| /* |
| * contrib/tablefunc/tablefunc.c |
| * |
| * |
| * tablefunc |
| * |
| * Sample to demonstrate C functions which return setof scalar |
| * and setof composite. |
| * Joe Conway <mail@joeconway.com> |
| * And contributors: |
| * Nabil Sayegh <postgresql@e-trolley.de> |
| * |
| * Copyright (c) 2002-2023, PostgreSQL Global Development Group |
| * |
| * Permission to use, copy, modify, and distribute this software and its |
| * documentation for any purpose, without fee, and without a written agreement |
| * is hereby granted, provided that the above copyright notice and this |
| * paragraph and the following two paragraphs appear in all copies. |
| * |
| * IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR |
| * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING |
| * LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS |
| * DOCUMENTATION, EVEN IF THE AUTHOR OR DISTRIBUTORS HAVE BEEN ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGE. |
| * |
| * THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, |
| * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY |
| * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
| * ON AN "AS IS" BASIS, AND THE AUTHOR AND DISTRIBUTORS HAS NO OBLIGATIONS TO |
| * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
| * |
| */ |
| #include "postgres.h" |
| |
| #include <math.h> |
| |
| #include "access/htup_details.h" |
| #include "catalog/pg_type.h" |
| #include "common/pg_prng.h" |
| #include "executor/spi.h" |
| #include "funcapi.h" |
| #include "lib/stringinfo.h" |
| #include "miscadmin.h" |
| #include "tablefunc.h" |
| #include "utils/builtins.h" |
| |
| PG_MODULE_MAGIC; |
| |
| static HTAB *load_categories_hash(char *cats_sql, MemoryContext per_query_ctx); |
| static Tuplestorestate *get_crosstab_tuplestore(char *sql, |
| HTAB *crosstab_hash, |
| TupleDesc tupdesc, |
| bool randomAccess); |
| static void validateConnectbyTupleDesc(TupleDesc td, bool show_branch, bool show_serial); |
| static bool compatCrosstabTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc); |
| static void compatConnectbyTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc); |
| static void get_normal_pair(float8 *x1, float8 *x2); |
| static Tuplestorestate *connectby(char *relname, |
| char *key_fld, |
| char *parent_key_fld, |
| char *orderby_fld, |
| char *branch_delim, |
| char *start_with, |
| int max_depth, |
| bool show_branch, |
| bool show_serial, |
| MemoryContext per_query_ctx, |
| bool randomAccess, |
| AttInMetadata *attinmeta); |
| static void build_tuplestore_recursively(char *key_fld, |
| char *parent_key_fld, |
| char *relname, |
| char *orderby_fld, |
| char *branch_delim, |
| char *start_with, |
| char *branch, |
| int level, |
| int *serial, |
| int max_depth, |
| bool show_branch, |
| bool show_serial, |
| MemoryContext per_query_ctx, |
| AttInMetadata *attinmeta, |
| Tuplestorestate *tupstore); |
| |
| typedef struct |
| { |
| float8 mean; /* mean of the distribution */ |
| float8 stddev; /* stddev of the distribution */ |
| float8 carry_val; /* hold second generated value */ |
| bool use_carry; /* use second generated value */ |
| } normal_rand_fctx; |
| |
| #define xpfree(var_) \ |
| do { \ |
| if (var_ != NULL) \ |
| { \ |
| pfree(var_); \ |
| var_ = NULL; \ |
| } \ |
| } while (0) |
| |
| #define xpstrdup(tgtvar_, srcvar_) \ |
| do { \ |
| if (srcvar_) \ |
| tgtvar_ = pstrdup(srcvar_); \ |
| else \ |
| tgtvar_ = NULL; \ |
| } while (0) |
| |
| #define xstreq(tgtvar_, srcvar_) \ |
| (((tgtvar_ == NULL) && (srcvar_ == NULL)) || \ |
| ((tgtvar_ != NULL) && (srcvar_ != NULL) && (strcmp(tgtvar_, srcvar_) == 0))) |
| |
| /* sign, 10 digits, '\0' */ |
| #define INT32_STRLEN 12 |
| |
| /* stored info for a crosstab category */ |
| typedef struct crosstab_cat_desc |
| { |
| char *catname; /* full category name */ |
| uint64 attidx; /* zero based */ |
| } crosstab_cat_desc; |
| |
| #define MAX_CATNAME_LEN NAMEDATALEN |
| #define INIT_CATS 64 |
| |
| #define crosstab_HashTableLookup(HASHTAB, CATNAME, CATDESC) \ |
| do { \ |
| crosstab_HashEnt *hentry; char key[MAX_CATNAME_LEN]; \ |
| \ |
| MemSet(key, 0, MAX_CATNAME_LEN); \ |
| snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATNAME); \ |
| hentry = (crosstab_HashEnt*) hash_search(HASHTAB, \ |
| key, HASH_FIND, NULL); \ |
| if (hentry) \ |
| CATDESC = hentry->catdesc; \ |
| else \ |
| CATDESC = NULL; \ |
| } while(0) |
| |
| #define crosstab_HashTableInsert(HASHTAB, CATDESC) \ |
| do { \ |
| crosstab_HashEnt *hentry; bool found; char key[MAX_CATNAME_LEN]; \ |
| \ |
| MemSet(key, 0, MAX_CATNAME_LEN); \ |
| snprintf(key, MAX_CATNAME_LEN - 1, "%s", CATDESC->catname); \ |
| hentry = (crosstab_HashEnt*) hash_search(HASHTAB, \ |
| key, HASH_ENTER, &found); \ |
| if (found) \ |
| ereport(ERROR, \ |
| (errcode(ERRCODE_DUPLICATE_OBJECT), \ |
| errmsg("duplicate category name"))); \ |
| hentry->catdesc = CATDESC; \ |
| } while(0) |
| |
| /* hash table */ |
| typedef struct crosstab_hashent |
| { |
| char internal_catname[MAX_CATNAME_LEN]; |
| crosstab_cat_desc *catdesc; |
| } crosstab_HashEnt; |
| |
| /* |
| * normal_rand - return requested number of random values |
| * with a Gaussian (Normal) distribution. |
| * |
| * inputs are int numvals, float8 mean, and float8 stddev |
| * returns setof float8 |
| */ |
| PG_FUNCTION_INFO_V1(normal_rand); |
| Datum |
| normal_rand(PG_FUNCTION_ARGS) |
| { |
| FuncCallContext *funcctx; |
| uint64 call_cntr; |
| uint64 max_calls; |
| normal_rand_fctx *fctx; |
| float8 mean; |
| float8 stddev; |
| float8 carry_val; |
| bool use_carry; |
| MemoryContext oldcontext; |
| |
| /* stuff done only on the first call of the function */ |
| if (SRF_IS_FIRSTCALL()) |
| { |
| int32 num_tuples; |
| |
| /* create a function context for cross-call persistence */ |
| funcctx = SRF_FIRSTCALL_INIT(); |
| |
| /* |
| * switch to memory context appropriate for multiple function calls |
| */ |
| oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx); |
| |
| /* total number of tuples to be returned */ |
| num_tuples = PG_GETARG_INT32(0); |
| if (num_tuples < 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("number of rows cannot be negative"))); |
| funcctx->max_calls = num_tuples; |
| |
| /* allocate memory for user context */ |
| fctx = (normal_rand_fctx *) palloc(sizeof(normal_rand_fctx)); |
| |
| /* |
| * Use fctx to keep track of upper and lower bounds from call to call. |
| * It will also be used to carry over the spare value we get from the |
| * Box-Muller algorithm so that we only actually calculate a new value |
| * every other call. |
| */ |
| fctx->mean = PG_GETARG_FLOAT8(1); |
| fctx->stddev = PG_GETARG_FLOAT8(2); |
| fctx->carry_val = 0; |
| fctx->use_carry = false; |
| |
| funcctx->user_fctx = fctx; |
| |
| MemoryContextSwitchTo(oldcontext); |
| } |
| |
| /* stuff done on every call of the function */ |
| funcctx = SRF_PERCALL_SETUP(); |
| |
| call_cntr = funcctx->call_cntr; |
| max_calls = funcctx->max_calls; |
| fctx = funcctx->user_fctx; |
| mean = fctx->mean; |
| stddev = fctx->stddev; |
| carry_val = fctx->carry_val; |
| use_carry = fctx->use_carry; |
| |
| if (call_cntr < max_calls) /* do when there is more left to send */ |
| { |
| float8 result; |
| |
| if (use_carry) |
| { |
| /* |
| * reset use_carry and use second value obtained on last pass |
| */ |
| fctx->use_carry = false; |
| result = carry_val; |
| } |
| else |
| { |
| float8 normval_1; |
| float8 normval_2; |
| |
| /* Get the next two normal values */ |
| get_normal_pair(&normval_1, &normval_2); |
| |
| /* use the first */ |
| result = mean + (stddev * normval_1); |
| |
| /* and save the second */ |
| fctx->carry_val = mean + (stddev * normval_2); |
| fctx->use_carry = true; |
| } |
| |
| /* send the result */ |
| SRF_RETURN_NEXT(funcctx, Float8GetDatum(result)); |
| } |
| else |
| /* do when there is no more left */ |
| SRF_RETURN_DONE(funcctx); |
| } |
| |
| /* |
| * get_normal_pair() |
| * Assigns normally distributed (Gaussian) values to a pair of provided |
| * parameters, with mean 0, standard deviation 1. |
| * |
| * This routine implements Algorithm P (Polar method for normal deviates) |
| * from Knuth's _The_Art_of_Computer_Programming_, Volume 2, 3rd ed., pages |
| * 122-126. Knuth cites his source as "The polar method", G. E. P. Box, M. E. |
| * Muller, and G. Marsaglia, _Annals_Math,_Stat._ 29 (1958), 610-611. |
| * |
| */ |
| static void |
| get_normal_pair(float8 *x1, float8 *x2) |
| { |
| float8 u1, |
| u2, |
| v1, |
| v2, |
| s; |
| |
| do |
| { |
| u1 = pg_prng_double(&pg_global_prng_state); |
| u2 = pg_prng_double(&pg_global_prng_state); |
| |
| v1 = (2.0 * u1) - 1.0; |
| v2 = (2.0 * u2) - 1.0; |
| |
| s = v1 * v1 + v2 * v2; |
| } while (s >= 1.0); |
| |
| if (s == 0) |
| { |
| *x1 = 0; |
| *x2 = 0; |
| } |
| else |
| { |
| s = sqrt((-2.0 * log(s)) / s); |
| *x1 = v1 * s; |
| *x2 = v2 * s; |
| } |
| } |
| |
| /* |
| * crosstab - create a crosstab of rowids and values columns from a |
| * SQL statement returning one rowid column, one category column, |
| * and one value column. |
| * |
| * e.g. given sql which produces: |
| * |
| * rowid cat value |
| * ------+-------+------- |
| * row1 cat1 val1 |
| * row1 cat2 val2 |
| * row1 cat3 val3 |
| * row1 cat4 val4 |
| * row2 cat1 val5 |
| * row2 cat2 val6 |
| * row2 cat3 val7 |
| * row2 cat4 val8 |
| * |
| * crosstab returns: |
| * <===== values columns =====> |
| * rowid cat1 cat2 cat3 cat4 |
| * ------+-------+-------+-------+------- |
| * row1 val1 val2 val3 val4 |
| * row2 val5 val6 val7 val8 |
| * |
| * NOTES: |
| * 1. SQL result must be ordered by 1,2. |
| * 2. The number of values columns depends on the tuple description |
| * of the function's declared return type. The return type's columns |
| * must match the datatypes of the SQL query's result. The datatype |
| * of the category column can be anything, however. |
| * 3. Missing values (i.e. not enough adjacent rows of same rowid to |
| * fill the number of result values columns) are filled in with nulls. |
| * 4. Extra values (i.e. too many adjacent rows of same rowid to fill |
| * the number of result values columns) are skipped. |
| * 5. Rows with all nulls in the values columns are skipped. |
| */ |
| PG_FUNCTION_INFO_V1(crosstab); |
| Datum |
| crosstab(PG_FUNCTION_ARGS) |
| { |
| char *sql = text_to_cstring(PG_GETARG_TEXT_PP(0)); |
| ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| Tuplestorestate *tupstore; |
| TupleDesc tupdesc; |
| uint64 call_cntr; |
| uint64 max_calls; |
| AttInMetadata *attinmeta; |
| SPITupleTable *spi_tuptable; |
| TupleDesc spi_tupdesc; |
| bool firstpass; |
| char *lastrowid; |
| int i; |
| int num_categories; |
| MemoryContext per_query_ctx; |
| MemoryContext oldcontext; |
| int ret; |
| uint64 proc; |
| |
| /* check to see if caller supports us returning a tuplestore */ |
| if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("set-valued function called in context that cannot accept a set"))); |
| if (!(rsinfo->allowedModes & SFRM_Materialize)) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("materialize mode required, but it is not allowed in this context"))); |
| |
| per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
| |
| /* Connect to SPI manager */ |
| if ((ret = SPI_connect()) < 0) |
| /* internal error */ |
| elog(ERROR, "crosstab: SPI_connect returned %d", ret); |
| |
| /* Retrieve the desired rows */ |
| ret = SPI_execute(sql, true, 0); |
| proc = SPI_processed; |
| |
| /* If no qualifying tuples, fall out early */ |
| if (ret != SPI_OK_SELECT || proc == 0) |
| { |
| SPI_finish(); |
| rsinfo->isDone = ExprEndResult; |
| PG_RETURN_NULL(); |
| } |
| |
| spi_tuptable = SPI_tuptable; |
| spi_tupdesc = spi_tuptable->tupdesc; |
| |
| /*---------- |
| * The provided SQL query must always return three columns. |
| * |
| * 1. rowname |
| * the label or identifier for each row in the final result |
| * 2. category |
| * the label or identifier for each column in the final result |
| * 3. values |
| * the value for each column in the final result |
| *---------- |
| */ |
| if (spi_tupdesc->natts != 3) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("invalid source data SQL statement"), |
| errdetail("The provided SQL must return 3 " |
| "columns: rowid, category, and values."))); |
| |
| /* get a tuple descriptor for our result type */ |
| switch (get_call_result_type(fcinfo, NULL, &tupdesc)) |
| { |
| case TYPEFUNC_COMPOSITE: |
| /* success */ |
| break; |
| case TYPEFUNC_RECORD: |
| /* failed to determine actual type of RECORD */ |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("function returning record called in context " |
| "that cannot accept type record"))); |
| break; |
| default: |
| /* result type isn't composite */ |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("return type must be a row type"))); |
| break; |
| } |
| |
| /* |
| * Check that return tupdesc is compatible with the data we got from SPI, |
| * at least based on number and type of attributes |
| */ |
| if (!compatCrosstabTupleDescs(tupdesc, spi_tupdesc)) |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("return and sql tuple descriptions are " \ |
| "incompatible"))); |
| |
| /* |
| * switch to long-lived memory context |
| */ |
| oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| /* make sure we have a persistent copy of the result tupdesc */ |
| tupdesc = CreateTupleDescCopy(tupdesc); |
| |
| /* initialize our tuplestore in long-lived context */ |
| tupstore = |
| tuplestore_begin_heap(rsinfo->allowedModes & SFRM_Materialize_Random, |
| false, work_mem); |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* |
| * Generate attribute metadata needed later to produce tuples from raw C |
| * strings |
| */ |
| attinmeta = TupleDescGetAttInMetadata(tupdesc); |
| |
| /* total number of tuples to be examined */ |
| max_calls = proc; |
| |
| /* the return tuple always must have 1 rowid + num_categories columns */ |
| num_categories = tupdesc->natts - 1; |
| |
| firstpass = true; |
| lastrowid = NULL; |
| |
| for (call_cntr = 0; call_cntr < max_calls; call_cntr++) |
| { |
| bool skip_tuple = false; |
| char **values; |
| |
| /* allocate and zero space */ |
| values = (char **) palloc0((1 + num_categories) * sizeof(char *)); |
| |
| /* |
| * now loop through the sql results and assign each value in sequence |
| * to the next category |
| */ |
| for (i = 0; i < num_categories; i++) |
| { |
| HeapTuple spi_tuple; |
| char *rowid; |
| |
| /* see if we've gone too far already */ |
| if (call_cntr >= max_calls) |
| break; |
| |
| /* get the next sql result tuple */ |
| spi_tuple = spi_tuptable->vals[call_cntr]; |
| |
| /* get the rowid from the current sql result tuple */ |
| rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1); |
| |
| /* |
| * If this is the first pass through the values for this rowid, |
| * set the first column to rowid |
| */ |
| if (i == 0) |
| { |
| xpstrdup(values[0], rowid); |
| |
| /* |
| * Check to see if the rowid is the same as that of the last |
| * tuple sent -- if so, skip this tuple entirely |
| */ |
| if (!firstpass && xstreq(lastrowid, rowid)) |
| { |
| xpfree(rowid); |
| skip_tuple = true; |
| break; |
| } |
| } |
| |
| /* |
| * If rowid hasn't changed on us, continue building the output |
| * tuple. |
| */ |
| if (xstreq(rowid, values[0])) |
| { |
| /* |
| * Get the next category item value, which is always attribute |
| * number three. |
| * |
| * Be careful to assign the value to the array index based on |
| * which category we are presently processing. |
| */ |
| values[1 + i] = SPI_getvalue(spi_tuple, spi_tupdesc, 3); |
| |
| /* |
| * increment the counter since we consume a row for each |
| * category, but not for last pass because the outer loop will |
| * do that for us |
| */ |
| if (i < (num_categories - 1)) |
| call_cntr++; |
| xpfree(rowid); |
| } |
| else |
| { |
| /* |
| * We'll fill in NULLs for the missing values, but we need to |
| * decrement the counter since this sql result row doesn't |
| * belong to the current output tuple. |
| */ |
| call_cntr--; |
| xpfree(rowid); |
| break; |
| } |
| } |
| |
| if (!skip_tuple) |
| { |
| HeapTuple tuple; |
| |
| /* build the tuple and store it */ |
| tuple = BuildTupleFromCStrings(attinmeta, values); |
| tuplestore_puttuple(tupstore, tuple); |
| heap_freetuple(tuple); |
| } |
| |
| /* Remember current rowid */ |
| xpfree(lastrowid); |
| xpstrdup(lastrowid, values[0]); |
| firstpass = false; |
| |
| /* Clean up */ |
| for (i = 0; i < num_categories + 1; i++) |
| if (values[i] != NULL) |
| pfree(values[i]); |
| pfree(values); |
| } |
| |
| /* let the caller know we're sending back a tuplestore */ |
| rsinfo->returnMode = SFRM_Materialize; |
| rsinfo->setResult = tupstore; |
| rsinfo->setDesc = tupdesc; |
| |
| /* release SPI related resources (and return to caller's context) */ |
| SPI_finish(); |
| |
| return (Datum) 0; |
| } |
| |
| /* |
| * crosstab_hash - reimplement crosstab as materialized function and |
| * properly deal with missing values (i.e. don't pack remaining |
| * values to the left) |
| * |
| * crosstab - create a crosstab of rowids and values columns from a |
| * SQL statement returning one rowid column, one category column, |
| * and one value column. |
| * |
| * e.g. given sql which produces: |
| * |
| * rowid cat value |
| * ------+-------+------- |
| * row1 cat1 val1 |
| * row1 cat2 val2 |
| * row1 cat4 val4 |
| * row2 cat1 val5 |
| * row2 cat2 val6 |
| * row2 cat3 val7 |
| * row2 cat4 val8 |
| * |
| * crosstab returns: |
| * <===== values columns =====> |
| * rowid cat1 cat2 cat3 cat4 |
| * ------+-------+-------+-------+------- |
| * row1 val1 val2 null val4 |
| * row2 val5 val6 val7 val8 |
| * |
| * NOTES: |
| * 1. SQL result must be ordered by 1. |
| * 2. The number of values columns depends on the tuple description |
| * of the function's declared return type. |
| * 3. Missing values (i.e. missing category) are filled in with nulls. |
| * 4. Extra values (i.e. not in category results) are skipped. |
| */ |
| PG_FUNCTION_INFO_V1(crosstab_hash); |
| Datum |
| crosstab_hash(PG_FUNCTION_ARGS) |
| { |
| char *sql = text_to_cstring(PG_GETARG_TEXT_PP(0)); |
| char *cats_sql = text_to_cstring(PG_GETARG_TEXT_PP(1)); |
| ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| TupleDesc tupdesc; |
| MemoryContext per_query_ctx; |
| MemoryContext oldcontext; |
| HTAB *crosstab_hash; |
| |
| /* check to see if caller supports us returning a tuplestore */ |
| if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("set-valued function called in context that cannot accept a set"))); |
| if (!(rsinfo->allowedModes & SFRM_Materialize) || |
| rsinfo->expectedDesc == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("materialize mode required, but it is not allowed in this context"))); |
| |
| per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
| oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| /* get the requested return tuple description */ |
| tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc); |
| |
| /* |
| * Check to make sure we have a reasonable tuple descriptor |
| * |
| * Note we will attempt to coerce the values into whatever the return |
| * attribute type is and depend on the "in" function to complain if |
| * needed. |
| */ |
| if (tupdesc->natts < 2) |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("query-specified return tuple and " \ |
| "crosstab function are not compatible"))); |
| |
| /* load up the categories hash table */ |
| crosstab_hash = load_categories_hash(cats_sql, per_query_ctx); |
| |
| /* let the caller know we're sending back a tuplestore */ |
| rsinfo->returnMode = SFRM_Materialize; |
| |
| /* now go build it */ |
| rsinfo->setResult = get_crosstab_tuplestore(sql, |
| crosstab_hash, |
| tupdesc, |
| rsinfo->allowedModes & SFRM_Materialize_Random); |
| |
| /* |
| * SFRM_Materialize mode expects us to return a NULL Datum. The actual |
| * tuples are in our tuplestore and passed back through rsinfo->setResult. |
| * rsinfo->setDesc is set to the tuple description that we actually used |
| * to build our tuples with, so the caller can verify we did what it was |
| * expecting. |
| */ |
| rsinfo->setDesc = tupdesc; |
| MemoryContextSwitchTo(oldcontext); |
| |
| return (Datum) 0; |
| } |
| |
| /* |
| * load up the categories hash table |
| */ |
| static HTAB * |
| load_categories_hash(char *cats_sql, MemoryContext per_query_ctx) |
| { |
| HTAB *crosstab_hash; |
| HASHCTL ctl; |
| int ret; |
| uint64 proc; |
| MemoryContext SPIcontext; |
| |
| /* initialize the category hash table */ |
| ctl.keysize = MAX_CATNAME_LEN; |
| ctl.entrysize = sizeof(crosstab_HashEnt); |
| ctl.hcxt = per_query_ctx; |
| |
| /* |
| * use INIT_CATS, defined above as a guess of how many hash table entries |
| * to create, initially |
| */ |
| crosstab_hash = hash_create("crosstab hash", |
| INIT_CATS, |
| &ctl, |
| HASH_ELEM | HASH_STRINGS | HASH_CONTEXT); |
| |
| /* Connect to SPI manager */ |
| if ((ret = SPI_connect()) < 0) |
| /* internal error */ |
| elog(ERROR, "load_categories_hash: SPI_connect returned %d", ret); |
| |
| /* Retrieve the category name rows */ |
| ret = SPI_execute(cats_sql, true, 0); |
| proc = SPI_processed; |
| |
| /* Check for qualifying tuples */ |
| if ((ret == SPI_OK_SELECT) && (proc > 0)) |
| { |
| SPITupleTable *spi_tuptable = SPI_tuptable; |
| TupleDesc spi_tupdesc = spi_tuptable->tupdesc; |
| uint64 i; |
| |
| /* |
| * The provided categories SQL query must always return one column: |
| * category - the label or identifier for each column |
| */ |
| if (spi_tupdesc->natts != 1) |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("provided \"categories\" SQL must " \ |
| "return 1 column of at least one row"))); |
| |
| for (i = 0; i < proc; i++) |
| { |
| crosstab_cat_desc *catdesc; |
| char *catname; |
| HeapTuple spi_tuple; |
| |
| /* get the next sql result tuple */ |
| spi_tuple = spi_tuptable->vals[i]; |
| |
| /* get the category from the current sql result tuple */ |
| catname = SPI_getvalue(spi_tuple, spi_tupdesc, 1); |
| if (catname == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("provided \"categories\" SQL must " \ |
| "not return NULL values"))); |
| |
| SPIcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| catdesc = (crosstab_cat_desc *) palloc(sizeof(crosstab_cat_desc)); |
| catdesc->catname = catname; |
| catdesc->attidx = i; |
| |
| /* Add the proc description block to the hashtable */ |
| crosstab_HashTableInsert(crosstab_hash, catdesc); |
| |
| MemoryContextSwitchTo(SPIcontext); |
| } |
| } |
| |
| if (SPI_finish() != SPI_OK_FINISH) |
| /* internal error */ |
| elog(ERROR, "load_categories_hash: SPI_finish() failed"); |
| |
| return crosstab_hash; |
| } |
| |
| /* |
| * create and populate the crosstab tuplestore using the provided source query |
| */ |
| static Tuplestorestate * |
| get_crosstab_tuplestore(char *sql, |
| HTAB *crosstab_hash, |
| TupleDesc tupdesc, |
| bool randomAccess) |
| { |
| Tuplestorestate *tupstore; |
| int num_categories = hash_get_num_entries(crosstab_hash); |
| AttInMetadata *attinmeta = TupleDescGetAttInMetadata(tupdesc); |
| char **values; |
| HeapTuple tuple; |
| int ret; |
| uint64 proc; |
| |
| /* initialize our tuplestore (while still in query context!) */ |
| tupstore = tuplestore_begin_heap(randomAccess, false, work_mem); |
| |
| /* Connect to SPI manager */ |
| if ((ret = SPI_connect()) < 0) |
| /* internal error */ |
| elog(ERROR, "get_crosstab_tuplestore: SPI_connect returned %d", ret); |
| |
| /* Now retrieve the crosstab source rows */ |
| ret = SPI_execute(sql, true, 0); |
| proc = SPI_processed; |
| |
| /* Check for qualifying tuples */ |
| if ((ret == SPI_OK_SELECT) && (proc > 0)) |
| { |
| SPITupleTable *spi_tuptable = SPI_tuptable; |
| TupleDesc spi_tupdesc = spi_tuptable->tupdesc; |
| int ncols = spi_tupdesc->natts; |
| char *rowid; |
| char *lastrowid = NULL; |
| bool firstpass = true; |
| uint64 i; |
| int j; |
| int result_ncols; |
| |
| if (num_categories == 0) |
| { |
| /* no qualifying category tuples */ |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("provided \"categories\" SQL must " \ |
| "return 1 column of at least one row"))); |
| } |
| |
| /* |
| * The provided SQL query must always return at least three columns: |
| * |
| * 1. rowname the label for each row - column 1 in the final result |
| * 2. category the label for each value-column in the final result 3. |
| * value the values used to populate the value-columns |
| * |
| * If there are more than three columns, the last two are taken as |
| * "category" and "values". The first column is taken as "rowname". |
| * Additional columns (2 thru N-2) are assumed the same for the same |
| * "rowname", and are copied into the result tuple from the first time |
| * we encounter a particular rowname. |
| */ |
| if (ncols < 3) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_PARAMETER_VALUE), |
| errmsg("invalid source data SQL statement"), |
| errdetail("The provided SQL must return 3 " \ |
| " columns; rowid, category, and values."))); |
| |
| result_ncols = (ncols - 2) + num_categories; |
| |
| /* Recheck to make sure we tuple descriptor still looks reasonable */ |
| if (tupdesc->natts != result_ncols) |
| ereport(ERROR, |
| (errcode(ERRCODE_SYNTAX_ERROR), |
| errmsg("invalid return type"), |
| errdetail("Query-specified return " \ |
| "tuple has %d columns but crosstab " \ |
| "returns %d.", tupdesc->natts, result_ncols))); |
| |
| /* allocate space and make sure it's clear */ |
| values = (char **) palloc0(result_ncols * sizeof(char *)); |
| |
| for (i = 0; i < proc; i++) |
| { |
| HeapTuple spi_tuple; |
| crosstab_cat_desc *catdesc; |
| char *catname; |
| |
| /* get the next sql result tuple */ |
| spi_tuple = spi_tuptable->vals[i]; |
| |
| /* get the rowid from the current sql result tuple */ |
| rowid = SPI_getvalue(spi_tuple, spi_tupdesc, 1); |
| |
| /* |
| * if we're on a new output row, grab the column values up to |
| * column N-2 now |
| */ |
| if (firstpass || !xstreq(lastrowid, rowid)) |
| { |
| /* |
| * a new row means we need to flush the old one first, unless |
| * we're on the very first row |
| */ |
| if (!firstpass) |
| { |
| /* rowid changed, flush the previous output row */ |
| tuple = BuildTupleFromCStrings(attinmeta, values); |
| |
| tuplestore_puttuple(tupstore, tuple); |
| |
| for (j = 0; j < result_ncols; j++) |
| xpfree(values[j]); |
| } |
| |
| values[0] = rowid; |
| for (j = 1; j < ncols - 2; j++) |
| values[j] = SPI_getvalue(spi_tuple, spi_tupdesc, j + 1); |
| |
| /* we're no longer on the first pass */ |
| firstpass = false; |
| } |
| |
| /* look up the category and fill in the appropriate column */ |
| catname = SPI_getvalue(spi_tuple, spi_tupdesc, ncols - 1); |
| |
| if (catname != NULL) |
| { |
| crosstab_HashTableLookup(crosstab_hash, catname, catdesc); |
| |
| if (catdesc) |
| values[catdesc->attidx + ncols - 2] = |
| SPI_getvalue(spi_tuple, spi_tupdesc, ncols); |
| } |
| |
| xpfree(lastrowid); |
| xpstrdup(lastrowid, rowid); |
| } |
| |
| /* flush the last output row */ |
| tuple = BuildTupleFromCStrings(attinmeta, values); |
| |
| tuplestore_puttuple(tupstore, tuple); |
| } |
| |
| if (SPI_finish() != SPI_OK_FINISH) |
| /* internal error */ |
| elog(ERROR, "get_crosstab_tuplestore: SPI_finish() failed"); |
| |
| return tupstore; |
| } |
| |
| /* |
| * connectby_text - produce a result set from a hierarchical (parent/child) |
| * table. |
| * |
| * e.g. given table foo: |
| * |
| * keyid parent_keyid pos |
| * ------+------------+-- |
| * row1 NULL 0 |
| * row2 row1 0 |
| * row3 row1 0 |
| * row4 row2 1 |
| * row5 row2 0 |
| * row6 row4 0 |
| * row7 row3 0 |
| * row8 row6 0 |
| * row9 row5 0 |
| * |
| * |
| * connectby(text relname, text keyid_fld, text parent_keyid_fld |
| * [, text orderby_fld], text start_with, int max_depth |
| * [, text branch_delim]) |
| * connectby('foo', 'keyid', 'parent_keyid', 'pos', 'row2', 0, '~') returns: |
| * |
| * keyid parent_id level branch serial |
| * ------+-----------+--------+----------------------- |
| * row2 NULL 0 row2 1 |
| * row5 row2 1 row2~row5 2 |
| * row9 row5 2 row2~row5~row9 3 |
| * row4 row2 1 row2~row4 4 |
| * row6 row4 2 row2~row4~row6 5 |
| * row8 row6 3 row2~row4~row6~row8 6 |
| * |
| */ |
| PG_FUNCTION_INFO_V1(connectby_text); |
| |
| #define CONNECTBY_NCOLS 4 |
| #define CONNECTBY_NCOLS_NOBRANCH 3 |
| |
| Datum |
| connectby_text(PG_FUNCTION_ARGS) |
| { |
| char *relname = text_to_cstring(PG_GETARG_TEXT_PP(0)); |
| char *key_fld = text_to_cstring(PG_GETARG_TEXT_PP(1)); |
| char *parent_key_fld = text_to_cstring(PG_GETARG_TEXT_PP(2)); |
| char *start_with = text_to_cstring(PG_GETARG_TEXT_PP(3)); |
| int max_depth = PG_GETARG_INT32(4); |
| char *branch_delim = NULL; |
| bool show_branch = false; |
| bool show_serial = false; |
| ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| TupleDesc tupdesc; |
| AttInMetadata *attinmeta; |
| MemoryContext per_query_ctx; |
| MemoryContext oldcontext; |
| |
| /* check to see if caller supports us returning a tuplestore */ |
| if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("set-valued function called in context that cannot accept a set"))); |
| if (!(rsinfo->allowedModes & SFRM_Materialize) || |
| rsinfo->expectedDesc == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("materialize mode required, but it is not allowed in this context"))); |
| |
| if (fcinfo->nargs == 6) |
| { |
| branch_delim = text_to_cstring(PG_GETARG_TEXT_PP(5)); |
| show_branch = true; |
| } |
| else |
| /* default is no show, tilde for the delimiter */ |
| branch_delim = pstrdup("~"); |
| |
| per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
| oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| /* get the requested return tuple description */ |
| tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc); |
| |
| /* does it meet our needs */ |
| validateConnectbyTupleDesc(tupdesc, show_branch, show_serial); |
| |
| /* OK, use it then */ |
| attinmeta = TupleDescGetAttInMetadata(tupdesc); |
| |
| /* OK, go to work */ |
| rsinfo->returnMode = SFRM_Materialize; |
| rsinfo->setResult = connectby(relname, |
| key_fld, |
| parent_key_fld, |
| NULL, |
| branch_delim, |
| start_with, |
| max_depth, |
| show_branch, |
| show_serial, |
| per_query_ctx, |
| rsinfo->allowedModes & SFRM_Materialize_Random, |
| attinmeta); |
| rsinfo->setDesc = tupdesc; |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* |
| * SFRM_Materialize mode expects us to return a NULL Datum. The actual |
| * tuples are in our tuplestore and passed back through rsinfo->setResult. |
| * rsinfo->setDesc is set to the tuple description that we actually used |
| * to build our tuples with, so the caller can verify we did what it was |
| * expecting. |
| */ |
| return (Datum) 0; |
| } |
| |
| PG_FUNCTION_INFO_V1(connectby_text_serial); |
| Datum |
| connectby_text_serial(PG_FUNCTION_ARGS) |
| { |
| char *relname = text_to_cstring(PG_GETARG_TEXT_PP(0)); |
| char *key_fld = text_to_cstring(PG_GETARG_TEXT_PP(1)); |
| char *parent_key_fld = text_to_cstring(PG_GETARG_TEXT_PP(2)); |
| char *orderby_fld = text_to_cstring(PG_GETARG_TEXT_PP(3)); |
| char *start_with = text_to_cstring(PG_GETARG_TEXT_PP(4)); |
| int max_depth = PG_GETARG_INT32(5); |
| char *branch_delim = NULL; |
| bool show_branch = false; |
| bool show_serial = true; |
| ReturnSetInfo *rsinfo = (ReturnSetInfo *) fcinfo->resultinfo; |
| TupleDesc tupdesc; |
| AttInMetadata *attinmeta; |
| MemoryContext per_query_ctx; |
| MemoryContext oldcontext; |
| |
| /* check to see if caller supports us returning a tuplestore */ |
| if (rsinfo == NULL || !IsA(rsinfo, ReturnSetInfo)) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("set-valued function called in context that cannot accept a set"))); |
| if (!(rsinfo->allowedModes & SFRM_Materialize) || |
| rsinfo->expectedDesc == NULL) |
| ereport(ERROR, |
| (errcode(ERRCODE_FEATURE_NOT_SUPPORTED), |
| errmsg("materialize mode required, but it is not allowed in this context"))); |
| |
| if (fcinfo->nargs == 7) |
| { |
| branch_delim = text_to_cstring(PG_GETARG_TEXT_PP(6)); |
| show_branch = true; |
| } |
| else |
| /* default is no show, tilde for the delimiter */ |
| branch_delim = pstrdup("~"); |
| |
| per_query_ctx = rsinfo->econtext->ecxt_per_query_memory; |
| oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| /* get the requested return tuple description */ |
| tupdesc = CreateTupleDescCopy(rsinfo->expectedDesc); |
| |
| /* does it meet our needs */ |
| validateConnectbyTupleDesc(tupdesc, show_branch, show_serial); |
| |
| /* OK, use it then */ |
| attinmeta = TupleDescGetAttInMetadata(tupdesc); |
| |
| /* OK, go to work */ |
| rsinfo->returnMode = SFRM_Materialize; |
| rsinfo->setResult = connectby(relname, |
| key_fld, |
| parent_key_fld, |
| orderby_fld, |
| branch_delim, |
| start_with, |
| max_depth, |
| show_branch, |
| show_serial, |
| per_query_ctx, |
| rsinfo->allowedModes & SFRM_Materialize_Random, |
| attinmeta); |
| rsinfo->setDesc = tupdesc; |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* |
| * SFRM_Materialize mode expects us to return a NULL Datum. The actual |
| * tuples are in our tuplestore and passed back through rsinfo->setResult. |
| * rsinfo->setDesc is set to the tuple description that we actually used |
| * to build our tuples with, so the caller can verify we did what it was |
| * expecting. |
| */ |
| return (Datum) 0; |
| } |
| |
| |
| /* |
| * connectby - does the real work for connectby_text() |
| */ |
| static Tuplestorestate * |
| connectby(char *relname, |
| char *key_fld, |
| char *parent_key_fld, |
| char *orderby_fld, |
| char *branch_delim, |
| char *start_with, |
| int max_depth, |
| bool show_branch, |
| bool show_serial, |
| MemoryContext per_query_ctx, |
| bool randomAccess, |
| AttInMetadata *attinmeta) |
| { |
| Tuplestorestate *tupstore = NULL; |
| int ret; |
| MemoryContext oldcontext; |
| |
| int serial = 1; |
| |
| /* Connect to SPI manager */ |
| if ((ret = SPI_connect()) < 0) |
| /* internal error */ |
| elog(ERROR, "connectby: SPI_connect returned %d", ret); |
| |
| /* switch to longer term context to create the tuple store */ |
| oldcontext = MemoryContextSwitchTo(per_query_ctx); |
| |
| /* initialize our tuplestore */ |
| tupstore = tuplestore_begin_heap(randomAccess, false, work_mem); |
| |
| MemoryContextSwitchTo(oldcontext); |
| |
| /* now go get the whole tree */ |
| build_tuplestore_recursively(key_fld, |
| parent_key_fld, |
| relname, |
| orderby_fld, |
| branch_delim, |
| start_with, |
| start_with, /* current_branch */ |
| 0, /* initial level is 0 */ |
| &serial, /* initial serial is 1 */ |
| max_depth, |
| show_branch, |
| show_serial, |
| per_query_ctx, |
| attinmeta, |
| tupstore); |
| |
| SPI_finish(); |
| |
| return tupstore; |
| } |
| |
| static void |
| build_tuplestore_recursively(char *key_fld, |
| char *parent_key_fld, |
| char *relname, |
| char *orderby_fld, |
| char *branch_delim, |
| char *start_with, |
| char *branch, |
| int level, |
| int *serial, |
| int max_depth, |
| bool show_branch, |
| bool show_serial, |
| MemoryContext per_query_ctx, |
| AttInMetadata *attinmeta, |
| Tuplestorestate *tupstore) |
| { |
| TupleDesc tupdesc = attinmeta->tupdesc; |
| int ret; |
| uint64 proc; |
| int serial_column; |
| StringInfoData sql; |
| char **values; |
| char *current_key; |
| char *current_key_parent; |
| char current_level[INT32_STRLEN]; |
| char serial_str[INT32_STRLEN]; |
| char *current_branch; |
| HeapTuple tuple; |
| |
| if (max_depth > 0 && level > max_depth) |
| return; |
| |
| initStringInfo(&sql); |
| |
| /* Build initial sql statement */ |
| if (!show_serial) |
| { |
| appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s", |
| key_fld, |
| parent_key_fld, |
| relname, |
| parent_key_fld, |
| quote_literal_cstr(start_with), |
| key_fld, key_fld, parent_key_fld); |
| serial_column = 0; |
| } |
| else |
| { |
| appendStringInfo(&sql, "SELECT %s, %s FROM %s WHERE %s = %s AND %s IS NOT NULL AND %s <> %s ORDER BY %s", |
| key_fld, |
| parent_key_fld, |
| relname, |
| parent_key_fld, |
| quote_literal_cstr(start_with), |
| key_fld, key_fld, parent_key_fld, |
| orderby_fld); |
| serial_column = 1; |
| } |
| |
| if (show_branch) |
| values = (char **) palloc((CONNECTBY_NCOLS + serial_column) * sizeof(char *)); |
| else |
| values = (char **) palloc((CONNECTBY_NCOLS_NOBRANCH + serial_column) * sizeof(char *)); |
| |
| /* First time through, do a little setup */ |
| if (level == 0) |
| { |
| /* root value is the one we initially start with */ |
| values[0] = start_with; |
| |
| /* root value has no parent */ |
| values[1] = NULL; |
| |
| /* root level is 0 */ |
| sprintf(current_level, "%d", level); |
| values[2] = current_level; |
| |
| /* root branch is just starting root value */ |
| if (show_branch) |
| values[3] = start_with; |
| |
| /* root starts the serial with 1 */ |
| if (show_serial) |
| { |
| sprintf(serial_str, "%d", (*serial)++); |
| if (show_branch) |
| values[4] = serial_str; |
| else |
| values[3] = serial_str; |
| } |
| |
| /* construct the tuple */ |
| tuple = BuildTupleFromCStrings(attinmeta, values); |
| |
| /* now store it */ |
| tuplestore_puttuple(tupstore, tuple); |
| |
| /* increment level */ |
| level++; |
| } |
| |
| /* Retrieve the desired rows */ |
| ret = SPI_execute(sql.data, true, 0); |
| proc = SPI_processed; |
| |
| /* Check for qualifying tuples */ |
| if ((ret == SPI_OK_SELECT) && (proc > 0)) |
| { |
| HeapTuple spi_tuple; |
| SPITupleTable *tuptable = SPI_tuptable; |
| TupleDesc spi_tupdesc = tuptable->tupdesc; |
| uint64 i; |
| StringInfoData branchstr; |
| StringInfoData chk_branchstr; |
| StringInfoData chk_current_key; |
| |
| /* |
| * Check that return tupdesc is compatible with the one we got from |
| * the query. |
| */ |
| compatConnectbyTupleDescs(tupdesc, spi_tupdesc); |
| |
| initStringInfo(&branchstr); |
| initStringInfo(&chk_branchstr); |
| initStringInfo(&chk_current_key); |
| |
| for (i = 0; i < proc; i++) |
| { |
| /* initialize branch for this pass */ |
| appendStringInfoString(&branchstr, branch); |
| appendStringInfo(&chk_branchstr, "%s%s%s", branch_delim, branch, branch_delim); |
| |
| /* get the next sql result tuple */ |
| spi_tuple = tuptable->vals[i]; |
| |
| /* get the current key (might be NULL) */ |
| current_key = SPI_getvalue(spi_tuple, spi_tupdesc, 1); |
| |
| /* get the parent key (might be NULL) */ |
| current_key_parent = SPI_getvalue(spi_tuple, spi_tupdesc, 2); |
| |
| /* get the current level */ |
| sprintf(current_level, "%d", level); |
| |
| /* check to see if this key is also an ancestor */ |
| if (current_key) |
| { |
| appendStringInfo(&chk_current_key, "%s%s%s", |
| branch_delim, current_key, branch_delim); |
| if (strstr(chk_branchstr.data, chk_current_key.data)) |
| ereport(ERROR, |
| (errcode(ERRCODE_INVALID_RECURSION), |
| errmsg("infinite recursion detected"))); |
| } |
| |
| /* OK, extend the branch */ |
| if (current_key) |
| appendStringInfo(&branchstr, "%s%s", branch_delim, current_key); |
| current_branch = branchstr.data; |
| |
| /* build a tuple */ |
| values[0] = current_key; |
| values[1] = current_key_parent; |
| values[2] = current_level; |
| if (show_branch) |
| values[3] = current_branch; |
| if (show_serial) |
| { |
| sprintf(serial_str, "%d", (*serial)++); |
| if (show_branch) |
| values[4] = serial_str; |
| else |
| values[3] = serial_str; |
| } |
| |
| tuple = BuildTupleFromCStrings(attinmeta, values); |
| |
| /* store the tuple for later use */ |
| tuplestore_puttuple(tupstore, tuple); |
| |
| heap_freetuple(tuple); |
| |
| /* recurse using current_key as the new start_with */ |
| if (current_key) |
| build_tuplestore_recursively(key_fld, |
| parent_key_fld, |
| relname, |
| orderby_fld, |
| branch_delim, |
| current_key, |
| current_branch, |
| level + 1, |
| serial, |
| max_depth, |
| show_branch, |
| show_serial, |
| per_query_ctx, |
| attinmeta, |
| tupstore); |
| |
| xpfree(current_key); |
| xpfree(current_key_parent); |
| |
| /* reset branch for next pass */ |
| resetStringInfo(&branchstr); |
| resetStringInfo(&chk_branchstr); |
| resetStringInfo(&chk_current_key); |
| } |
| |
| xpfree(branchstr.data); |
| xpfree(chk_branchstr.data); |
| xpfree(chk_current_key.data); |
| } |
| } |
| |
| /* |
| * Check expected (query runtime) tupdesc suitable for Connectby |
| */ |
| static void |
| validateConnectbyTupleDesc(TupleDesc td, bool show_branch, bool show_serial) |
| { |
| int serial_column = 0; |
| |
| if (show_serial) |
| serial_column = 1; |
| |
| /* are there the correct number of columns */ |
| if (show_branch) |
| { |
| if (td->natts != (CONNECTBY_NCOLS + serial_column)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("Query-specified return tuple has " \ |
| "wrong number of columns."))); |
| } |
| else |
| { |
| if (td->natts != CONNECTBY_NCOLS_NOBRANCH + serial_column) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("Query-specified return tuple has " \ |
| "wrong number of columns."))); |
| } |
| |
| /* check that the types of the first two columns match */ |
| if (TupleDescAttr(td, 0)->atttypid != TupleDescAttr(td, 1)->atttypid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("First two columns must be the same type."))); |
| |
| /* check that the type of the third column is INT4 */ |
| if (TupleDescAttr(td, 2)->atttypid != INT4OID) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("Third column must be type %s.", |
| format_type_be(INT4OID)))); |
| |
| /* check that the type of the fourth column is TEXT if applicable */ |
| if (show_branch && TupleDescAttr(td, 3)->atttypid != TEXTOID) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("Fourth column must be type %s.", |
| format_type_be(TEXTOID)))); |
| |
| /* check that the type of the fifth column is INT4 */ |
| if (show_branch && show_serial && |
| TupleDescAttr(td, 4)->atttypid != INT4OID) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("query-specified return tuple not valid for Connectby: " |
| "fifth column must be type %s", |
| format_type_be(INT4OID)))); |
| |
| /* check that the type of the fourth column is INT4 */ |
| if (!show_branch && show_serial && |
| TupleDescAttr(td, 3)->atttypid != INT4OID) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("query-specified return tuple not valid for Connectby: " |
| "fourth column must be type %s", |
| format_type_be(INT4OID)))); |
| |
| /* OK, the tupdesc is valid for our purposes */ |
| } |
| |
| /* |
| * Check if spi sql tupdesc and return tupdesc are compatible |
| */ |
| static void |
| compatConnectbyTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc) |
| { |
| Oid ret_atttypid; |
| Oid sql_atttypid; |
| int32 ret_atttypmod; |
| int32 sql_atttypmod; |
| |
| /* |
| * Result must have at least 2 columns. |
| */ |
| if (sql_tupdesc->natts < 2) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("Query must return at least two columns."))); |
| |
| /* |
| * These columns must match the result type indicated by the calling |
| * query. |
| */ |
| ret_atttypid = TupleDescAttr(ret_tupdesc, 0)->atttypid; |
| sql_atttypid = TupleDescAttr(sql_tupdesc, 0)->atttypid; |
| ret_atttypmod = TupleDescAttr(ret_tupdesc, 0)->atttypmod; |
| sql_atttypmod = TupleDescAttr(sql_tupdesc, 0)->atttypmod; |
| if (ret_atttypid != sql_atttypid || |
| (ret_atttypmod >= 0 && ret_atttypmod != sql_atttypmod)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("SQL key field type %s does " \ |
| "not match return key field type %s.", |
| format_type_with_typemod(ret_atttypid, ret_atttypmod), |
| format_type_with_typemod(sql_atttypid, sql_atttypmod)))); |
| |
| ret_atttypid = TupleDescAttr(ret_tupdesc, 1)->atttypid; |
| sql_atttypid = TupleDescAttr(sql_tupdesc, 1)->atttypid; |
| ret_atttypmod = TupleDescAttr(ret_tupdesc, 1)->atttypmod; |
| sql_atttypmod = TupleDescAttr(sql_tupdesc, 1)->atttypmod; |
| if (ret_atttypid != sql_atttypid || |
| (ret_atttypmod >= 0 && ret_atttypmod != sql_atttypmod)) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("SQL parent key field type %s does " \ |
| "not match return parent key field type %s.", |
| format_type_with_typemod(ret_atttypid, ret_atttypmod), |
| format_type_with_typemod(sql_atttypid, sql_atttypmod)))); |
| |
| /* OK, the two tupdescs are compatible for our purposes */ |
| } |
| |
| /* |
| * Check if two tupdescs match in type of attributes |
| */ |
| static bool |
| compatCrosstabTupleDescs(TupleDesc ret_tupdesc, TupleDesc sql_tupdesc) |
| { |
| int i; |
| Form_pg_attribute ret_attr; |
| Oid ret_atttypid; |
| Form_pg_attribute sql_attr; |
| Oid sql_atttypid; |
| |
| if (ret_tupdesc->natts < 2 || |
| sql_tupdesc->natts < 3) |
| return false; |
| |
| /* check the rowid types match */ |
| ret_atttypid = TupleDescAttr(ret_tupdesc, 0)->atttypid; |
| sql_atttypid = TupleDescAttr(sql_tupdesc, 0)->atttypid; |
| if (ret_atttypid != sql_atttypid) |
| ereport(ERROR, |
| (errcode(ERRCODE_DATATYPE_MISMATCH), |
| errmsg("invalid return type"), |
| errdetail("SQL rowid datatype does not match " \ |
| "return rowid datatype."))); |
| |
| /* |
| * - attribute [1] of the sql tuple is the category; no need to check it - |
| * attribute [2] of the sql tuple should match attributes [1] to [natts] |
| * of the return tuple |
| */ |
| sql_attr = TupleDescAttr(sql_tupdesc, 2); |
| for (i = 1; i < ret_tupdesc->natts; i++) |
| { |
| ret_attr = TupleDescAttr(ret_tupdesc, i); |
| |
| if (ret_attr->atttypid != sql_attr->atttypid) |
| return false; |
| } |
| |
| /* OK, the two tupdescs are compatible for our purposes */ |
| return true; |
| } |