| /*------------------------------------------------------------------------- |
| * |
| * spgtextproc.c |
| * implementation of radix tree (compressed trie) over text |
| * |
| * In a text_ops SPGiST index, inner tuples can have a prefix which is the |
| * common prefix of all strings indexed under that tuple. The node labels |
| * represent the next byte of the string(s) after the prefix. Assuming we |
| * always use the longest possible prefix, we will get more than one node |
| * label unless the prefix length is restricted by SPGIST_MAX_PREFIX_LENGTH. |
| * |
| * To reconstruct the indexed string for any index entry, concatenate the |
| * inner-tuple prefixes and node labels starting at the root and working |
| * down to the leaf entry, then append the datum in the leaf entry. |
| * (While descending the tree, "level" is the number of bytes reconstructed |
| * so far.) |
| * |
| * However, there are two special cases for node labels: -1 indicates that |
| * there are no more bytes after the prefix-so-far, and -2 indicates that we |
| * had to split an existing allTheSame tuple (in such a case we have to create |
| * a node label that doesn't correspond to any string byte). In either case, |
| * the node label does not contribute anything to the reconstructed string. |
| * |
| * Previously, we used a node label of zero for both special cases, but |
| * this was problematic because one can't tell whether a string ending at |
| * the current level can be pushed down into such a child node. For |
| * backwards compatibility, we still support such node labels for reading; |
| * but no new entries will ever be pushed down into a zero-labeled child. |
| * No new entries ever get pushed into a -2-labeled child, either. |
| * |
| * |
| * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group |
| * Portions Copyright (c) 1994, Regents of the University of California |
| * |
| * IDENTIFICATION |
| * src/backend/access/spgist/spgtextproc.c |
| * |
| *------------------------------------------------------------------------- |
| */ |
| #include "postgres.h" |
| |
| #include "access/spgist.h" |
| #include "catalog/pg_type.h" |
| #include "mb/pg_wchar.h" |
| #include "utils/builtins.h" |
| #include "utils/datum.h" |
| #include "utils/pg_locale.h" |
| #include "utils/varlena.h" |
| #include "varatt.h" |
| |
| |
| /* |
| * In the worst case, an inner tuple in a text radix tree could have as many |
| * as 258 nodes (one for each possible byte value, plus the two special |
| * cases). Each node can take 16 bytes on MAXALIGN=8 machines. The inner |
| * tuple must fit on an index page of size BLCKSZ. Rather than assuming we |
| * know the exact amount of overhead imposed by page headers, tuple headers, |
| * etc, we leave 100 bytes for that (the actual overhead should be no more |
| * than 56 bytes at this writing, so there is slop in this number). |
| * So we can safely create prefixes up to BLCKSZ - 258 * 16 - 100 bytes long. |
| * Unfortunately, because 258 * 16 is over 4K, there is no safe prefix length |
| * when BLCKSZ is less than 8K; it is always possible to get "SPGiST inner |
| * tuple size exceeds maximum" if there are too many distinct next-byte values |
| * at a given place in the tree. Since use of nonstandard block sizes appears |
| * to be negligible in the field, we just live with that fact for now, |
| * choosing a max prefix size of 32 bytes when BLCKSZ is configured smaller |
| * than default. |
| */ |
| #define SPGIST_MAX_PREFIX_LENGTH Max((int) (BLCKSZ - 258 * 16 - 100), 32) |
| |
| /* |
| * Strategy for collation aware operator on text is equal to btree strategy |
| * plus value of 10. |
| * |
| * Current collation aware strategies and their corresponding btree strategies: |
| * 11 BTLessStrategyNumber |
| * 12 BTLessEqualStrategyNumber |
| * 14 BTGreaterEqualStrategyNumber |
| * 15 BTGreaterStrategyNumber |
| */ |
| #define SPG_STRATEGY_ADDITION (10) |
| #define SPG_IS_COLLATION_AWARE_STRATEGY(s) ((s) > SPG_STRATEGY_ADDITION \ |
| && (s) != RTPrefixStrategyNumber) |
| |
| /* Struct for sorting values in picksplit */ |
| typedef struct spgNodePtr |
| { |
| Datum d; |
| int i; |
| int16 c; |
| } spgNodePtr; |
| |
| |
| Datum |
| spg_text_config(PG_FUNCTION_ARGS) |
| { |
| /* spgConfigIn *cfgin = (spgConfigIn *) PG_GETARG_POINTER(0); */ |
| spgConfigOut *cfg = (spgConfigOut *) PG_GETARG_POINTER(1); |
| |
| cfg->prefixType = TEXTOID; |
| cfg->labelType = INT2OID; |
| cfg->canReturnData = true; |
| cfg->longValuesOK = true; /* suffixing will shorten long values */ |
| PG_RETURN_VOID(); |
| } |
| |
| /* |
| * Form a text datum from the given not-necessarily-null-terminated string, |
| * using short varlena header format if possible |
| */ |
| static Datum |
| formTextDatum(const char *data, int datalen) |
| { |
| char *p; |
| |
| p = (char *) palloc(datalen + VARHDRSZ); |
| |
| if (datalen + VARHDRSZ_SHORT <= VARATT_SHORT_MAX) |
| { |
| SET_VARSIZE_SHORT(p, datalen + VARHDRSZ_SHORT); |
| if (datalen) |
| memcpy(p + VARHDRSZ_SHORT, data, datalen); |
| } |
| else |
| { |
| SET_VARSIZE(p, datalen + VARHDRSZ); |
| memcpy(p + VARHDRSZ, data, datalen); |
| } |
| |
| return PointerGetDatum(p); |
| } |
| |
| /* |
| * Find the length of the common prefix of a and b |
| */ |
| static int |
| commonPrefix(const char *a, const char *b, int lena, int lenb) |
| { |
| int i = 0; |
| |
| while (i < lena && i < lenb && *a == *b) |
| { |
| a++; |
| b++; |
| i++; |
| } |
| |
| return i; |
| } |
| |
| /* |
| * Binary search an array of int16 datums for a match to c |
| * |
| * On success, *i gets the match location; on failure, it gets where to insert |
| */ |
| static bool |
| searchChar(Datum *nodeLabels, int nNodes, int16 c, int *i) |
| { |
| int StopLow = 0, |
| StopHigh = nNodes; |
| |
| while (StopLow < StopHigh) |
| { |
| int StopMiddle = (StopLow + StopHigh) >> 1; |
| int16 middle = DatumGetInt16(nodeLabels[StopMiddle]); |
| |
| if (c < middle) |
| StopHigh = StopMiddle; |
| else if (c > middle) |
| StopLow = StopMiddle + 1; |
| else |
| { |
| *i = StopMiddle; |
| return true; |
| } |
| } |
| |
| *i = StopHigh; |
| return false; |
| } |
| |
| Datum |
| spg_text_choose(PG_FUNCTION_ARGS) |
| { |
| spgChooseIn *in = (spgChooseIn *) PG_GETARG_POINTER(0); |
| spgChooseOut *out = (spgChooseOut *) PG_GETARG_POINTER(1); |
| text *inText = DatumGetTextPP(in->datum); |
| char *inStr = VARDATA_ANY(inText); |
| int inSize = VARSIZE_ANY_EXHDR(inText); |
| char *prefixStr = NULL; |
| int prefixSize = 0; |
| int commonLen = 0; |
| int16 nodeChar = 0; |
| int i = 0; |
| |
| /* Check for prefix match, set nodeChar to first byte after prefix */ |
| if (in->hasPrefix) |
| { |
| text *prefixText = DatumGetTextPP(in->prefixDatum); |
| |
| prefixStr = VARDATA_ANY(prefixText); |
| prefixSize = VARSIZE_ANY_EXHDR(prefixText); |
| |
| commonLen = commonPrefix(inStr + in->level, |
| prefixStr, |
| inSize - in->level, |
| prefixSize); |
| |
| if (commonLen == prefixSize) |
| { |
| if (inSize - in->level > commonLen) |
| nodeChar = *(unsigned char *) (inStr + in->level + commonLen); |
| else |
| nodeChar = -1; |
| } |
| else |
| { |
| /* Must split tuple because incoming value doesn't match prefix */ |
| out->resultType = spgSplitTuple; |
| |
| if (commonLen == 0) |
| { |
| out->result.splitTuple.prefixHasPrefix = false; |
| } |
| else |
| { |
| out->result.splitTuple.prefixHasPrefix = true; |
| out->result.splitTuple.prefixPrefixDatum = |
| formTextDatum(prefixStr, commonLen); |
| } |
| out->result.splitTuple.prefixNNodes = 1; |
| out->result.splitTuple.prefixNodeLabels = |
| (Datum *) palloc(sizeof(Datum)); |
| out->result.splitTuple.prefixNodeLabels[0] = |
| Int16GetDatum(*(unsigned char *) (prefixStr + commonLen)); |
| |
| out->result.splitTuple.childNodeN = 0; |
| |
| if (prefixSize - commonLen == 1) |
| { |
| out->result.splitTuple.postfixHasPrefix = false; |
| } |
| else |
| { |
| out->result.splitTuple.postfixHasPrefix = true; |
| out->result.splitTuple.postfixPrefixDatum = |
| formTextDatum(prefixStr + commonLen + 1, |
| prefixSize - commonLen - 1); |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| } |
| else if (inSize > in->level) |
| { |
| nodeChar = *(unsigned char *) (inStr + in->level); |
| } |
| else |
| { |
| nodeChar = -1; |
| } |
| |
| /* Look up nodeChar in the node label array */ |
| if (searchChar(in->nodeLabels, in->nNodes, nodeChar, &i)) |
| { |
| /* |
| * Descend to existing node. (If in->allTheSame, the core code will |
| * ignore our nodeN specification here, but that's OK. We still have |
| * to provide the correct levelAdd and restDatum values, and those are |
| * the same regardless of which node gets chosen by core.) |
| */ |
| int levelAdd; |
| |
| out->resultType = spgMatchNode; |
| out->result.matchNode.nodeN = i; |
| levelAdd = commonLen; |
| if (nodeChar >= 0) |
| levelAdd++; |
| out->result.matchNode.levelAdd = levelAdd; |
| if (inSize - in->level - levelAdd > 0) |
| out->result.matchNode.restDatum = |
| formTextDatum(inStr + in->level + levelAdd, |
| inSize - in->level - levelAdd); |
| else |
| out->result.matchNode.restDatum = |
| formTextDatum(NULL, 0); |
| } |
| else if (in->allTheSame) |
| { |
| /* |
| * Can't use AddNode action, so split the tuple. The upper tuple has |
| * the same prefix as before and uses a dummy node label -2 for the |
| * lower tuple. The lower tuple has no prefix and the same node |
| * labels as the original tuple. |
| * |
| * Note: it might seem tempting to shorten the upper tuple's prefix, |
| * if it has one, then use its last byte as label for the lower tuple. |
| * But that doesn't win since we know the incoming value matches the |
| * whole prefix: we'd just end up splitting the lower tuple again. |
| */ |
| out->resultType = spgSplitTuple; |
| out->result.splitTuple.prefixHasPrefix = in->hasPrefix; |
| out->result.splitTuple.prefixPrefixDatum = in->prefixDatum; |
| out->result.splitTuple.prefixNNodes = 1; |
| out->result.splitTuple.prefixNodeLabels = (Datum *) palloc(sizeof(Datum)); |
| out->result.splitTuple.prefixNodeLabels[0] = Int16GetDatum(-2); |
| out->result.splitTuple.childNodeN = 0; |
| out->result.splitTuple.postfixHasPrefix = false; |
| } |
| else |
| { |
| /* Add a node for the not-previously-seen nodeChar value */ |
| out->resultType = spgAddNode; |
| out->result.addNode.nodeLabel = Int16GetDatum(nodeChar); |
| out->result.addNode.nodeN = i; |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| |
| /* qsort comparator to sort spgNodePtr structs by "c" */ |
| static int |
| cmpNodePtr(const void *a, const void *b) |
| { |
| const spgNodePtr *aa = (const spgNodePtr *) a; |
| const spgNodePtr *bb = (const spgNodePtr *) b; |
| |
| return aa->c - bb->c; |
| } |
| |
| Datum |
| spg_text_picksplit(PG_FUNCTION_ARGS) |
| { |
| spgPickSplitIn *in = (spgPickSplitIn *) PG_GETARG_POINTER(0); |
| spgPickSplitOut *out = (spgPickSplitOut *) PG_GETARG_POINTER(1); |
| text *text0 = DatumGetTextPP(in->datums[0]); |
| int i, |
| commonLen; |
| spgNodePtr *nodes; |
| |
| /* Identify longest common prefix, if any */ |
| commonLen = VARSIZE_ANY_EXHDR(text0); |
| for (i = 1; i < in->nTuples && commonLen > 0; i++) |
| { |
| text *texti = DatumGetTextPP(in->datums[i]); |
| int tmp = commonPrefix(VARDATA_ANY(text0), |
| VARDATA_ANY(texti), |
| VARSIZE_ANY_EXHDR(text0), |
| VARSIZE_ANY_EXHDR(texti)); |
| |
| if (tmp < commonLen) |
| commonLen = tmp; |
| } |
| |
| /* |
| * Limit the prefix length, if necessary, to ensure that the resulting |
| * inner tuple will fit on a page. |
| */ |
| commonLen = Min(commonLen, SPGIST_MAX_PREFIX_LENGTH); |
| |
| /* Set node prefix to be that string, if it's not empty */ |
| if (commonLen == 0) |
| { |
| out->hasPrefix = false; |
| } |
| else |
| { |
| out->hasPrefix = true; |
| out->prefixDatum = formTextDatum(VARDATA_ANY(text0), commonLen); |
| } |
| |
| /* Extract the node label (first non-common byte) from each value */ |
| nodes = (spgNodePtr *) palloc(sizeof(spgNodePtr) * in->nTuples); |
| |
| for (i = 0; i < in->nTuples; i++) |
| { |
| text *texti = DatumGetTextPP(in->datums[i]); |
| |
| if (commonLen < VARSIZE_ANY_EXHDR(texti)) |
| nodes[i].c = *(unsigned char *) (VARDATA_ANY(texti) + commonLen); |
| else |
| nodes[i].c = -1; /* use -1 if string is all common */ |
| nodes[i].i = i; |
| nodes[i].d = in->datums[i]; |
| } |
| |
| /* |
| * Sort by label values so that we can group the values into nodes. This |
| * also ensures that the nodes are ordered by label value, allowing the |
| * use of binary search in searchChar. |
| */ |
| qsort(nodes, in->nTuples, sizeof(*nodes), cmpNodePtr); |
| |
| /* And emit results */ |
| out->nNodes = 0; |
| out->nodeLabels = (Datum *) palloc(sizeof(Datum) * in->nTuples); |
| out->mapTuplesToNodes = (int *) palloc(sizeof(int) * in->nTuples); |
| out->leafTupleDatums = (Datum *) palloc(sizeof(Datum) * in->nTuples); |
| |
| for (i = 0; i < in->nTuples; i++) |
| { |
| text *texti = DatumGetTextPP(nodes[i].d); |
| Datum leafD; |
| |
| if (i == 0 || nodes[i].c != nodes[i - 1].c) |
| { |
| out->nodeLabels[out->nNodes] = Int16GetDatum(nodes[i].c); |
| out->nNodes++; |
| } |
| |
| if (commonLen < VARSIZE_ANY_EXHDR(texti)) |
| leafD = formTextDatum(VARDATA_ANY(texti) + commonLen + 1, |
| VARSIZE_ANY_EXHDR(texti) - commonLen - 1); |
| else |
| leafD = formTextDatum(NULL, 0); |
| |
| out->leafTupleDatums[nodes[i].i] = leafD; |
| out->mapTuplesToNodes[nodes[i].i] = out->nNodes - 1; |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| |
| Datum |
| spg_text_inner_consistent(PG_FUNCTION_ARGS) |
| { |
| spgInnerConsistentIn *in = (spgInnerConsistentIn *) PG_GETARG_POINTER(0); |
| spgInnerConsistentOut *out = (spgInnerConsistentOut *) PG_GETARG_POINTER(1); |
| bool collate_is_c = lc_collate_is_c(PG_GET_COLLATION()); |
| text *reconstructedValue; |
| text *reconstrText; |
| int maxReconstrLen; |
| text *prefixText = NULL; |
| int prefixSize = 0; |
| int i; |
| |
| /* |
| * Reconstruct values represented at this tuple, including parent data, |
| * prefix of this tuple if any, and the node label if it's non-dummy. |
| * in->level should be the length of the previously reconstructed value, |
| * and the number of bytes added here is prefixSize or prefixSize + 1. |
| * |
| * Note: we assume that in->reconstructedValue isn't toasted and doesn't |
| * have a short varlena header. This is okay because it must have been |
| * created by a previous invocation of this routine, and we always emit |
| * long-format reconstructed values. |
| */ |
| reconstructedValue = (text *) DatumGetPointer(in->reconstructedValue); |
| Assert(reconstructedValue == NULL ? in->level == 0 : |
| VARSIZE_ANY_EXHDR(reconstructedValue) == in->level); |
| |
| maxReconstrLen = in->level + 1; |
| if (in->hasPrefix) |
| { |
| prefixText = DatumGetTextPP(in->prefixDatum); |
| prefixSize = VARSIZE_ANY_EXHDR(prefixText); |
| maxReconstrLen += prefixSize; |
| } |
| |
| reconstrText = palloc(VARHDRSZ + maxReconstrLen); |
| SET_VARSIZE(reconstrText, VARHDRSZ + maxReconstrLen); |
| |
| if (in->level) |
| memcpy(VARDATA(reconstrText), |
| VARDATA(reconstructedValue), |
| in->level); |
| if (prefixSize) |
| memcpy(((char *) VARDATA(reconstrText)) + in->level, |
| VARDATA_ANY(prefixText), |
| prefixSize); |
| /* last byte of reconstrText will be filled in below */ |
| |
| /* |
| * Scan the child nodes. For each one, complete the reconstructed value |
| * and see if it's consistent with the query. If so, emit an entry into |
| * the output arrays. |
| */ |
| out->nodeNumbers = (int *) palloc(sizeof(int) * in->nNodes); |
| out->levelAdds = (int *) palloc(sizeof(int) * in->nNodes); |
| out->reconstructedValues = (Datum *) palloc(sizeof(Datum) * in->nNodes); |
| out->nNodes = 0; |
| |
| for (i = 0; i < in->nNodes; i++) |
| { |
| int16 nodeChar = DatumGetInt16(in->nodeLabels[i]); |
| int thisLen; |
| bool res = true; |
| int j; |
| |
| /* If nodeChar is a dummy value, don't include it in data */ |
| if (nodeChar <= 0) |
| thisLen = maxReconstrLen - 1; |
| else |
| { |
| ((unsigned char *) VARDATA(reconstrText))[maxReconstrLen - 1] = nodeChar; |
| thisLen = maxReconstrLen; |
| } |
| |
| for (j = 0; j < in->nkeys; j++) |
| { |
| StrategyNumber strategy = in->scankeys[j].sk_strategy; |
| text *inText; |
| int inSize; |
| int r; |
| |
| /* |
| * If it's a collation-aware operator, but the collation is C, we |
| * can treat it as non-collation-aware. With non-C collation we |
| * need to traverse whole tree :-( so there's no point in making |
| * any check here. (Note also that our reconstructed value may |
| * well end with a partial multibyte character, so that applying |
| * any encoding-sensitive test to it would be risky anyhow.) |
| */ |
| if (SPG_IS_COLLATION_AWARE_STRATEGY(strategy)) |
| { |
| if (collate_is_c) |
| strategy -= SPG_STRATEGY_ADDITION; |
| else |
| continue; |
| } |
| |
| inText = DatumGetTextPP(in->scankeys[j].sk_argument); |
| inSize = VARSIZE_ANY_EXHDR(inText); |
| |
| r = memcmp(VARDATA(reconstrText), VARDATA_ANY(inText), |
| Min(inSize, thisLen)); |
| |
| switch (strategy) |
| { |
| case BTLessStrategyNumber: |
| case BTLessEqualStrategyNumber: |
| if (r > 0) |
| res = false; |
| break; |
| case BTEqualStrategyNumber: |
| if (r != 0 || inSize < thisLen) |
| res = false; |
| break; |
| case BTGreaterEqualStrategyNumber: |
| case BTGreaterStrategyNumber: |
| if (r < 0) |
| res = false; |
| break; |
| case RTPrefixStrategyNumber: |
| if (r != 0) |
| res = false; |
| break; |
| default: |
| elog(ERROR, "unrecognized strategy number: %d", |
| in->scankeys[j].sk_strategy); |
| break; |
| } |
| |
| if (!res) |
| break; /* no need to consider remaining conditions */ |
| } |
| |
| if (res) |
| { |
| out->nodeNumbers[out->nNodes] = i; |
| out->levelAdds[out->nNodes] = thisLen - in->level; |
| SET_VARSIZE(reconstrText, VARHDRSZ + thisLen); |
| out->reconstructedValues[out->nNodes] = |
| datumCopy(PointerGetDatum(reconstrText), false, -1); |
| out->nNodes++; |
| } |
| } |
| |
| PG_RETURN_VOID(); |
| } |
| |
| Datum |
| spg_text_leaf_consistent(PG_FUNCTION_ARGS) |
| { |
| spgLeafConsistentIn *in = (spgLeafConsistentIn *) PG_GETARG_POINTER(0); |
| spgLeafConsistentOut *out = (spgLeafConsistentOut *) PG_GETARG_POINTER(1); |
| int level = in->level; |
| text *leafValue, |
| *reconstrValue = NULL; |
| char *fullValue; |
| int fullLen; |
| bool res; |
| int j; |
| |
| /* all tests are exact */ |
| out->recheck = false; |
| |
| leafValue = DatumGetTextPP(in->leafDatum); |
| |
| /* As above, in->reconstructedValue isn't toasted or short. */ |
| if (DatumGetPointer(in->reconstructedValue)) |
| reconstrValue = (text *) DatumGetPointer(in->reconstructedValue); |
| |
| Assert(reconstrValue == NULL ? level == 0 : |
| VARSIZE_ANY_EXHDR(reconstrValue) == level); |
| |
| /* Reconstruct the full string represented by this leaf tuple */ |
| fullLen = level + VARSIZE_ANY_EXHDR(leafValue); |
| if (VARSIZE_ANY_EXHDR(leafValue) == 0 && level > 0) |
| { |
| fullValue = VARDATA(reconstrValue); |
| out->leafValue = PointerGetDatum(reconstrValue); |
| } |
| else |
| { |
| text *fullText = palloc(VARHDRSZ + fullLen); |
| |
| SET_VARSIZE(fullText, VARHDRSZ + fullLen); |
| fullValue = VARDATA(fullText); |
| if (level) |
| memcpy(fullValue, VARDATA(reconstrValue), level); |
| if (VARSIZE_ANY_EXHDR(leafValue) > 0) |
| memcpy(fullValue + level, VARDATA_ANY(leafValue), |
| VARSIZE_ANY_EXHDR(leafValue)); |
| out->leafValue = PointerGetDatum(fullText); |
| } |
| |
| /* Perform the required comparison(s) */ |
| res = true; |
| for (j = 0; j < in->nkeys; j++) |
| { |
| StrategyNumber strategy = in->scankeys[j].sk_strategy; |
| text *query = DatumGetTextPP(in->scankeys[j].sk_argument); |
| int queryLen = VARSIZE_ANY_EXHDR(query); |
| int r; |
| |
| if (strategy == RTPrefixStrategyNumber) |
| { |
| /* |
| * if level >= length of query then reconstrValue must begin with |
| * query (prefix) string, so we don't need to check it again. |
| */ |
| res = (level >= queryLen) || |
| DatumGetBool(DirectFunctionCall2Coll(text_starts_with, |
| PG_GET_COLLATION(), |
| out->leafValue, |
| PointerGetDatum(query))); |
| |
| if (!res) /* no need to consider remaining conditions */ |
| break; |
| |
| continue; |
| } |
| |
| if (SPG_IS_COLLATION_AWARE_STRATEGY(strategy)) |
| { |
| /* Collation-aware comparison */ |
| strategy -= SPG_STRATEGY_ADDITION; |
| |
| /* If asserts enabled, verify encoding of reconstructed string */ |
| Assert(pg_verifymbstr(fullValue, fullLen, false)); |
| |
| r = varstr_cmp(fullValue, fullLen, |
| VARDATA_ANY(query), queryLen, |
| PG_GET_COLLATION()); |
| } |
| else |
| { |
| /* Non-collation-aware comparison */ |
| r = memcmp(fullValue, VARDATA_ANY(query), Min(queryLen, fullLen)); |
| |
| if (r == 0) |
| { |
| if (queryLen > fullLen) |
| r = -1; |
| else if (queryLen < fullLen) |
| r = 1; |
| } |
| } |
| |
| switch (strategy) |
| { |
| case BTLessStrategyNumber: |
| res = (r < 0); |
| break; |
| case BTLessEqualStrategyNumber: |
| res = (r <= 0); |
| break; |
| case BTEqualStrategyNumber: |
| res = (r == 0); |
| break; |
| case BTGreaterEqualStrategyNumber: |
| res = (r >= 0); |
| break; |
| case BTGreaterStrategyNumber: |
| res = (r > 0); |
| break; |
| default: |
| elog(ERROR, "unrecognized strategy number: %d", |
| in->scankeys[j].sk_strategy); |
| res = false; |
| break; |
| } |
| |
| if (!res) |
| break; /* no need to consider remaining conditions */ |
| } |
| |
| PG_RETURN_BOOL(res); |
| } |