| /* |
| * contrib/pg_trgm/trgm_op.c |
| */ |
| #include "postgres.h" |
| |
| #include <ctype.h> |
| |
| #include "catalog/pg_type.h" |
| #include "lib/qunique.h" |
| #include "miscadmin.h" |
| #include "trgm.h" |
| #include "tsearch/ts_locale.h" |
| #include "utils/guc.h" |
| #include "utils/lsyscache.h" |
| #include "utils/memutils.h" |
| #include "utils/pg_crc.h" |
| |
| PG_MODULE_MAGIC; |
| |
| /* GUC variables */ |
| double similarity_threshold = 0.3f; |
| double word_similarity_threshold = 0.6f; |
| double strict_word_similarity_threshold = 0.5f; |
| |
| PG_FUNCTION_INFO_V1(set_limit); |
| PG_FUNCTION_INFO_V1(show_limit); |
| PG_FUNCTION_INFO_V1(show_trgm); |
| PG_FUNCTION_INFO_V1(similarity); |
| PG_FUNCTION_INFO_V1(word_similarity); |
| PG_FUNCTION_INFO_V1(strict_word_similarity); |
| PG_FUNCTION_INFO_V1(similarity_dist); |
| PG_FUNCTION_INFO_V1(similarity_op); |
| PG_FUNCTION_INFO_V1(word_similarity_op); |
| PG_FUNCTION_INFO_V1(word_similarity_commutator_op); |
| PG_FUNCTION_INFO_V1(word_similarity_dist_op); |
| PG_FUNCTION_INFO_V1(word_similarity_dist_commutator_op); |
| PG_FUNCTION_INFO_V1(strict_word_similarity_op); |
| PG_FUNCTION_INFO_V1(strict_word_similarity_commutator_op); |
| PG_FUNCTION_INFO_V1(strict_word_similarity_dist_op); |
| PG_FUNCTION_INFO_V1(strict_word_similarity_dist_commutator_op); |
| |
| /* Trigram with position */ |
| typedef struct |
| { |
| trgm trg; |
| int index; |
| } pos_trgm; |
| |
| /* Trigram bound type */ |
| typedef uint8 TrgmBound; |
| #define TRGM_BOUND_LEFT 0x01 /* trigram is left bound of word */ |
| #define TRGM_BOUND_RIGHT 0x02 /* trigram is right bound of word */ |
| |
| /* Word similarity flags */ |
| #define WORD_SIMILARITY_CHECK_ONLY 0x01 /* only check existence of similar |
| * search pattern in text */ |
| #define WORD_SIMILARITY_STRICT 0x02 /* force bounds of extent to match |
| * word bounds */ |
| |
| /* |
| * Module load callback |
| */ |
| void |
| _PG_init(void) |
| { |
| /* Define custom GUC variables. */ |
| DefineCustomRealVariable("pg_trgm.similarity_threshold", |
| "Sets the threshold used by the % operator.", |
| "Valid range is 0.0 .. 1.0.", |
| &similarity_threshold, |
| 0.3f, |
| 0.0, |
| 1.0, |
| PGC_USERSET, |
| 0, |
| NULL, |
| NULL, |
| NULL); |
| DefineCustomRealVariable("pg_trgm.word_similarity_threshold", |
| "Sets the threshold used by the <% operator.", |
| "Valid range is 0.0 .. 1.0.", |
| &word_similarity_threshold, |
| 0.6f, |
| 0.0, |
| 1.0, |
| PGC_USERSET, |
| 0, |
| NULL, |
| NULL, |
| NULL); |
| DefineCustomRealVariable("pg_trgm.strict_word_similarity_threshold", |
| "Sets the threshold used by the <<% operator.", |
| "Valid range is 0.0 .. 1.0.", |
| &strict_word_similarity_threshold, |
| 0.5f, |
| 0.0, |
| 1.0, |
| PGC_USERSET, |
| 0, |
| NULL, |
| NULL, |
| NULL); |
| |
| MarkGUCPrefixReserved("pg_trgm"); |
| } |
| |
| /* |
| * Deprecated function. |
| * Use "pg_trgm.similarity_threshold" GUC variable instead of this function. |
| */ |
| Datum |
| set_limit(PG_FUNCTION_ARGS) |
| { |
| float4 nlimit = PG_GETARG_FLOAT4(0); |
| char *nlimit_str; |
| Oid func_out_oid; |
| bool is_varlena; |
| |
| getTypeOutputInfo(FLOAT4OID, &func_out_oid, &is_varlena); |
| |
| nlimit_str = OidOutputFunctionCall(func_out_oid, Float4GetDatum(nlimit)); |
| |
| SetConfigOption("pg_trgm.similarity_threshold", nlimit_str, |
| PGC_USERSET, PGC_S_SESSION); |
| |
| PG_RETURN_FLOAT4(similarity_threshold); |
| } |
| |
| |
| /* |
| * Get similarity threshold for given index scan strategy number. |
| */ |
| double |
| index_strategy_get_limit(StrategyNumber strategy) |
| { |
| switch (strategy) |
| { |
| case SimilarityStrategyNumber: |
| return similarity_threshold; |
| case WordSimilarityStrategyNumber: |
| return word_similarity_threshold; |
| case StrictWordSimilarityStrategyNumber: |
| return strict_word_similarity_threshold; |
| default: |
| elog(ERROR, "unrecognized strategy number: %d", strategy); |
| break; |
| } |
| |
| return 0.0; /* keep compiler quiet */ |
| } |
| |
| /* |
| * Deprecated function. |
| * Use "pg_trgm.similarity_threshold" GUC variable instead of this function. |
| */ |
| Datum |
| show_limit(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_FLOAT4(similarity_threshold); |
| } |
| |
| static int |
| comp_trgm(const void *a, const void *b) |
| { |
| return CMPTRGM(a, b); |
| } |
| |
| /* |
| * Finds first word in string, returns pointer to the word, |
| * endword points to the character after word |
| */ |
| static char * |
| find_word(char *str, int lenstr, char **endword, int *charlen) |
| { |
| char *beginword = str; |
| |
| while (beginword - str < lenstr && !ISWORDCHR(beginword)) |
| beginword += pg_mblen(beginword); |
| |
| if (beginword - str >= lenstr) |
| return NULL; |
| |
| *endword = beginword; |
| *charlen = 0; |
| while (*endword - str < lenstr && ISWORDCHR(*endword)) |
| { |
| *endword += pg_mblen(*endword); |
| (*charlen)++; |
| } |
| |
| return beginword; |
| } |
| |
| /* |
| * Reduce a trigram (three possibly multi-byte characters) to a trgm, |
| * which is always exactly three bytes. If we have three single-byte |
| * characters, we just use them as-is; otherwise we form a hash value. |
| */ |
| void |
| compact_trigram(trgm *tptr, char *str, int bytelen) |
| { |
| if (bytelen == 3) |
| { |
| CPTRGM(tptr, str); |
| } |
| else |
| { |
| pg_crc32 crc; |
| |
| INIT_LEGACY_CRC32(crc); |
| COMP_LEGACY_CRC32(crc, str, bytelen); |
| FIN_LEGACY_CRC32(crc); |
| |
| /* |
| * use only 3 upper bytes from crc, hope, it's good enough hashing |
| */ |
| CPTRGM(tptr, &crc); |
| } |
| } |
| |
| /* |
| * Adds trigrams from words (already padded). |
| */ |
| static trgm * |
| make_trigrams(trgm *tptr, char *str, int bytelen, int charlen) |
| { |
| char *ptr = str; |
| |
| if (charlen < 3) |
| return tptr; |
| |
| if (bytelen > charlen) |
| { |
| /* Find multibyte character boundaries and apply compact_trigram */ |
| int lenfirst = pg_mblen(str), |
| lenmiddle = pg_mblen(str + lenfirst), |
| lenlast = pg_mblen(str + lenfirst + lenmiddle); |
| |
| while ((ptr - str) + lenfirst + lenmiddle + lenlast <= bytelen) |
| { |
| compact_trigram(tptr, ptr, lenfirst + lenmiddle + lenlast); |
| |
| ptr += lenfirst; |
| tptr++; |
| |
| lenfirst = lenmiddle; |
| lenmiddle = lenlast; |
| lenlast = pg_mblen(ptr + lenfirst + lenmiddle); |
| } |
| } |
| else |
| { |
| /* Fast path when there are no multibyte characters */ |
| Assert(bytelen == charlen); |
| |
| while (ptr - str < bytelen - 2 /* number of trigrams = strlen - 2 */ ) |
| { |
| CPTRGM(tptr, ptr); |
| ptr++; |
| tptr++; |
| } |
| } |
| |
| return tptr; |
| } |
| |
| /* |
| * Make array of trigrams without sorting and removing duplicate items. |
| * |
| * trg: where to return the array of trigrams. |
| * str: source string, of length slen bytes. |
| * bounds: where to return bounds of trigrams (if needed). |
| * |
| * Returns length of the generated array. |
| */ |
| static int |
| generate_trgm_only(trgm *trg, char *str, int slen, TrgmBound *bounds) |
| { |
| trgm *tptr; |
| char *buf; |
| int charlen, |
| bytelen; |
| char *bword, |
| *eword; |
| |
| if (slen + LPADDING + RPADDING < 3 || slen == 0) |
| return 0; |
| |
| tptr = trg; |
| |
| /* Allocate a buffer for case-folded, blank-padded words */ |
| buf = (char *) palloc(slen * pg_database_encoding_max_length() + 4); |
| |
| if (LPADDING > 0) |
| { |
| *buf = ' '; |
| if (LPADDING > 1) |
| *(buf + 1) = ' '; |
| } |
| |
| eword = str; |
| while ((bword = find_word(eword, slen - (eword - str), &eword, &charlen)) != NULL) |
| { |
| #ifdef IGNORECASE |
| bword = lowerstr_with_len(bword, eword - bword); |
| bytelen = strlen(bword); |
| #else |
| bytelen = eword - bword; |
| #endif |
| |
| memcpy(buf + LPADDING, bword, bytelen); |
| |
| #ifdef IGNORECASE |
| pfree(bword); |
| #endif |
| |
| buf[LPADDING + bytelen] = ' '; |
| buf[LPADDING + bytelen + 1] = ' '; |
| |
| /* Calculate trigrams marking their bounds if needed */ |
| if (bounds) |
| bounds[tptr - trg] |= TRGM_BOUND_LEFT; |
| tptr = make_trigrams(tptr, buf, bytelen + LPADDING + RPADDING, |
| charlen + LPADDING + RPADDING); |
| if (bounds) |
| bounds[tptr - trg - 1] |= TRGM_BOUND_RIGHT; |
| } |
| |
| pfree(buf); |
| |
| return tptr - trg; |
| } |
| |
| /* |
| * Guard against possible overflow in the palloc requests below. (We |
| * don't worry about the additive constants, since palloc can detect |
| * requests that are a little above MaxAllocSize --- we just need to |
| * prevent integer overflow in the multiplications.) |
| */ |
| static void |
| protect_out_of_mem(int slen) |
| { |
| if ((Size) (slen / 2) >= (MaxAllocSize / (sizeof(trgm) * 3)) || |
| (Size) slen >= (MaxAllocSize / pg_database_encoding_max_length())) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("out of memory"))); |
| } |
| |
| /* |
| * Make array of trigrams with sorting and removing duplicate items. |
| * |
| * str: source string, of length slen bytes. |
| * |
| * Returns the sorted array of unique trigrams. |
| */ |
| TRGM * |
| generate_trgm(char *str, int slen) |
| { |
| TRGM *trg; |
| int len; |
| |
| protect_out_of_mem(slen); |
| |
| trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3); |
| trg->flag = ARRKEY; |
| |
| len = generate_trgm_only(GETARR(trg), str, slen, NULL); |
| SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len)); |
| |
| if (len == 0) |
| return trg; |
| |
| /* |
| * Make trigrams unique. |
| */ |
| if (len > 1) |
| { |
| qsort(GETARR(trg), len, sizeof(trgm), comp_trgm); |
| len = qunique(GETARR(trg), len, sizeof(trgm), comp_trgm); |
| } |
| |
| SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len)); |
| |
| return trg; |
| } |
| |
| /* |
| * Make array of positional trigrams from two trigram arrays trg1 and trg2. |
| * |
| * trg1: trigram array of search pattern, of length len1. trg1 is required |
| * word which positions don't matter and replaced with -1. |
| * trg2: trigram array of text, of length len2. trg2 is haystack where we |
| * search and have to store its positions. |
| * |
| * Returns concatenated trigram array. |
| */ |
| static pos_trgm * |
| make_positional_trgm(trgm *trg1, int len1, trgm *trg2, int len2) |
| { |
| pos_trgm *result; |
| int i, |
| len = len1 + len2; |
| |
| result = (pos_trgm *) palloc(sizeof(pos_trgm) * len); |
| |
| for (i = 0; i < len1; i++) |
| { |
| memcpy(&result[i].trg, &trg1[i], sizeof(trgm)); |
| result[i].index = -1; |
| } |
| |
| for (i = 0; i < len2; i++) |
| { |
| memcpy(&result[i + len1].trg, &trg2[i], sizeof(trgm)); |
| result[i + len1].index = i; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Compare position trigrams: compare trigrams first and position second. |
| */ |
| static int |
| comp_ptrgm(const void *v1, const void *v2) |
| { |
| const pos_trgm *p1 = (const pos_trgm *) v1; |
| const pos_trgm *p2 = (const pos_trgm *) v2; |
| int cmp; |
| |
| cmp = CMPTRGM(p1->trg, p2->trg); |
| if (cmp != 0) |
| return cmp; |
| |
| if (p1->index < p2->index) |
| return -1; |
| else if (p1->index == p2->index) |
| return 0; |
| else |
| return 1; |
| } |
| |
| /* |
| * Iterative search function which calculates maximum similarity with word in |
| * the string. Maximum similarity is only calculated only if the flag |
| * WORD_SIMILARITY_CHECK_ONLY isn't set. |
| * |
| * trg2indexes: array which stores indexes of the array "found". |
| * found: array which stores true of false values. |
| * ulen1: count of unique trigrams of array "trg1". |
| * len2: length of array "trg2" and array "trg2indexes". |
| * len: length of the array "found". |
| * flags: set of boolean flags parameterizing similarity calculation. |
| * bounds: whether each trigram is left/right bound of word. |
| * |
| * Returns word similarity. |
| */ |
| static float4 |
| iterate_word_similarity(int *trg2indexes, |
| bool *found, |
| int ulen1, |
| int len2, |
| int len, |
| uint8 flags, |
| TrgmBound *bounds) |
| { |
| int *lastpos, |
| i, |
| ulen2 = 0, |
| count = 0, |
| upper = -1, |
| lower; |
| float4 smlr_cur, |
| smlr_max = 0.0f; |
| double threshold; |
| |
| Assert(bounds || !(flags & WORD_SIMILARITY_STRICT)); |
| |
| /* Select appropriate threshold */ |
| threshold = (flags & WORD_SIMILARITY_STRICT) ? |
| strict_word_similarity_threshold : |
| word_similarity_threshold; |
| |
| /* |
| * Consider first trigram as initial lower bound for strict word |
| * similarity, or initialize it later with first trigram present for plain |
| * word similarity. |
| */ |
| lower = (flags & WORD_SIMILARITY_STRICT) ? 0 : -1; |
| |
| /* Memorise last position of each trigram */ |
| lastpos = (int *) palloc(sizeof(int) * len); |
| memset(lastpos, -1, sizeof(int) * len); |
| |
| for (i = 0; i < len2; i++) |
| { |
| int trgindex; |
| |
| CHECK_FOR_INTERRUPTS(); |
| |
| /* Get index of next trigram */ |
| trgindex = trg2indexes[i]; |
| |
| /* Update last position of this trigram */ |
| if (lower >= 0 || found[trgindex]) |
| { |
| if (lastpos[trgindex] < 0) |
| { |
| ulen2++; |
| if (found[trgindex]) |
| count++; |
| } |
| lastpos[trgindex] = i; |
| } |
| |
| /* |
| * Adjust upper bound if trigram is upper bound of word for strict |
| * word similarity, or if trigram is present in required substring for |
| * plain word similarity |
| */ |
| if ((flags & WORD_SIMILARITY_STRICT) ? (bounds[i] & TRGM_BOUND_RIGHT) |
| : found[trgindex]) |
| { |
| int prev_lower, |
| tmp_ulen2, |
| tmp_lower, |
| tmp_count; |
| |
| upper = i; |
| if (lower == -1) |
| { |
| lower = i; |
| ulen2 = 1; |
| } |
| |
| smlr_cur = CALCSML(count, ulen1, ulen2); |
| |
| /* Also try to adjust lower bound for greater similarity */ |
| tmp_count = count; |
| tmp_ulen2 = ulen2; |
| prev_lower = lower; |
| for (tmp_lower = lower; tmp_lower <= upper; tmp_lower++) |
| { |
| float smlr_tmp; |
| int tmp_trgindex; |
| |
| /* |
| * Adjust lower bound only if trigram is lower bound of word |
| * for strict word similarity, or consider every trigram as |
| * lower bound for plain word similarity. |
| */ |
| if (!(flags & WORD_SIMILARITY_STRICT) |
| || (bounds[tmp_lower] & TRGM_BOUND_LEFT)) |
| { |
| smlr_tmp = CALCSML(tmp_count, ulen1, tmp_ulen2); |
| if (smlr_tmp > smlr_cur) |
| { |
| smlr_cur = smlr_tmp; |
| ulen2 = tmp_ulen2; |
| lower = tmp_lower; |
| count = tmp_count; |
| } |
| |
| /* |
| * If we only check that word similarity is greater than |
| * threshold we do not need to calculate a maximum |
| * similarity. |
| */ |
| if ((flags & WORD_SIMILARITY_CHECK_ONLY) |
| && smlr_cur >= threshold) |
| break; |
| } |
| |
| tmp_trgindex = trg2indexes[tmp_lower]; |
| if (lastpos[tmp_trgindex] == tmp_lower) |
| { |
| tmp_ulen2--; |
| if (found[tmp_trgindex]) |
| tmp_count--; |
| } |
| } |
| |
| smlr_max = Max(smlr_max, smlr_cur); |
| |
| /* |
| * if we only check that word similarity is greater than threshold |
| * we do not need to calculate a maximum similarity. |
| */ |
| if ((flags & WORD_SIMILARITY_CHECK_ONLY) && smlr_max >= threshold) |
| break; |
| |
| for (tmp_lower = prev_lower; tmp_lower < lower; tmp_lower++) |
| { |
| int tmp_trgindex; |
| |
| tmp_trgindex = trg2indexes[tmp_lower]; |
| if (lastpos[tmp_trgindex] == tmp_lower) |
| lastpos[tmp_trgindex] = -1; |
| } |
| } |
| } |
| |
| pfree(lastpos); |
| |
| return smlr_max; |
| } |
| |
| /* |
| * Calculate word similarity. |
| * This function prepare two arrays: "trg2indexes" and "found". Then this arrays |
| * are used to calculate word similarity using iterate_word_similarity(). |
| * |
| * "trg2indexes" is array which stores indexes of the array "found". |
| * In other words: |
| * trg2indexes[j] = i; |
| * found[i] = true (or false); |
| * If found[i] == true then there is trigram trg2[j] in array "trg1". |
| * If found[i] == false then there is not trigram trg2[j] in array "trg1". |
| * |
| * str1: search pattern string, of length slen1 bytes. |
| * str2: text in which we are looking for a word, of length slen2 bytes. |
| * flags: set of boolean flags parameterizing similarity calculation. |
| * |
| * Returns word similarity. |
| */ |
| static float4 |
| calc_word_similarity(char *str1, int slen1, char *str2, int slen2, |
| uint8 flags) |
| { |
| bool *found; |
| pos_trgm *ptrg; |
| trgm *trg1; |
| trgm *trg2; |
| int len1, |
| len2, |
| len, |
| i, |
| j, |
| ulen1; |
| int *trg2indexes; |
| float4 result; |
| TrgmBound *bounds; |
| |
| protect_out_of_mem(slen1 + slen2); |
| |
| /* Make positional trigrams */ |
| trg1 = (trgm *) palloc(sizeof(trgm) * (slen1 / 2 + 1) * 3); |
| trg2 = (trgm *) palloc(sizeof(trgm) * (slen2 / 2 + 1) * 3); |
| if (flags & WORD_SIMILARITY_STRICT) |
| bounds = (TrgmBound *) palloc0(sizeof(TrgmBound) * (slen2 / 2 + 1) * 3); |
| else |
| bounds = NULL; |
| |
| len1 = generate_trgm_only(trg1, str1, slen1, NULL); |
| len2 = generate_trgm_only(trg2, str2, slen2, bounds); |
| |
| ptrg = make_positional_trgm(trg1, len1, trg2, len2); |
| len = len1 + len2; |
| qsort(ptrg, len, sizeof(pos_trgm), comp_ptrgm); |
| |
| pfree(trg1); |
| pfree(trg2); |
| |
| /* |
| * Merge positional trigrams array: enumerate each trigram and find its |
| * presence in required word. |
| */ |
| trg2indexes = (int *) palloc(sizeof(int) * len2); |
| found = (bool *) palloc0(sizeof(bool) * len); |
| |
| ulen1 = 0; |
| j = 0; |
| for (i = 0; i < len; i++) |
| { |
| if (i > 0) |
| { |
| int cmp = CMPTRGM(ptrg[i - 1].trg, ptrg[i].trg); |
| |
| if (cmp != 0) |
| { |
| if (found[j]) |
| ulen1++; |
| j++; |
| } |
| } |
| |
| if (ptrg[i].index >= 0) |
| { |
| trg2indexes[ptrg[i].index] = j; |
| } |
| else |
| { |
| found[j] = true; |
| } |
| } |
| if (found[j]) |
| ulen1++; |
| |
| /* Run iterative procedure to find maximum similarity with word */ |
| result = iterate_word_similarity(trg2indexes, found, ulen1, len2, len, |
| flags, bounds); |
| |
| pfree(trg2indexes); |
| pfree(found); |
| pfree(ptrg); |
| |
| return result; |
| } |
| |
| |
| /* |
| * Extract the next non-wildcard part of a search string, i.e. a word bounded |
| * by '_' or '%' meta-characters, non-word characters or string end. |
| * |
| * str: source string, of length lenstr bytes (need not be null-terminated) |
| * buf: where to return the substring (must be long enough) |
| * *bytelen: receives byte length of the found substring |
| * *charlen: receives character length of the found substring |
| * |
| * Returns pointer to end+1 of the found substring in the source string. |
| * Returns NULL if no word found (in which case buf, bytelen, charlen not set) |
| * |
| * If the found word is bounded by non-word characters or string boundaries |
| * then this function will include corresponding padding spaces into buf. |
| */ |
| static const char * |
| get_wildcard_part(const char *str, int lenstr, |
| char *buf, int *bytelen, int *charlen) |
| { |
| const char *beginword = str; |
| const char *endword; |
| char *s = buf; |
| bool in_leading_wildcard_meta = false; |
| bool in_trailing_wildcard_meta = false; |
| bool in_escape = false; |
| int clen; |
| |
| /* |
| * Find the first word character, remembering whether preceding character |
| * was wildcard meta-character. Note that the in_escape state persists |
| * from this loop to the next one, since we may exit at a word character |
| * that is in_escape. |
| */ |
| while (beginword - str < lenstr) |
| { |
| if (in_escape) |
| { |
| if (ISWORDCHR(beginword)) |
| break; |
| in_escape = false; |
| in_leading_wildcard_meta = false; |
| } |
| else |
| { |
| if (ISESCAPECHAR(beginword)) |
| in_escape = true; |
| else if (ISWILDCARDCHAR(beginword)) |
| in_leading_wildcard_meta = true; |
| else if (ISWORDCHR(beginword)) |
| break; |
| else |
| in_leading_wildcard_meta = false; |
| } |
| beginword += pg_mblen(beginword); |
| } |
| |
| /* |
| * Handle string end. |
| */ |
| if (beginword - str >= lenstr) |
| return NULL; |
| |
| /* |
| * Add left padding spaces if preceding character wasn't wildcard |
| * meta-character. |
| */ |
| *charlen = 0; |
| if (!in_leading_wildcard_meta) |
| { |
| if (LPADDING > 0) |
| { |
| *s++ = ' '; |
| (*charlen)++; |
| if (LPADDING > 1) |
| { |
| *s++ = ' '; |
| (*charlen)++; |
| } |
| } |
| } |
| |
| /* |
| * Copy data into buf until wildcard meta-character, non-word character or |
| * string boundary. Strip escapes during copy. |
| */ |
| endword = beginword; |
| while (endword - str < lenstr) |
| { |
| clen = pg_mblen(endword); |
| if (in_escape) |
| { |
| if (ISWORDCHR(endword)) |
| { |
| memcpy(s, endword, clen); |
| (*charlen)++; |
| s += clen; |
| } |
| else |
| { |
| /* |
| * Back up endword to the escape character when stopping at an |
| * escaped char, so that subsequent get_wildcard_part will |
| * restart from the escape character. We assume here that |
| * escape chars are single-byte. |
| */ |
| endword--; |
| break; |
| } |
| in_escape = false; |
| } |
| else |
| { |
| if (ISESCAPECHAR(endword)) |
| in_escape = true; |
| else if (ISWILDCARDCHAR(endword)) |
| { |
| in_trailing_wildcard_meta = true; |
| break; |
| } |
| else if (ISWORDCHR(endword)) |
| { |
| memcpy(s, endword, clen); |
| (*charlen)++; |
| s += clen; |
| } |
| else |
| break; |
| } |
| endword += clen; |
| } |
| |
| /* |
| * Add right padding spaces if next character isn't wildcard |
| * meta-character. |
| */ |
| if (!in_trailing_wildcard_meta) |
| { |
| if (RPADDING > 0) |
| { |
| *s++ = ' '; |
| (*charlen)++; |
| if (RPADDING > 1) |
| { |
| *s++ = ' '; |
| (*charlen)++; |
| } |
| } |
| } |
| |
| *bytelen = s - buf; |
| return endword; |
| } |
| |
| /* |
| * Generates trigrams for wildcard search string. |
| * |
| * Returns array of trigrams that must occur in any string that matches the |
| * wildcard string. For example, given pattern "a%bcd%" the trigrams |
| * " a", "bcd" would be extracted. |
| */ |
| TRGM * |
| generate_wildcard_trgm(const char *str, int slen) |
| { |
| TRGM *trg; |
| char *buf, |
| *buf2; |
| trgm *tptr; |
| int len, |
| charlen, |
| bytelen; |
| const char *eword; |
| |
| protect_out_of_mem(slen); |
| |
| trg = (TRGM *) palloc(TRGMHDRSIZE + sizeof(trgm) * (slen / 2 + 1) * 3); |
| trg->flag = ARRKEY; |
| SET_VARSIZE(trg, TRGMHDRSIZE); |
| |
| if (slen + LPADDING + RPADDING < 3 || slen == 0) |
| return trg; |
| |
| tptr = GETARR(trg); |
| |
| /* Allocate a buffer for blank-padded, but not yet case-folded, words */ |
| buf = palloc(sizeof(char) * (slen + 4)); |
| |
| /* |
| * Extract trigrams from each substring extracted by get_wildcard_part. |
| */ |
| eword = str; |
| while ((eword = get_wildcard_part(eword, slen - (eword - str), |
| buf, &bytelen, &charlen)) != NULL) |
| { |
| #ifdef IGNORECASE |
| buf2 = lowerstr_with_len(buf, bytelen); |
| bytelen = strlen(buf2); |
| #else |
| buf2 = buf; |
| #endif |
| |
| /* |
| * count trigrams |
| */ |
| tptr = make_trigrams(tptr, buf2, bytelen, charlen); |
| |
| #ifdef IGNORECASE |
| pfree(buf2); |
| #endif |
| } |
| |
| pfree(buf); |
| |
| if ((len = tptr - GETARR(trg)) == 0) |
| return trg; |
| |
| /* |
| * Make trigrams unique. |
| */ |
| if (len > 1) |
| { |
| qsort(GETARR(trg), len, sizeof(trgm), comp_trgm); |
| len = qunique(GETARR(trg), len, sizeof(trgm), comp_trgm); |
| } |
| |
| SET_VARSIZE(trg, CALCGTSIZE(ARRKEY, len)); |
| |
| return trg; |
| } |
| |
| uint32 |
| trgm2int(trgm *ptr) |
| { |
| uint32 val = 0; |
| |
| val |= *(((unsigned char *) ptr)); |
| val <<= 8; |
| val |= *(((unsigned char *) ptr) + 1); |
| val <<= 8; |
| val |= *(((unsigned char *) ptr) + 2); |
| |
| return val; |
| } |
| |
| Datum |
| show_trgm(PG_FUNCTION_ARGS) |
| { |
| text *in = PG_GETARG_TEXT_PP(0); |
| TRGM *trg; |
| Datum *d; |
| ArrayType *a; |
| trgm *ptr; |
| int i; |
| |
| trg = generate_trgm(VARDATA_ANY(in), VARSIZE_ANY_EXHDR(in)); |
| d = (Datum *) palloc(sizeof(Datum) * (1 + ARRNELEM(trg))); |
| |
| for (i = 0, ptr = GETARR(trg); i < ARRNELEM(trg); i++, ptr++) |
| { |
| text *item = (text *) palloc(VARHDRSZ + Max(12, pg_database_encoding_max_length() * 3)); |
| |
| if (pg_database_encoding_max_length() > 1 && !ISPRINTABLETRGM(ptr)) |
| { |
| snprintf(VARDATA(item), 12, "0x%06x", trgm2int(ptr)); |
| SET_VARSIZE(item, VARHDRSZ + strlen(VARDATA(item))); |
| } |
| else |
| { |
| SET_VARSIZE(item, VARHDRSZ + 3); |
| CPTRGM(VARDATA(item), ptr); |
| } |
| d[i] = PointerGetDatum(item); |
| } |
| |
| a = construct_array_builtin(d, ARRNELEM(trg), TEXTOID); |
| |
| for (i = 0; i < ARRNELEM(trg); i++) |
| pfree(DatumGetPointer(d[i])); |
| |
| pfree(d); |
| pfree(trg); |
| PG_FREE_IF_COPY(in, 0); |
| |
| PG_RETURN_POINTER(a); |
| } |
| |
| float4 |
| cnt_sml(TRGM *trg1, TRGM *trg2, bool inexact) |
| { |
| trgm *ptr1, |
| *ptr2; |
| int count = 0; |
| int len1, |
| len2; |
| |
| ptr1 = GETARR(trg1); |
| ptr2 = GETARR(trg2); |
| |
| len1 = ARRNELEM(trg1); |
| len2 = ARRNELEM(trg2); |
| |
| /* explicit test is needed to avoid 0/0 division when both lengths are 0 */ |
| if (len1 <= 0 || len2 <= 0) |
| return (float4) 0.0; |
| |
| while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2) |
| { |
| int res = CMPTRGM(ptr1, ptr2); |
| |
| if (res < 0) |
| ptr1++; |
| else if (res > 0) |
| ptr2++; |
| else |
| { |
| ptr1++; |
| ptr2++; |
| count++; |
| } |
| } |
| |
| /* |
| * If inexact then len2 is equal to count, because we don't know actual |
| * length of second string in inexact search and we can assume that count |
| * is a lower bound of len2. |
| */ |
| return CALCSML(count, len1, inexact ? count : len2); |
| } |
| |
| |
| /* |
| * Returns whether trg2 contains all trigrams in trg1. |
| * This relies on the trigram arrays being sorted. |
| */ |
| bool |
| trgm_contained_by(TRGM *trg1, TRGM *trg2) |
| { |
| trgm *ptr1, |
| *ptr2; |
| int len1, |
| len2; |
| |
| ptr1 = GETARR(trg1); |
| ptr2 = GETARR(trg2); |
| |
| len1 = ARRNELEM(trg1); |
| len2 = ARRNELEM(trg2); |
| |
| while (ptr1 - GETARR(trg1) < len1 && ptr2 - GETARR(trg2) < len2) |
| { |
| int res = CMPTRGM(ptr1, ptr2); |
| |
| if (res < 0) |
| return false; |
| else if (res > 0) |
| ptr2++; |
| else |
| { |
| ptr1++; |
| ptr2++; |
| } |
| } |
| if (ptr1 - GETARR(trg1) < len1) |
| return false; |
| else |
| return true; |
| } |
| |
| /* |
| * Return a palloc'd boolean array showing, for each trigram in "query", |
| * whether it is present in the trigram array "key". |
| * This relies on the "key" array being sorted, but "query" need not be. |
| */ |
| bool * |
| trgm_presence_map(TRGM *query, TRGM *key) |
| { |
| bool *result; |
| trgm *ptrq = GETARR(query), |
| *ptrk = GETARR(key); |
| int lenq = ARRNELEM(query), |
| lenk = ARRNELEM(key), |
| i; |
| |
| result = (bool *) palloc0(lenq * sizeof(bool)); |
| |
| /* for each query trigram, do a binary search in the key array */ |
| for (i = 0; i < lenq; i++) |
| { |
| int lo = 0; |
| int hi = lenk; |
| |
| while (lo < hi) |
| { |
| int mid = (lo + hi) / 2; |
| int res = CMPTRGM(ptrq, ptrk + mid); |
| |
| if (res < 0) |
| hi = mid; |
| else if (res > 0) |
| lo = mid + 1; |
| else |
| { |
| result[i] = true; |
| break; |
| } |
| } |
| ptrq++; |
| } |
| |
| return result; |
| } |
| |
| Datum |
| similarity(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| TRGM *trg1, |
| *trg2; |
| float4 res; |
| |
| trg1 = generate_trgm(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1)); |
| trg2 = generate_trgm(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2)); |
| |
| res = cnt_sml(trg1, trg2, false); |
| |
| pfree(trg1); |
| pfree(trg2); |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| |
| PG_RETURN_FLOAT4(res); |
| } |
| |
| Datum |
| word_similarity(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| 0); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(res); |
| } |
| |
| Datum |
| strict_word_similarity(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| WORD_SIMILARITY_STRICT); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(res); |
| } |
| |
| Datum |
| similarity_dist(PG_FUNCTION_ARGS) |
| { |
| float4 res = DatumGetFloat4(DirectFunctionCall2(similarity, |
| PG_GETARG_DATUM(0), |
| PG_GETARG_DATUM(1))); |
| |
| PG_RETURN_FLOAT4(1.0 - res); |
| } |
| |
| Datum |
| similarity_op(PG_FUNCTION_ARGS) |
| { |
| float4 res = DatumGetFloat4(DirectFunctionCall2(similarity, |
| PG_GETARG_DATUM(0), |
| PG_GETARG_DATUM(1))); |
| |
| PG_RETURN_BOOL(res >= similarity_threshold); |
| } |
| |
| Datum |
| word_similarity_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| WORD_SIMILARITY_CHECK_ONLY); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_BOOL(res >= word_similarity_threshold); |
| } |
| |
| Datum |
| word_similarity_commutator_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| WORD_SIMILARITY_CHECK_ONLY); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_BOOL(res >= word_similarity_threshold); |
| } |
| |
| Datum |
| word_similarity_dist_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| 0); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(1.0 - res); |
| } |
| |
| Datum |
| word_similarity_dist_commutator_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| 0); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(1.0 - res); |
| } |
| |
| Datum |
| strict_word_similarity_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| WORD_SIMILARITY_CHECK_ONLY | WORD_SIMILARITY_STRICT); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_BOOL(res >= strict_word_similarity_threshold); |
| } |
| |
| Datum |
| strict_word_similarity_commutator_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| WORD_SIMILARITY_CHECK_ONLY | WORD_SIMILARITY_STRICT); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_BOOL(res >= strict_word_similarity_threshold); |
| } |
| |
| Datum |
| strict_word_similarity_dist_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| WORD_SIMILARITY_STRICT); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(1.0 - res); |
| } |
| |
| Datum |
| strict_word_similarity_dist_commutator_op(PG_FUNCTION_ARGS) |
| { |
| text *in1 = PG_GETARG_TEXT_PP(0); |
| text *in2 = PG_GETARG_TEXT_PP(1); |
| float4 res; |
| |
| res = calc_word_similarity(VARDATA_ANY(in2), VARSIZE_ANY_EXHDR(in2), |
| VARDATA_ANY(in1), VARSIZE_ANY_EXHDR(in1), |
| WORD_SIMILARITY_STRICT); |
| |
| PG_FREE_IF_COPY(in1, 0); |
| PG_FREE_IF_COPY(in2, 1); |
| PG_RETURN_FLOAT4(1.0 - res); |
| } |