@>" and "<@" operators are strict, so we can cope with a |
| * NULL constant right away. |
| */ |
| if (((Const *) other)->constisnull) |
| { |
| ReleaseVariableStats(vardata); |
| PG_RETURN_FLOAT8(0.0); |
| } |
| |
| /* |
| * If var is on the right, commute the operator, so that we can assume the |
| * var is on the left in what follows. |
| */ |
| if (!varonleft) |
| { |
| if (operator == OID_ARRAY_CONTAINS_OP) |
| operator = OID_ARRAY_CONTAINED_OP; |
| else if (operator == OID_ARRAY_CONTAINED_OP) |
| operator = OID_ARRAY_CONTAINS_OP; |
| } |
| |
| /* |
| * OK, there's a Var and a Const we're dealing with here. We need the |
| * Const to be an array with same element type as column, else we can't do |
| * anything useful. (Such cases will likely fail at runtime, but here |
| * we'd rather just return a default estimate.) |
| */ |
| element_typeid = get_base_element_type(((Const *) other)->consttype); |
| if (element_typeid != InvalidOid && |
| element_typeid == get_base_element_type(vardata.vartype)) |
| { |
| selec = calc_arraycontsel(&vardata, ((Const *) other)->constvalue, |
| element_typeid, operator); |
| } |
| else |
| { |
| selec = DEFAULT_SEL(operator); |
| } |
| |
| ReleaseVariableStats(vardata); |
| |
| CLAMP_PROBABILITY(selec); |
| |
| PG_RETURN_FLOAT8((float8) selec); |
| } |
| |
| /* |
| * arraycontjoinsel -- join selectivity for array @>, &&, <@ operators |
| */ |
| Datum |
| arraycontjoinsel(PG_FUNCTION_ARGS) |
| { |
| /* For the moment this is just a stub */ |
| Oid operator = PG_GETARG_OID(1); |
| |
| PG_RETURN_FLOAT8(DEFAULT_SEL(operator)); |
| } |
| |
| /* |
| * Calculate selectivity for "arraycolumn @> const", "arraycolumn && const" |
| * or "arraycolumn <@ const" based on the statistics |
| * |
| * This function is mainly responsible for extracting the pg_statistic data |
| * to be used; we then pass the problem on to mcelem_array_selec(). |
| */ |
| static Selectivity |
| calc_arraycontsel(VariableStatData *vardata, Datum constval, |
| Oid elemtype, Oid operator) |
| { |
| Selectivity selec; |
| TypeCacheEntry *typentry; |
| FmgrInfo *cmpfunc; |
| ArrayType *array; |
| |
| /* Get element type's default comparison function */ |
| typentry = lookup_type_cache(elemtype, TYPECACHE_CMP_PROC_FINFO); |
| if (!OidIsValid(typentry->cmp_proc_finfo.fn_oid)) |
| return DEFAULT_SEL(operator); |
| cmpfunc = &typentry->cmp_proc_finfo; |
| |
| /* |
| * The caller made sure the const is an array with same element type, so |
| * get it now |
| */ |
| array = DatumGetArrayTypeP(constval); |
| |
| if (HeapTupleIsValid(vardata->statsTuple) && |
| statistic_proc_security_check(vardata, cmpfunc->fn_oid)) |
| { |
| Form_pg_statistic stats; |
| AttStatsSlot sslot; |
| AttStatsSlot hslot; |
| |
| stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple); |
| |
| /* MCELEM will be an array of same type as column */ |
| if (get_attstatsslot(&sslot, vardata->statsTuple, |
| STATISTIC_KIND_MCELEM, InvalidOid, |
| ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)) |
| { |
| /* |
| * For "array <@ const" case we also need histogram of distinct |
| * element counts. |
| */ |
| if (operator != OID_ARRAY_CONTAINED_OP || |
| !get_attstatsslot(&hslot, vardata->statsTuple, |
| STATISTIC_KIND_DECHIST, InvalidOid, |
| ATTSTATSSLOT_NUMBERS)) |
| memset(&hslot, 0, sizeof(hslot)); |
| |
| /* Use the most-common-elements slot for the array Var. */ |
| selec = mcelem_array_selec(array, typentry, |
| sslot.values, sslot.nvalues, |
| sslot.numbers, sslot.nnumbers, |
| hslot.numbers, hslot.nnumbers, |
| operator); |
| |
| free_attstatsslot(&hslot); |
| free_attstatsslot(&sslot); |
| } |
| else |
| { |
| /* No most-common-elements info, so do without */ |
| selec = mcelem_array_selec(array, typentry, |
| NULL, 0, NULL, 0, NULL, 0, |
| operator); |
| } |
| |
| /* |
| * MCE stats count only non-null rows, so adjust for null rows. |
| */ |
| selec *= (1.0 - stats->stanullfrac); |
| } |
| else |
| { |
| /* No stats at all, so do without */ |
| selec = mcelem_array_selec(array, typentry, |
| NULL, 0, NULL, 0, NULL, 0, |
| operator); |
| /* we assume no nulls here, so no stanullfrac correction */ |
| } |
| |
| /* If constant was toasted, release the copy we made */ |
| if (PointerGetDatum(array) != constval) |
| pfree(array); |
| |
| return selec; |
| } |
| |
| /* |
| * Array selectivity estimation based on most common elements statistics |
| * |
| * This function just deconstructs and sorts the array constant's contents, |
| * and then passes the problem on to mcelem_array_contain_overlap_selec or |
| * mcelem_array_contained_selec depending on the operator. |
| */ |
| static Selectivity |
| mcelem_array_selec(ArrayType *array, TypeCacheEntry *typentry, |
| Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| float4 *hist, int nhist, |
| Oid operator) |
| { |
| Selectivity selec; |
| int num_elems; |
| Datum *elem_values; |
| bool *elem_nulls; |
| bool null_present; |
| int nonnull_nitems; |
| int i; |
| |
| /* |
| * Prepare constant array data for sorting. Sorting lets us find unique |
| * elements and efficiently merge with the MCELEM array. |
| */ |
| deconstruct_array(array, |
| typentry->type_id, |
| typentry->typlen, |
| typentry->typbyval, |
| typentry->typalign, |
| &elem_values, &elem_nulls, &num_elems); |
| |
| /* Collapse out any null elements */ |
| nonnull_nitems = 0; |
| null_present = false; |
| for (i = 0; i < num_elems; i++) |
| { |
| if (elem_nulls[i]) |
| null_present = true; |
| else |
| elem_values[nonnull_nitems++] = elem_values[i]; |
| } |
| |
| /* |
| * Query "column @> '{anything, null}'" matches nothing. For the other |
| * two operators, presence of a null in the constant can be ignored. |
| */ |
| if (null_present && operator == OID_ARRAY_CONTAINS_OP) |
| { |
| pfree(elem_values); |
| pfree(elem_nulls); |
| return (Selectivity) 0.0; |
| } |
| |
| /* Sort extracted elements using their default comparison function. */ |
| qsort_arg(elem_values, nonnull_nitems, sizeof(Datum), |
| element_compare, typentry); |
| |
| /* Separate cases according to operator */ |
| if (operator == OID_ARRAY_CONTAINS_OP || operator == OID_ARRAY_OVERLAP_OP) |
| selec = mcelem_array_contain_overlap_selec(mcelem, nmcelem, |
| numbers, nnumbers, |
| elem_values, nonnull_nitems, |
| operator, typentry); |
| else if (operator == OID_ARRAY_CONTAINED_OP) |
| selec = mcelem_array_contained_selec(mcelem, nmcelem, |
| numbers, nnumbers, |
| elem_values, nonnull_nitems, |
| hist, nhist, |
| operator, typentry); |
| else |
| { |
| elog(ERROR, "arraycontsel called for unrecognized operator %u", |
| operator); |
| selec = 0.0; /* keep compiler quiet */ |
| } |
| |
| pfree(elem_values); |
| pfree(elem_nulls); |
| return selec; |
| } |
| |
| /* |
| * Estimate selectivity of "column @> const" and "column && const" based on |
| * most common element statistics. This estimation assumes element |
| * occurrences are independent. |
| * |
| * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
| * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
| * not available. array_data (of length nitems) is the constant's elements. |
| * |
| * Both the mcelem and array_data arrays are assumed presorted according |
| * to the element type's cmpfunc. Null elements are not present. |
| * |
| * TODO: this estimate probably could be improved by using the distinct |
| * elements count histogram. For example, excepting the special case of |
| * "column @> '{}'", we can multiply the calculated selectivity by the |
| * fraction of nonempty arrays in the column. |
| */ |
| static Selectivity |
| mcelem_array_contain_overlap_selec(Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| Datum *array_data, int nitems, |
| Oid operator, TypeCacheEntry *typentry) |
| { |
| Selectivity selec, |
| elem_selec; |
| int mcelem_index, |
| i; |
| bool use_bsearch; |
| float4 minfreq; |
| |
| /* |
| * There should be three more Numbers than Values, because the last three |
| * cells should hold minimal and maximal frequency among the non-null |
| * elements, and then the frequency of null elements. Ignore the Numbers |
| * if not right. |
| */ |
| if (nnumbers != nmcelem + 3) |
| { |
| numbers = NULL; |
| nnumbers = 0; |
| } |
| |
| if (numbers) |
| { |
| /* Grab the lowest observed frequency */ |
| minfreq = numbers[nmcelem]; |
| } |
| else |
| { |
| /* Without statistics make some default assumptions */ |
| minfreq = 2 * (float4) DEFAULT_CONTAIN_SEL; |
| } |
| |
| /* Decide whether it is faster to use binary search or not. */ |
| if (nitems * floor_log2((uint32) nmcelem) < nmcelem + nitems) |
| use_bsearch = true; |
| else |
| use_bsearch = false; |
| |
| if (operator == OID_ARRAY_CONTAINS_OP) |
| { |
| /* |
| * Initial selectivity for "column @> const" query is 1.0, and it will |
| * be decreased with each element of constant array. |
| */ |
| selec = 1.0; |
| } |
| else |
| { |
| /* |
| * Initial selectivity for "column && const" query is 0.0, and it will |
| * be increased with each element of constant array. |
| */ |
| selec = 0.0; |
| } |
| |
| /* Scan mcelem and array in parallel. */ |
| mcelem_index = 0; |
| for (i = 0; i < nitems; i++) |
| { |
| bool match = false; |
| |
| /* Ignore any duplicates in the array data. */ |
| if (i > 0 && |
| element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
| continue; |
| |
| /* Find the smallest MCELEM >= this array item. */ |
| if (use_bsearch) |
| { |
| match = find_next_mcelem(mcelem, nmcelem, array_data[i], |
| &mcelem_index, typentry); |
| } |
| else |
| { |
| while (mcelem_index < nmcelem) |
| { |
| int cmp = element_compare(&mcelem[mcelem_index], |
| &array_data[i], |
| typentry); |
| |
| if (cmp < 0) |
| mcelem_index++; |
| else |
| { |
| if (cmp == 0) |
| match = true; /* mcelem is found */ |
| break; |
| } |
| } |
| } |
| |
| if (match && numbers) |
| { |
| /* MCELEM matches the array item; use its frequency. */ |
| elem_selec = numbers[mcelem_index]; |
| mcelem_index++; |
| } |
| else |
| { |
| /* |
| * The element is not in MCELEM. Punt, but assume that the |
| * selectivity cannot be more than minfreq / 2. |
| */ |
| elem_selec = Min(DEFAULT_CONTAIN_SEL, minfreq / 2); |
| } |
| |
| /* |
| * Update overall selectivity using the current element's selectivity |
| * and an assumption of element occurrence independence. |
| */ |
| if (operator == OID_ARRAY_CONTAINS_OP) |
| selec *= elem_selec; |
| else |
| selec = selec + elem_selec - selec * elem_selec; |
| |
| /* Clamp intermediate results to stay sane despite roundoff error */ |
| CLAMP_PROBABILITY(selec); |
| } |
| |
| return selec; |
| } |
| |
| /* |
| * Estimate selectivity of "column <@ const" based on most common element |
| * statistics. |
| * |
| * mcelem (of length nmcelem) and numbers (of length nnumbers) are from |
| * the array column's MCELEM statistics slot, or are NULL/0 if stats are |
| * not available. array_data (of length nitems) is the constant's elements. |
| * hist (of length nhist) is from the array column's DECHIST statistics slot, |
| * or is NULL/0 if those stats are not available. |
| * |
| * Both the mcelem and array_data arrays are assumed presorted according |
| * to the element type's cmpfunc. Null elements are not present. |
| * |
| * Independent element occurrence would imply a particular distribution of |
| * distinct element counts among matching rows. Real data usually falsifies |
| * that assumption. For example, in a set of 11-element integer arrays having |
| * elements in the range [0..10], element occurrences are typically not |
| * independent. If they were, a sufficiently-large set would include all |
| * distinct element counts 0 through 11. We correct for this using the |
| * histogram of distinct element counts. |
| * |
| * In the "column @> const" and "column && const" cases, we usually have a |
| * "const" with low number of elements (otherwise we have selectivity close |
| * to 0 or 1 respectively). That's why the effect of dependence related |
| * to distinct element count distribution is negligible there. In the |
| * "column <@ const" case, number of elements is usually high (otherwise we |
| * have selectivity close to 0). That's why we should do a correction with |
| * the array distinct element count distribution here. |
| * |
| * Using the histogram of distinct element counts produces a different |
| * distribution law than independent occurrences of elements. This |
| * distribution law can be described as follows: |
| * |
| * P(o1, o2, ..., on) = f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * |
| * (1 - f2)^(1 - o2) * ... * fn^on * (1 - fn)^(1 - on) * hist[m] / ind[m] |
| * |
| * where: |
| * o1, o2, ..., on - occurrences of elements 1, 2, ..., n |
| * (1 - occurrence, 0 - no occurrence) in row |
| * f1, f2, ..., fn - frequencies of elements 1, 2, ..., n |
| * (scalar values in [0..1]) according to collected statistics |
| * m = o1 + o2 + ... + on = total number of distinct elements in row |
| * hist[m] - histogram data for occurrence of m elements. |
| * ind[m] - probability of m occurrences from n events assuming their |
| * probabilities to be equal to frequencies of array elements. |
| * |
| * ind[m] = sum(f1^o1 * (1 - f1)^(1 - o1) * f2^o2 * (1 - f2)^(1 - o2) * |
| * ... * fn^on * (1 - fn)^(1 - on), o1, o2, ..., on) | o1 + o2 + .. on = m |
| */ |
| static Selectivity |
| mcelem_array_contained_selec(Datum *mcelem, int nmcelem, |
| float4 *numbers, int nnumbers, |
| Datum *array_data, int nitems, |
| float4 *hist, int nhist, |
| Oid operator, TypeCacheEntry *typentry) |
| { |
| int mcelem_index, |
| i, |
| unique_nitems = 0; |
| float selec, |
| minfreq, |
| nullelem_freq; |
| float *dist, |
| *mcelem_dist, |
| *hist_part; |
| float avg_count, |
| mult, |
| rest; |
| float *elem_selec; |
| |
| /* |
| * There should be three more Numbers than Values in the MCELEM slot, |
| * because the last three cells should hold minimal and maximal frequency |
| * among the non-null elements, and then the frequency of null elements. |
| * Punt if not right, because we can't do much without the element freqs. |
| */ |
| if (numbers == NULL || nnumbers != nmcelem + 3) |
| return DEFAULT_CONTAIN_SEL; |
| |
| /* Can't do much without a count histogram, either */ |
| if (hist == NULL || nhist < 3) |
| return DEFAULT_CONTAIN_SEL; |
| |
| /* |
| * Grab some of the summary statistics that compute_array_stats() stores: |
| * lowest frequency, frequency of null elements, and average distinct |
| * element count. |
| */ |
| minfreq = numbers[nmcelem]; |
| nullelem_freq = numbers[nmcelem + 2]; |
| avg_count = hist[nhist - 1]; |
| |
| /* |
| * "rest" will be the sum of the frequencies of all elements not |
| * represented in MCELEM. The average distinct element count is the sum |
| * of the frequencies of *all* elements. Begin with that; we will proceed |
| * to subtract the MCELEM frequencies. |
| */ |
| rest = avg_count; |
| |
| /* |
| * mult is a multiplier representing estimate of probability that each |
| * mcelem that is not present in constant doesn't occur. |
| */ |
| mult = 1.0f; |
| |
| /* |
| * elem_selec is array of estimated frequencies for elements in the |
| * constant. |
| */ |
| elem_selec = (float *) palloc(sizeof(float) * nitems); |
| |
| /* Scan mcelem and array in parallel. */ |
| mcelem_index = 0; |
| for (i = 0; i < nitems; i++) |
| { |
| bool match = false; |
| |
| /* Ignore any duplicates in the array data. */ |
| if (i > 0 && |
| element_compare(&array_data[i - 1], &array_data[i], typentry) == 0) |
| continue; |
| |
| /* |
| * Iterate over MCELEM until we find an entry greater than or equal to |
| * this element of the constant. Update "rest" and "mult" for mcelem |
| * entries skipped over. |
| */ |
| while (mcelem_index < nmcelem) |
| { |
| int cmp = element_compare(&mcelem[mcelem_index], |
| &array_data[i], |
| typentry); |
| |
| if (cmp < 0) |
| { |
| mult *= (1.0f - numbers[mcelem_index]); |
| rest -= numbers[mcelem_index]; |
| mcelem_index++; |
| } |
| else |
| { |
| if (cmp == 0) |
| match = true; /* mcelem is found */ |
| break; |
| } |
| } |
| |
| if (match) |
| { |
| /* MCELEM matches the array item. */ |
| elem_selec[unique_nitems] = numbers[mcelem_index]; |
| /* "rest" is decremented for all mcelems, matched or not */ |
| rest -= numbers[mcelem_index]; |
| mcelem_index++; |
| } |
| else |
| { |
| /* |
| * The element is not in MCELEM. Punt, but assume that the |
| * selectivity cannot be more than minfreq / 2. |
| */ |
| elem_selec[unique_nitems] = Min(DEFAULT_CONTAIN_SEL, |
| minfreq / 2); |
| } |
| |
| unique_nitems++; |
| } |
| |
| /* |
| * If we handled all constant elements without exhausting the MCELEM |
| * array, finish walking it to complete calculation of "rest" and "mult". |
| */ |
| while (mcelem_index < nmcelem) |
| { |
| mult *= (1.0f - numbers[mcelem_index]); |
| rest -= numbers[mcelem_index]; |
| mcelem_index++; |
| } |
| |
| /* |
| * The presence of many distinct rare elements materially decreases |
| * selectivity. Use the Poisson distribution to estimate the probability |
| * of a column value having zero occurrences of such elements. See above |
| * for the definition of "rest". |
| */ |
| mult *= exp(-rest); |
| |
| /*---------- |
| * Using the distinct element count histogram requires |
| * O(unique_nitems * (nmcelem + unique_nitems)) |
| * operations. Beyond a certain computational cost threshold, it's |
| * reasonable to sacrifice accuracy for decreased planning time. We limit |
| * the number of operations to EFFORT * nmcelem; since nmcelem is limited |
| * by the column's statistics target, the work done is user-controllable. |
| * |
| * If the number of operations would be too large, we can reduce it |
| * without losing all accuracy by reducing unique_nitems and considering |
| * only the most-common elements of the constant array. To make the |
| * results exactly match what we would have gotten with only those |
| * elements to start with, we'd have to remove any discarded elements' |
| * frequencies from "mult", but since this is only an approximation |
| * anyway, we don't bother with that. Therefore it's sufficient to qsort |
| * elem_selec[] and take the largest elements. (They will no longer match |
| * up with the elements of array_data[], but we don't care.) |
| *---------- |
| */ |
| #define EFFORT 100 |
| |
| if ((nmcelem + unique_nitems) > 0 && |
| unique_nitems > EFFORT * nmcelem / (nmcelem + unique_nitems)) |
| { |
| /* |
| * Use the quadratic formula to solve for largest allowable N. We |
| * have A = 1, B = nmcelem, C = - EFFORT * nmcelem. |
| */ |
| double b = (double) nmcelem; |
| int n; |
| |
| n = (int) ((sqrt(b * b + 4 * EFFORT * b) - b) / 2); |
| |
| /* Sort, then take just the first n elements */ |
| qsort(elem_selec, unique_nitems, sizeof(float), |
| float_compare_desc); |
| unique_nitems = n; |
| } |
| |
| /* |
| * Calculate probabilities of each distinct element count for both mcelems |
| * and constant elements. At this point, assume independent element |
| * occurrence. |
| */ |
| dist = calc_distr(elem_selec, unique_nitems, unique_nitems, 0.0f); |
| mcelem_dist = calc_distr(numbers, nmcelem, unique_nitems, rest); |
| |
| /* ignore hist[nhist-1], which is the average not a histogram member */ |
| hist_part = calc_hist(hist, nhist - 1, unique_nitems); |
| |
| selec = 0.0f; |
| for (i = 0; i <= unique_nitems; i++) |
| { |
| /* |
| * mult * dist[i] / mcelem_dist[i] gives us probability of qual |
| * matching from assumption of independent element occurrence with the |
| * condition that distinct element count = i. |
| */ |
| if (mcelem_dist[i] > 0) |
| selec += hist_part[i] * mult * dist[i] / mcelem_dist[i]; |
| } |
| |
| pfree(dist); |
| pfree(mcelem_dist); |
| pfree(hist_part); |
| pfree(elem_selec); |
| |
| /* Take into account occurrence of NULL element. */ |
| selec *= (1.0f - nullelem_freq); |
| |
| CLAMP_PROBABILITY(selec); |
| |
| return selec; |
| } |
| |
| /* |
| * Calculate the first n distinct element count probabilities from a |
| * histogram of distinct element counts. |
| * |
| * Returns a palloc'd array of n+1 entries, with array[k] being the |
| * probability of element count k, k in [0..n]. |
| * |
| * We assume that a histogram box with bounds a and b gives 1 / ((b - a + 1) * |
| * (nhist - 1)) probability to each value in (a,b) and an additional half of |
| * that to a and b themselves. |
| */ |
| static float * |
| calc_hist(const float4 *hist, int nhist, int n) |
| { |
| float *hist_part; |
| int k, |
| i = 0; |
| float prev_interval = 0, |
| next_interval; |
| float frac; |
| |
| hist_part = (float *) palloc((n + 1) * sizeof(float)); |
| |
| /* |
| * frac is a probability contribution for each interval between histogram |
| * values. We have nhist - 1 intervals, so contribution of each one will |
| * be 1 / (nhist - 1). |
| */ |
| frac = 1.0f / ((float) (nhist - 1)); |
| |
| for (k = 0; k <= n; k++) |
| { |
| int count = 0; |
| |
| /* |
| * Count the histogram boundaries equal to k. (Although the histogram |
| * should theoretically contain only exact integers, entries are |
| * floats so there could be roundoff error in large values. Treat any |
| * fractional value as equal to the next larger k.) |
| */ |
| while (i < nhist && hist[i] <= k) |
| { |
| count++; |
| i++; |
| } |
| |
| if (count > 0) |
| { |
| /* k is an exact bound for at least one histogram box. */ |
| float val; |
| |
| /* Find length between current histogram value and the next one */ |
| if (i < nhist) |
| next_interval = hist[i] - hist[i - 1]; |
| else |
| next_interval = 0; |
| |
| /* |
| * count - 1 histogram boxes contain k exclusively. They |
| * contribute a total of (count - 1) * frac probability. Also |
| * factor in the partial histogram boxes on either side. |
| */ |
| val = (float) (count - 1); |
| if (next_interval > 0) |
| val += 0.5f / next_interval; |
| if (prev_interval > 0) |
| val += 0.5f / prev_interval; |
| hist_part[k] = frac * val; |
| |
| prev_interval = next_interval; |
| } |
| else |
| { |
| /* k does not appear as an exact histogram bound. */ |
| if (prev_interval > 0) |
| hist_part[k] = frac / prev_interval; |
| else |
| hist_part[k] = 0.0f; |
| } |
| } |
| |
| return hist_part; |
| } |
| |
| /* |
| * Consider n independent events with probabilities p[]. This function |
| * calculates probabilities of exact k of events occurrence for k in [0..m]. |
| * Returns a palloc'd array of size m+1. |
| * |
| * "rest" is the sum of the probabilities of all low-probability events not |
| * included in p. |
| * |
| * Imagine matrix M of size (n + 1) x (m + 1). Element M[i,j] denotes the |
| * probability that exactly j of first i events occur. Obviously M[0,0] = 1. |
| * For any constant j, each increment of i increases the probability iff the |
| * event occurs. So, by the law of total probability: |
| * M[i,j] = M[i - 1, j] * (1 - p[i]) + M[i - 1, j - 1] * p[i] |
| * for i > 0, j > 0. |
| * M[i,0] = M[i - 1, 0] * (1 - p[i]) for i > 0. |
| */ |
| static float * |
| calc_distr(const float *p, int n, int m, float rest) |
| { |
| float *row, |
| *prev_row, |
| *tmp; |
| int i, |
| j; |
| |
| /* |
| * Since we return only the last row of the matrix and need only the |
| * current and previous row for calculations, allocate two rows. |
| */ |
| row = (float *) palloc((m + 1) * sizeof(float)); |
| prev_row = (float *) palloc((m + 1) * sizeof(float)); |
| |
| /* M[0,0] = 1 */ |
| row[0] = 1.0f; |
| for (i = 1; i <= n; i++) |
| { |
| float t = p[i - 1]; |
| |
| /* Swap rows */ |
| tmp = row; |
| row = prev_row; |
| prev_row = tmp; |
| |
| /* Calculate next row */ |
| for (j = 0; j <= i && j <= m; j++) |
| { |
| float val = 0.0f; |
| |
| if (j < i) |
| val += prev_row[j] * (1.0f - t); |
| if (j > 0) |
| val += prev_row[j - 1] * t; |
| row[j] = val; |
| } |
| } |
| |
| /* |
| * The presence of many distinct rare (not in "p") elements materially |
| * decreases selectivity. Model their collective occurrence with the |
| * Poisson distribution. |
| */ |
| if (rest > DEFAULT_CONTAIN_SEL) |
| { |
| float t; |
| |
| /* Swap rows */ |
| tmp = row; |
| row = prev_row; |
| prev_row = tmp; |
| |
| for (i = 0; i <= m; i++) |
| row[i] = 0.0f; |
| |
| /* Value of Poisson distribution for 0 occurrences */ |
| t = exp(-rest); |
| |
| /* |
| * Calculate convolution of previously computed distribution and the |
| * Poisson distribution. |
| */ |
| for (i = 0; i <= m; i++) |
| { |
| for (j = 0; j <= m - i; j++) |
| row[j + i] += prev_row[j] * t; |
| |
| /* Get Poisson distribution value for (i + 1) occurrences */ |
| t *= rest / (float) (i + 1); |
| } |
| } |
| |
| pfree(prev_row); |
| return row; |
| } |
| |
| /* Fast function for floor value of 2 based logarithm calculation. */ |
| static int |
| floor_log2(uint32 n) |
| { |
| int logval = 0; |
| |
| if (n == 0) |
| return -1; |
| if (n >= (1 << 16)) |
| { |
| n >>= 16; |
| logval += 16; |
| } |
| if (n >= (1 << 8)) |
| { |
| n >>= 8; |
| logval += 8; |
| } |
| if (n >= (1 << 4)) |
| { |
| n >>= 4; |
| logval += 4; |
| } |
| if (n >= (1 << 2)) |
| { |
| n >>= 2; |
| logval += 2; |
| } |
| if (n >= (1 << 1)) |
| { |
| logval += 1; |
| } |
| return logval; |
| } |
| |
| /* |
| * find_next_mcelem binary-searches a most common elements array, starting |
| * from *index, for the first member >= value. It saves the position of the |
| * match into *index and returns true if it's an exact match. (Note: we |
| * assume the mcelem elements are distinct so there can't be more than one |
| * exact match.) |
| */ |
| static bool |
| find_next_mcelem(Datum *mcelem, int nmcelem, Datum value, int *index, |
| TypeCacheEntry *typentry) |
| { |
| int l = *index, |
| r = nmcelem - 1, |
| i, |
| res; |
| |
| while (l <= r) |
| { |
| i = (l + r) / 2; |
| res = element_compare(&mcelem[i], &value, typentry); |
| if (res == 0) |
| { |
| *index = i; |
| return true; |
| } |
| else if (res < 0) |
| l = i + 1; |
| else |
| r = i - 1; |
| } |
| *index = l; |
| return false; |
| } |
| |
| /* |
| * Comparison function for elements. |
| * |
| * We use the element type's default btree opclass, and its default collation |
| * if the type is collation-sensitive. |
| * |
| * XXX consider using SortSupport infrastructure |
| */ |
| static int |
| element_compare(const void *key1, const void *key2, void *arg) |
| { |
| Datum d1 = *((const Datum *) key1); |
| Datum d2 = *((const Datum *) key2); |
| TypeCacheEntry *typentry = (TypeCacheEntry *) arg; |
| FmgrInfo *cmpfunc = &typentry->cmp_proc_finfo; |
| Datum c; |
| |
| c = FunctionCall2Coll(cmpfunc, typentry->typcollation, d1, d2); |
| return DatumGetInt32(c); |
| } |
| |
| /* |
| * Comparison function for sorting floats into descending order. |
| */ |
| static int |
| float_compare_desc(const void *key1, const void *key2) |
| { |
| float d1 = *((const float *) key1); |
| float d2 = *((const float *) key2); |
| |
| if (d1 > d2) |
| return -1; |
| else if (d1 < d2) |
| return 1; |
| else |
| return 0; |
| } |