| /*------------------------------------------------------------------------- |
| * |
| * nodeFunctionscan.c |
| * Support routines for scanning RangeFunctions (functions in rangetable). |
| * |
| * Portions Copyright (c) 2006-2008, Greenplum inc |
| * Portions Copyright (c) 2012-Present VMware, Inc. or its affiliates. |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * |
| * IDENTIFICATION |
| * src/backend/executor/nodeFunctionscan.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| /* |
| * INTERFACE ROUTINES |
| * ExecFunctionScan scans a function. |
| * ExecFunctionNext retrieve next tuple in sequential order. |
| * ExecInitFunctionScan creates and initializes a functionscan node. |
| * ExecEndFunctionScan releases any storage allocated. |
| * ExecReScanFunctionScan rescans the function |
| */ |
| #include "postgres.h" |
| |
| #include "catalog/pg_proc.h" |
| #include "catalog/pg_type.h" |
| #include "executor/nodeFunctionscan.h" |
| #include "funcapi.h" |
| #include "nodes/nodeFuncs.h" |
| #include "utils/builtins.h" |
| #include "utils/lsyscache.h" |
| #include "utils/memutils.h" |
| |
| #include "cdb/cdbvars.h" |
| #include "cdb/memquota.h" |
| #include "executor/nodeShareInputScan.h" |
| #include "executor/spi.h" |
| |
| |
| /* |
| * Runtime data for each function being scanned. |
| */ |
| typedef struct FunctionScanPerFuncState |
| { |
| SetExprState *setexpr; /* state of the expression being evaluated */ |
| TupleDesc tupdesc; /* desc of the function result type */ |
| int colcount; /* expected number of result columns */ |
| Tuplestorestate *tstore; /* holds the function result set */ |
| int64 rowcount; /* # of rows in result set, -1 if not known */ |
| TupleTableSlot *func_slot; /* function result slot (or NULL) */ |
| } FunctionScanPerFuncState; |
| |
| static TupleTableSlot *FunctionNext(FunctionScanState *node); |
| static void ExecFunctionScanExplainEnd(PlanState *planstate, struct StringInfoData *buf); |
| static void ExecEagerFreeFunctionScan(FunctionScanState *node); |
| |
| |
| /* ---------------------------------------------------------------- |
| * Scan Support |
| * ---------------------------------------------------------------- |
| */ |
| /* ---------------------------------------------------------------- |
| * FunctionNext |
| * |
| * This is a workhorse for ExecFunctionScan |
| * ---------------------------------------------------------------- |
| */ |
| static TupleTableSlot * |
| FunctionNext_guts(FunctionScanState *node) |
| { |
| EState *estate; |
| ScanDirection direction; |
| TupleTableSlot *scanslot; |
| bool alldone; |
| int64 oldpos; |
| int funcno; |
| int att; |
| |
| /* |
| * get information from the estate and scan state |
| */ |
| estate = node->ss.ps.state; |
| direction = estate->es_direction; |
| scanslot = node->ss.ss_ScanTupleSlot; |
| |
| /* |
| * FunctionNext read tuple from tuplestore instead |
| * of executing the real function. |
| * Tuplestore is filled by the FunctionScan's initplan. |
| */ |
| if(node->resultInTupleStore) |
| { |
| bool gotOK = false; |
| bool forward = true; |
| |
| /* |
| * Setup tuplestore reader on first call. |
| * |
| * The tuplestore should have been created by preprocess_initplans() |
| * already, we just read it here. |
| */ |
| if (!node->ts_state) |
| { |
| char rwfile_prefix[100]; |
| function_scan_create_bufname_prefix(rwfile_prefix, sizeof(rwfile_prefix), node->initplanId); |
| |
| node->ts_state = tuplestore_open_shared(get_shareinput_fileset(), |
| rwfile_prefix); |
| } |
| |
| gotOK = tuplestore_gettupleslot(node->ts_state, forward, false, |
| scanslot); |
| |
| if(!gotOK) |
| { |
| return NULL; |
| } |
| return scanslot; |
| } |
| |
| if (node->simple) |
| { |
| /* |
| * Fast path for the trivial case: the function return type and scan |
| * result type are the same, so we fetch the function result straight |
| * into the scan result slot. No need to update ordinality or |
| * rowcounts either. |
| */ |
| Tuplestorestate *tstore = node->funcstates[0].tstore; |
| |
| /* |
| * If first time through, read all tuples from function and put them |
| * in a tuplestore. Subsequent calls just fetch tuples from |
| * tuplestore. |
| */ |
| if (tstore == NULL) |
| { |
| node->funcstates[0].tstore = tstore = |
| ExecMakeTableFunctionResult(node->funcstates[0].setexpr, |
| node->ss.ps.ps_ExprContext, |
| node->argcontext, |
| node->funcstates[0].tupdesc, |
| node->eflags & EXEC_FLAG_BACKWARD, |
| PlanStateOperatorMemKB( (PlanState *) node)); |
| |
| /* CDB: Offer extra info for EXPLAIN ANALYZE. */ |
| if (node->ss.ps.instrument && node->ss.ps.instrument->need_cdb) |
| { |
| /* Let the tuplestore share our Instrumentation object. */ |
| tuplestore_set_instrument(tstore, node->ss.ps.instrument); |
| |
| /* Request a callback at end of query. */ |
| node->ss.ps.cdbexplainfun = ExecFunctionScanExplainEnd; |
| } |
| |
| /* |
| * paranoia - cope if the function, which may have constructed the |
| * tuplestore itself, didn't leave it pointing at the start. This |
| * call is fast, so the overhead shouldn't be an issue. |
| */ |
| tuplestore_rescan(tstore); |
| } |
| |
| /* |
| * Get the next tuple from tuplestore. |
| */ |
| (void) tuplestore_gettupleslot(tstore, |
| ScanDirectionIsForward(direction), |
| false, |
| scanslot); |
| return scanslot; |
| } |
| |
| /* |
| * Increment or decrement ordinal counter before checking for end-of-data, |
| * so that we can move off either end of the result by 1 (and no more than |
| * 1) without losing correct count. See PortalRunSelect for why we can |
| * assume that we won't be called repeatedly in the end-of-data state. |
| */ |
| oldpos = node->ordinal; |
| if (ScanDirectionIsForward(direction)) |
| node->ordinal++; |
| else |
| node->ordinal--; |
| |
| /* |
| * Main loop over functions. |
| * |
| * We fetch the function results into func_slots (which match the function |
| * return types), and then copy the values to scanslot (which matches the |
| * scan result type), setting the ordinal column (if any) as well. |
| */ |
| ExecClearTuple(scanslot); |
| att = 0; |
| alldone = true; |
| for (funcno = 0; funcno < node->nfuncs; funcno++) |
| { |
| FunctionScanPerFuncState *fs = &node->funcstates[funcno]; |
| int i; |
| |
| /* |
| * If first time through, read all tuples from function and put them |
| * in a tuplestore. Subsequent calls just fetch tuples from |
| * tuplestore. |
| */ |
| if (fs->tstore == NULL) |
| { |
| fs->tstore = |
| ExecMakeTableFunctionResult(fs->setexpr, |
| node->ss.ps.ps_ExprContext, |
| node->argcontext, |
| fs->tupdesc, |
| node->eflags & EXEC_FLAG_BACKWARD, |
| PlanStateOperatorMemKB( (PlanState *) node)); |
| |
| /* CDB: Offer extra info for EXPLAIN ANALYZE. */ |
| if (node->ss.ps.instrument && node->ss.ps.instrument->need_cdb) |
| { |
| /* Let the tuplestore share our Instrumentation object. */ |
| tuplestore_set_instrument(fs->tstore, node->ss.ps.instrument); |
| |
| /* Request a callback at end of query. */ |
| node->ss.ps.cdbexplainfun = ExecFunctionScanExplainEnd; |
| } |
| |
| /* |
| * paranoia - cope if the function, which may have constructed the |
| * tuplestore itself, didn't leave it pointing at the start. This |
| * call is fast, so the overhead shouldn't be an issue. |
| */ |
| tuplestore_rescan(fs->tstore); |
| } |
| |
| /* |
| * Get the next tuple from tuplestore. |
| * |
| * If we have a rowcount for the function, and we know the previous |
| * read position was out of bounds, don't try the read. This allows |
| * backward scan to work when there are mixed row counts present. |
| */ |
| if (fs->rowcount != -1 && fs->rowcount < oldpos) |
| ExecClearTuple(fs->func_slot); |
| else |
| (void) tuplestore_gettupleslot(fs->tstore, |
| ScanDirectionIsForward(direction), |
| false, |
| fs->func_slot); |
| |
| if (TupIsNull(fs->func_slot)) |
| { |
| /* |
| * If we ran out of data for this function in the forward |
| * direction then we now know how many rows it returned. We need |
| * to know this in order to handle backwards scans. The row count |
| * we store is actually 1+ the actual number, because we have to |
| * position the tuplestore 1 off its end sometimes. |
| */ |
| if (ScanDirectionIsForward(direction) && fs->rowcount == -1) |
| fs->rowcount = node->ordinal; |
| |
| /* |
| * populate the result cols with nulls |
| */ |
| for (i = 0; i < fs->colcount; i++) |
| { |
| scanslot->tts_values[att] = (Datum) 0; |
| scanslot->tts_isnull[att] = true; |
| att++; |
| } |
| } |
| else |
| { |
| /* |
| * we have a result, so just copy it to the result cols. |
| */ |
| slot_getallattrs(fs->func_slot); |
| |
| for (i = 0; i < fs->colcount; i++) |
| { |
| scanslot->tts_values[att] = slot_getattr(fs->func_slot, i + 1, |
| &scanslot->tts_isnull[att]); |
| att++; |
| } |
| |
| /* |
| * We're not done until every function result is exhausted; we pad |
| * the shorter results with nulls until then. |
| */ |
| alldone = false; |
| } |
| } |
| |
| /* |
| * ordinal col is always last, per spec. |
| */ |
| if (node->ordinality) |
| { |
| scanslot->tts_values[att] = Int64GetDatumFast(node->ordinal); |
| scanslot->tts_isnull[att] = false; |
| } |
| |
| /* |
| * If alldone, we just return the previously-cleared scanslot. Otherwise, |
| * finish creating the virtual tuple. |
| */ |
| if (!alldone) |
| ExecStoreVirtualTuple(scanslot); |
| |
| return scanslot; |
| } |
| |
| static TupleTableSlot * |
| FunctionNext(FunctionScanState *node) |
| { |
| TupleTableSlot *result; |
| |
| result = FunctionNext_guts(node); |
| |
| if (TupIsNull(result) && !node->delayEagerFree) |
| ExecEagerFreeFunctionScan((FunctionScanState *) &node->ss.ps); |
| |
| return result; |
| } |
| |
| /* |
| * FunctionRecheck -- access method routine to recheck a tuple in EvalPlanQual |
| */ |
| static bool |
| FunctionRecheck(FunctionScanState *node, TupleTableSlot *slot) |
| { |
| /* nothing to check */ |
| return true; |
| } |
| |
| /* ---------------------------------------------------------------- |
| * ExecFunctionScan(node) |
| * |
| * Scans the function sequentially and returns the next qualifying |
| * tuple. |
| * We call the ExecScan() routine and pass it the appropriate |
| * access method functions. |
| * ---------------------------------------------------------------- |
| */ |
| static TupleTableSlot * |
| ExecFunctionScan(PlanState *pstate) |
| { |
| FunctionScanState *node = castNode(FunctionScanState, pstate); |
| |
| return ExecScan(&node->ss, |
| (ExecScanAccessMtd) FunctionNext, |
| (ExecScanRecheckMtd) FunctionRecheck); |
| } |
| |
| /* ---------------------------------------------------------------- |
| * ExecInitFunctionScan |
| * ---------------------------------------------------------------- |
| */ |
| FunctionScanState * |
| ExecInitFunctionScan(FunctionScan *node, EState *estate, int eflags) |
| { |
| FunctionScanState *scanstate; |
| int nfuncs = list_length(node->functions); |
| TupleDesc scan_tupdesc; |
| int i, |
| natts; |
| ListCell *lc; |
| |
| /* check for unsupported flags */ |
| Assert(!(eflags & EXEC_FLAG_MARK)); |
| |
| /* |
| * FunctionScan should not have any children. |
| */ |
| Assert(outerPlan(node) == NULL); |
| Assert(innerPlan(node) == NULL); |
| |
| /* |
| * create new ScanState for node |
| */ |
| scanstate = makeNode(FunctionScanState); |
| scanstate->ss.ps.plan = (Plan *) node; |
| scanstate->ss.ps.state = estate; |
| scanstate->ss.ps.ExecProcNode = ExecFunctionScan; |
| scanstate->eflags = eflags; |
| scanstate->resultInTupleStore = node->resultInTupleStore; |
| scanstate->initplanId = node->initplanId; |
| scanstate->ts_state = NULL; |
| |
| /* |
| * are we adding an ordinality column? |
| */ |
| scanstate->ordinality = node->funcordinality; |
| |
| scanstate->nfuncs = nfuncs; |
| if (nfuncs == 1 && !node->funcordinality) |
| scanstate->simple = true; |
| else |
| scanstate->simple = false; |
| |
| /* |
| * Ordinal 0 represents the "before the first row" position. |
| * |
| * We need to track ordinal position even when not adding an ordinality |
| * column to the result, in order to handle backwards scanning properly |
| * with multiple functions with different result sizes. (We can't position |
| * any individual function's tuplestore any more than 1 place beyond its |
| * end, so when scanning backwards, we need to know when to start |
| * including the function in the scan again.) |
| */ |
| scanstate->ordinal = 0; |
| |
| /* |
| * Miscellaneous initialization |
| * |
| * create expression context for node |
| */ |
| ExecAssignExprContext(estate, &scanstate->ss.ps); |
| |
| scanstate->funcstates = palloc(nfuncs * sizeof(FunctionScanPerFuncState)); |
| |
| natts = 0; |
| i = 0; |
| foreach(lc, node->functions) |
| { |
| RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
| Node *funcexpr = rtfunc->funcexpr; |
| int colcount = rtfunc->funccolcount; |
| FunctionScanPerFuncState *fs = &scanstate->funcstates[i]; |
| TupleDesc tupdesc; |
| |
| fs->setexpr = |
| ExecInitTableFunctionResult((Expr *) funcexpr, |
| scanstate->ss.ps.ps_ExprContext, |
| &scanstate->ss.ps); |
| |
| /* |
| * Don't allocate the tuplestores; the actual calls to the functions |
| * do that. NULL means that we have not called the function yet (or |
| * need to call it again after a rescan). |
| */ |
| fs->tstore = NULL; |
| fs->rowcount = -1; |
| |
| /* |
| * Now build a tupdesc showing the result type we expect from the |
| * function. If we have a coldeflist then that takes priority (note |
| * the parser enforces that there is one if the function's nominal |
| * output type is RECORD). Otherwise use get_expr_result_type. |
| * |
| * Note that if the function returns a named composite type, that may |
| * now contain more or different columns than it did when the plan was |
| * made. For both that and the RECORD case, we need to check tuple |
| * compatibility. ExecMakeTableFunctionResult handles some of this, |
| * and CheckVarSlotCompatibility provides a backstop. |
| */ |
| if (rtfunc->funccolnames != NIL) |
| { |
| tupdesc = BuildDescFromLists(rtfunc->funccolnames, |
| rtfunc->funccoltypes, |
| rtfunc->funccoltypmods, |
| rtfunc->funccolcollations); |
| |
| /* |
| * For RECORD results, make sure a typmod has been assigned. (The |
| * function should do this for itself, but let's cover things in |
| * case it doesn't.) |
| */ |
| BlessTupleDesc(tupdesc); |
| } |
| else |
| { |
| TypeFuncClass functypclass; |
| Oid funcrettype; |
| |
| functypclass = get_expr_result_type(funcexpr, |
| &funcrettype, |
| &tupdesc); |
| |
| if (functypclass == TYPEFUNC_COMPOSITE || |
| functypclass == TYPEFUNC_COMPOSITE_DOMAIN) |
| { |
| /* Composite data type, e.g. a table's row type */ |
| Assert(tupdesc); |
| /* Must copy it out of typcache for safety */ |
| tupdesc = CreateTupleDescCopy(tupdesc); |
| } |
| else if (functypclass == TYPEFUNC_SCALAR) |
| { |
| /* Base data type, i.e. scalar */ |
| tupdesc = CreateTemplateTupleDesc(1); |
| TupleDescInitEntry(tupdesc, |
| (AttrNumber) 1, |
| NULL, /* don't care about the name here */ |
| funcrettype, |
| -1, |
| 0); |
| TupleDescInitEntryCollation(tupdesc, |
| (AttrNumber) 1, |
| exprCollation(funcexpr)); |
| } |
| else |
| { |
| /* crummy error message, but parser should have caught this */ |
| elog(ERROR, "function in FROM has unsupported return type"); |
| } |
| } |
| |
| fs->tupdesc = tupdesc; |
| fs->colcount = colcount; |
| |
| /* |
| * We only need separate slots for the function results if we are |
| * doing ordinality or multiple functions; otherwise, we'll fetch |
| * function results directly into the scan slot. |
| */ |
| if (!scanstate->simple) |
| { |
| fs->func_slot = ExecInitExtraTupleSlot(estate, fs->tupdesc, |
| &TTSOpsMinimalTuple); |
| } |
| else |
| fs->func_slot = NULL; |
| |
| natts += colcount; |
| i++; |
| } |
| |
| /* |
| * Create the combined TupleDesc |
| * |
| * If there is just one function without ordinality, the scan result |
| * tupdesc is the same as the function result tupdesc --- except that we |
| * may stuff new names into it below, so drop any rowtype label. |
| */ |
| if (scanstate->simple) |
| { |
| scan_tupdesc = CreateTupleDescCopy(scanstate->funcstates[0].tupdesc); |
| scan_tupdesc->tdtypeid = RECORDOID; |
| scan_tupdesc->tdtypmod = -1; |
| } |
| else |
| { |
| AttrNumber attno = 0; |
| |
| if (node->funcordinality) |
| natts++; |
| |
| scan_tupdesc = CreateTemplateTupleDesc(natts); |
| |
| for (i = 0; i < nfuncs; i++) |
| { |
| TupleDesc tupdesc = scanstate->funcstates[i].tupdesc; |
| int colcount = scanstate->funcstates[i].colcount; |
| int j; |
| |
| for (j = 1; j <= colcount; j++) |
| TupleDescCopyEntry(scan_tupdesc, ++attno, tupdesc, j); |
| } |
| |
| /* If doing ordinality, add a column of type "bigint" at the end */ |
| if (node->funcordinality) |
| { |
| TupleDescInitEntry(scan_tupdesc, |
| ++attno, |
| NULL, /* don't care about the name here */ |
| INT8OID, |
| -1, |
| 0); |
| } |
| |
| Assert(attno == natts); |
| } |
| |
| /* |
| * Initialize scan slot and type. |
| */ |
| ExecInitScanTupleSlot(estate, &scanstate->ss, scan_tupdesc, |
| &TTSOpsMinimalTuple); |
| |
| /* |
| * Initialize result slot, type and projection. |
| */ |
| ExecInitResultTypeTL(&scanstate->ss.ps); |
| ExecAssignScanProjectionInfo(&scanstate->ss); |
| |
| if (!IsResManagerMemoryPolicyNone()) |
| { |
| SPI_ReserveMemory(((Plan *)node)->operatorMemKB * 1024L); |
| } |
| |
| /* |
| * If eflag contains EXEC_FLAG_REWIND or EXEC_FLAG_BACKWARD or EXEC_FLAG_MARK, |
| * then this node is not eager free safe. |
| */ |
| scanstate->delayEagerFree = |
| ((eflags & (EXEC_FLAG_REWIND | EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)) != 0); |
| |
| /* |
| * Also don't free eagerly, if there are multiple functions. If a ROWS |
| * FROM() expression with multiple functions is used with a nested loop, |
| * when the param changes, we might need to rescan some, but not all, of |
| * the functions, depending on which function's arguments refer to the |
| * params. In that case, we prefer to avoid the rescans for those |
| * functions that we can. |
| * |
| * (In a nested loop with no params at all, the EXEC_FLAG_REWIND flag is |
| * set. And in the case of a single function, the param must be used as |
| * an arugment of that function, and we'll need to always rescan it.) |
| */ |
| if (nfuncs > 0) |
| scanstate->delayEagerFree = true; |
| |
| /* |
| * Create a memory context that ExecMakeTableFunctionResult can use to |
| * evaluate function arguments in. We can't use the per-tuple context for |
| * this because it gets reset too often; but we don't want to leak |
| * evaluation results into the query-lifespan context either. We just |
| * need one context, because we evaluate each function separately. |
| */ |
| scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext, |
| "Table function arguments", |
| ALLOCSET_DEFAULT_MINSIZE, |
| ALLOCSET_DEFAULT_INITSIZE, |
| ALLOCSET_DEFAULT_MAXSIZE); |
| |
| /* |
| * initialize child expressions |
| */ |
| scanstate->ss.ps.qual = |
| ExecInitQual(node->scan.plan.qual, (PlanState *) scanstate); |
| |
| /* |
| * Create a memory context that ExecMakeTableFunctionResult can use to |
| * evaluate function arguments in. We can't use the per-tuple context for |
| * this because it gets reset too often; but we don't want to leak |
| * evaluation results into the query-lifespan context either. We just |
| * need one context, because we evaluate each function separately. |
| */ |
| scanstate->argcontext = AllocSetContextCreate(CurrentMemoryContext, |
| "Table function arguments", |
| ALLOCSET_DEFAULT_SIZES); |
| |
| return scanstate; |
| } |
| |
| /* |
| * ExecFunctionScanExplainEnd |
| * Called before ExecutorEnd to finish EXPLAIN ANALYZE reporting. |
| * |
| * The cleanup that ordinarily would occur during ExecutorEnd() needs to be |
| * done earlier in order to report statistics to EXPLAIN ANALYZE. Note that |
| * ExecEndFunctionScan() will be called for a second time during ExecutorEnd(). |
| */ |
| void |
| ExecFunctionScanExplainEnd(PlanState *planstate, struct StringInfoData *buf pg_attribute_unused()) |
| { |
| ExecEagerFreeFunctionScan((FunctionScanState *) planstate); |
| } /* ExecFunctionScanExplainEnd */ |
| |
| /* ---------------------------------------------------------------- |
| * ExecEndFunctionScan |
| * |
| * frees any storage allocated through C routines. |
| * ---------------------------------------------------------------- |
| */ |
| void |
| ExecEndFunctionScan(FunctionScanState *node) |
| { |
| /* |
| * Free the exprcontext |
| */ |
| ExecFreeExprContext(&node->ss.ps); |
| |
| /* |
| * clean out the tuple table |
| */ |
| if (node->ss.ps.ps_ResultTupleSlot) |
| ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| ExecClearTuple(node->ss.ss_ScanTupleSlot); |
| |
| ExecEagerFreeFunctionScan(node); |
| |
| /* |
| * destroy tuplestore reader if exists |
| */ |
| if (node->ts_state != NULL) |
| tuplestore_end(node->ts_state); |
| } |
| |
| /* ---------------------------------------------------------------- |
| * ExecReScanFunctionScan |
| * |
| * Rescans the relation. |
| * ---------------------------------------------------------------- |
| */ |
| void |
| ExecReScanFunctionScan(FunctionScanState *node) |
| { |
| FunctionScan *scan = (FunctionScan *) node->ss.ps.plan; |
| int i; |
| Bitmapset *chgparam = node->ss.ps.chgParam; |
| |
| if (node->ss.ps.ps_ResultTupleSlot) |
| ExecClearTuple(node->ss.ps.ps_ResultTupleSlot); |
| for (i = 0; i < node->nfuncs; i++) |
| { |
| FunctionScanPerFuncState *fs = &node->funcstates[i]; |
| |
| if (fs->func_slot) |
| ExecClearTuple(fs->func_slot); |
| } |
| |
| /* |
| * For function execute on INITPLAN, tuplestore accessor needs to |
| * seek to the begin of file for rescan. |
| * |
| * Note that we've already stored the function result in tuplestore by |
| * INITPLAN node, so there is no need to re-use the tuplestore in |
| * function scan, which is used to avoid re-executing the |
| * function again when rescan a FunctionScan |
| */ |
| if(node->resultInTupleStore && node->ts_state) |
| tuplestore_rescan(node->ts_state); |
| |
| ExecScanReScan(&node->ss); |
| |
| /* |
| * Here we have a choice whether to drop the tuplestores (and recompute |
| * the function outputs) or just rescan them. We must recompute if an |
| * expression contains changed parameters, else we rescan. |
| * |
| * XXX maybe we should recompute if the function is volatile? But in |
| * general the executor doesn't conditionalize its actions on that. |
| */ |
| if (chgparam) |
| { |
| ListCell *lc; |
| |
| i = 0; |
| foreach(lc, scan->functions) |
| { |
| RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc); |
| |
| if (bms_overlap(chgparam, rtfunc->funcparams)) |
| { |
| if (node->funcstates[i].tstore != NULL) |
| { |
| tuplestore_end(node->funcstates[i].tstore); |
| node->funcstates[i].tstore = NULL; |
| } |
| node->funcstates[i].rowcount = -1; |
| } |
| i++; |
| } |
| } |
| |
| /* Reset ordinality counter */ |
| node->ordinal = 0; |
| |
| /* Make sure we rewind any remaining tuplestores */ |
| for (i = 0; i < node->nfuncs; i++) |
| { |
| if (node->funcstates[i].tstore != NULL) |
| tuplestore_rescan(node->funcstates[i].tstore); |
| } |
| } |
| |
| static void |
| ExecEagerFreeFunctionScan(FunctionScanState *node) |
| { |
| int i; |
| |
| /* |
| * Release slots and tuplestore resources |
| */ |
| for (i = 0; i < node->nfuncs; i++) |
| { |
| FunctionScanPerFuncState *fs = &node->funcstates[i]; |
| |
| if (fs->func_slot) |
| ExecClearTuple(fs->func_slot); |
| |
| if (fs->tstore != NULL) |
| { |
| tuplestore_end(node->funcstates[i].tstore); |
| fs->tstore = NULL; |
| } |
| } |
| } |
| |
| void |
| ExecSquelchFunctionScan(FunctionScanState *node, bool force) |
| { |
| if (node->ss.ps.squelched) |
| return; |
| if (!node->delayEagerFree || force) |
| { |
| ExecEagerFreeFunctionScan(node); |
| node->ss.ps.squelched = true; |
| } |
| } |
| |
| void |
| function_scan_create_bufname_prefix(char* p, int size, int initplan_id) |
| { |
| snprintf(p, size, "FUNCTION_SCAN_%d_%d", |
| gp_session_id, initplan_id); |
| } |