| /*------------------------------------------------------------------------- |
| * |
| * bipartite_match.c |
| * Hopcroft-Karp maximum cardinality algorithm for bipartite graphs |
| * |
| * This implementation is based on pseudocode found at: |
| * |
| * https://en.wikipedia.org/w/index.php?title=Hopcroft%E2%80%93Karp_algorithm&oldid=593898016 |
| * |
| * Copyright (c) 2015-2023, PostgreSQL Global Development Group |
| * |
| * IDENTIFICATION |
| * src/backend/lib/bipartite_match.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include <limits.h> |
| |
| #include "lib/bipartite_match.h" |
| #include "miscadmin.h" |
| |
| /* |
| * The distances computed in hk_breadth_search can easily be seen to never |
| * exceed u_size. Since we restrict u_size to be less than SHRT_MAX, we |
| * can therefore use SHRT_MAX as the "infinity" distance needed as a marker. |
| */ |
| #define HK_INFINITY SHRT_MAX |
| |
| static bool hk_breadth_search(BipartiteMatchState *state); |
| static bool hk_depth_search(BipartiteMatchState *state, int u); |
| |
| /* |
| * Given the size of U and V, where each is indexed 1..size, and an adjacency |
| * list, perform the matching and return the resulting state. |
| */ |
| BipartiteMatchState * |
| BipartiteMatch(int u_size, int v_size, short **adjacency) |
| { |
| BipartiteMatchState *state = palloc(sizeof(BipartiteMatchState)); |
| |
| if (u_size < 0 || u_size >= SHRT_MAX || |
| v_size < 0 || v_size >= SHRT_MAX) |
| elog(ERROR, "invalid set size for BipartiteMatch"); |
| |
| state->u_size = u_size; |
| state->v_size = v_size; |
| state->adjacency = adjacency; |
| state->matching = 0; |
| state->pair_uv = (short *) palloc0((u_size + 1) * sizeof(short)); |
| state->pair_vu = (short *) palloc0((v_size + 1) * sizeof(short)); |
| state->distance = (short *) palloc((u_size + 1) * sizeof(short)); |
| state->queue = (short *) palloc((u_size + 2) * sizeof(short)); |
| |
| while (hk_breadth_search(state)) |
| { |
| int u; |
| |
| for (u = 1; u <= u_size; u++) |
| { |
| if (state->pair_uv[u] == 0) |
| if (hk_depth_search(state, u)) |
| state->matching++; |
| } |
| |
| CHECK_FOR_INTERRUPTS(); /* just in case */ |
| } |
| |
| return state; |
| } |
| |
| /* |
| * Free a state returned by BipartiteMatch, except for the original adjacency |
| * list, which is owned by the caller. This only frees memory, so it's optional. |
| */ |
| void |
| BipartiteMatchFree(BipartiteMatchState *state) |
| { |
| /* adjacency matrix is treated as owned by the caller */ |
| pfree(state->pair_uv); |
| pfree(state->pair_vu); |
| pfree(state->distance); |
| pfree(state->queue); |
| pfree(state); |
| } |
| |
| /* |
| * Perform the breadth-first search step of H-K matching. |
| * Returns true if successful. |
| */ |
| static bool |
| hk_breadth_search(BipartiteMatchState *state) |
| { |
| int usize = state->u_size; |
| short *queue = state->queue; |
| short *distance = state->distance; |
| int qhead = 0; /* we never enqueue any node more than once */ |
| int qtail = 0; /* so don't have to worry about wrapping */ |
| int u; |
| |
| distance[0] = HK_INFINITY; |
| |
| for (u = 1; u <= usize; u++) |
| { |
| if (state->pair_uv[u] == 0) |
| { |
| distance[u] = 0; |
| queue[qhead++] = u; |
| } |
| else |
| distance[u] = HK_INFINITY; |
| } |
| |
| while (qtail < qhead) |
| { |
| u = queue[qtail++]; |
| |
| if (distance[u] < distance[0]) |
| { |
| short *u_adj = state->adjacency[u]; |
| int i = u_adj ? u_adj[0] : 0; |
| |
| for (; i > 0; i--) |
| { |
| int u_next = state->pair_vu[u_adj[i]]; |
| |
| if (distance[u_next] == HK_INFINITY) |
| { |
| distance[u_next] = 1 + distance[u]; |
| Assert(qhead < usize + 2); |
| queue[qhead++] = u_next; |
| } |
| } |
| } |
| } |
| |
| return (distance[0] != HK_INFINITY); |
| } |
| |
| /* |
| * Perform the depth-first search step of H-K matching. |
| * Returns true if successful. |
| */ |
| static bool |
| hk_depth_search(BipartiteMatchState *state, int u) |
| { |
| short *distance = state->distance; |
| short *pair_uv = state->pair_uv; |
| short *pair_vu = state->pair_vu; |
| short *u_adj = state->adjacency[u]; |
| int i = u_adj ? u_adj[0] : 0; |
| short nextdist; |
| |
| if (u == 0) |
| return true; |
| if (distance[u] == HK_INFINITY) |
| return false; |
| nextdist = distance[u] + 1; |
| |
| check_stack_depth(); |
| |
| for (; i > 0; i--) |
| { |
| int v = u_adj[i]; |
| |
| if (distance[pair_vu[v]] == nextdist) |
| { |
| if (hk_depth_search(state, pair_vu[v])) |
| { |
| pair_vu[v] = u; |
| pair_uv[u] = v; |
| return true; |
| } |
| } |
| } |
| |
| distance[u] = HK_INFINITY; |
| return false; |
| } |