| /****************************************************************************** |
| contrib/cube/cube.c |
| |
| This file contains routines that can be bound to a Postgres backend and |
| called by the backend in the process of processing queries. The calling |
| format for these routines is dictated by Postgres architecture. |
| ******************************************************************************/ |
| |
| #include "postgres.h" |
| |
| #include <math.h> |
| |
| #include "access/gist.h" |
| #include "access/stratnum.h" |
| #include "cubedata.h" |
| #include "libpq/pqformat.h" |
| #include "utils/array.h" |
| #include "utils/float.h" |
| |
| PG_MODULE_MAGIC; |
| |
| /* |
| * Taken from the intarray contrib header |
| */ |
| #define ARRPTR(x) ( (double *) ARR_DATA_PTR(x) ) |
| #define ARRNELEMS(x) ArrayGetNItems( ARR_NDIM(x), ARR_DIMS(x)) |
| |
| /* |
| ** Input/Output routines |
| */ |
| PG_FUNCTION_INFO_V1(cube_in); |
| PG_FUNCTION_INFO_V1(cube_a_f8_f8); |
| PG_FUNCTION_INFO_V1(cube_a_f8); |
| PG_FUNCTION_INFO_V1(cube_out); |
| PG_FUNCTION_INFO_V1(cube_send); |
| PG_FUNCTION_INFO_V1(cube_recv); |
| PG_FUNCTION_INFO_V1(cube_f8); |
| PG_FUNCTION_INFO_V1(cube_f8_f8); |
| PG_FUNCTION_INFO_V1(cube_c_f8); |
| PG_FUNCTION_INFO_V1(cube_c_f8_f8); |
| PG_FUNCTION_INFO_V1(cube_dim); |
| PG_FUNCTION_INFO_V1(cube_ll_coord); |
| PG_FUNCTION_INFO_V1(cube_ur_coord); |
| PG_FUNCTION_INFO_V1(cube_coord); |
| PG_FUNCTION_INFO_V1(cube_coord_llur); |
| PG_FUNCTION_INFO_V1(cube_subset); |
| |
| /* |
| ** GiST support methods |
| */ |
| |
| PG_FUNCTION_INFO_V1(g_cube_consistent); |
| PG_FUNCTION_INFO_V1(g_cube_compress); |
| PG_FUNCTION_INFO_V1(g_cube_decompress); |
| PG_FUNCTION_INFO_V1(g_cube_penalty); |
| PG_FUNCTION_INFO_V1(g_cube_picksplit); |
| PG_FUNCTION_INFO_V1(g_cube_union); |
| PG_FUNCTION_INFO_V1(g_cube_same); |
| PG_FUNCTION_INFO_V1(g_cube_distance); |
| |
| /* |
| ** B-tree support functions |
| */ |
| PG_FUNCTION_INFO_V1(cube_eq); |
| PG_FUNCTION_INFO_V1(cube_ne); |
| PG_FUNCTION_INFO_V1(cube_lt); |
| PG_FUNCTION_INFO_V1(cube_gt); |
| PG_FUNCTION_INFO_V1(cube_le); |
| PG_FUNCTION_INFO_V1(cube_ge); |
| PG_FUNCTION_INFO_V1(cube_cmp); |
| |
| /* |
| ** R-tree support functions |
| */ |
| |
| PG_FUNCTION_INFO_V1(cube_contains); |
| PG_FUNCTION_INFO_V1(cube_contained); |
| PG_FUNCTION_INFO_V1(cube_overlap); |
| PG_FUNCTION_INFO_V1(cube_union); |
| PG_FUNCTION_INFO_V1(cube_inter); |
| PG_FUNCTION_INFO_V1(cube_size); |
| |
| /* |
| ** miscellaneous |
| */ |
| PG_FUNCTION_INFO_V1(distance_taxicab); |
| PG_FUNCTION_INFO_V1(cube_distance); |
| PG_FUNCTION_INFO_V1(distance_chebyshev); |
| PG_FUNCTION_INFO_V1(cube_is_point); |
| PG_FUNCTION_INFO_V1(cube_enlarge); |
| |
| /* |
| ** For internal use only |
| */ |
| int32 cube_cmp_v0(NDBOX *a, NDBOX *b); |
| bool cube_contains_v0(NDBOX *a, NDBOX *b); |
| bool cube_overlap_v0(NDBOX *a, NDBOX *b); |
| NDBOX *cube_union_v0(NDBOX *a, NDBOX *b); |
| void rt_cube_size(NDBOX *a, double *size); |
| NDBOX *g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep); |
| bool g_cube_leaf_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy); |
| bool g_cube_internal_consistent(NDBOX *key, NDBOX *query, StrategyNumber strategy); |
| |
| /* |
| ** Auxiliary functions |
| */ |
| static double distance_1D(double a1, double a2, double b1, double b2); |
| static bool cube_is_point_internal(NDBOX *cube); |
| |
| |
| /***************************************************************************** |
| * Input/Output functions |
| *****************************************************************************/ |
| |
| /* NdBox = [(lowerleft),(upperright)] */ |
| /* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */ |
| Datum |
| cube_in(PG_FUNCTION_ARGS) |
| { |
| char *str = PG_GETARG_CSTRING(0); |
| NDBOX *result; |
| Size scanbuflen; |
| |
| cube_scanner_init(str, &scanbuflen); |
| |
| cube_yyparse(&result, scanbuflen, fcinfo->context); |
| |
| /* We might as well run this even on failure. */ |
| cube_scanner_finish(); |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| |
| /* |
| ** Allows the construction of a cube from 2 float[]'s |
| */ |
| Datum |
| cube_a_f8_f8(PG_FUNCTION_ARGS) |
| { |
| ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0); |
| ArrayType *ll = PG_GETARG_ARRAYTYPE_P(1); |
| NDBOX *result; |
| int i; |
| int dim; |
| int size; |
| bool point; |
| double *dur, |
| *dll; |
| |
| if (array_contains_nulls(ur) || array_contains_nulls(ll)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("cannot work with arrays containing NULLs"))); |
| |
| dim = ARRNELEMS(ur); |
| if (dim > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("can't extend cube"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| |
| if (ARRNELEMS(ll) != dim) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("UR and LL arrays must be of same length"))); |
| |
| dur = ARRPTR(ur); |
| dll = ARRPTR(ll); |
| |
| /* Check if it's a point */ |
| point = true; |
| for (i = 0; i < dim; i++) |
| { |
| if (dur[i] != dll[i]) |
| { |
| point = false; |
| break; |
| } |
| } |
| |
| size = point ? POINT_SIZE(dim) : CUBE_SIZE(dim); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| |
| for (i = 0; i < dim; i++) |
| result->x[i] = dur[i]; |
| |
| if (!point) |
| { |
| for (i = 0; i < dim; i++) |
| result->x[i + dim] = dll[i]; |
| } |
| else |
| SET_POINT_BIT(result); |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* |
| ** Allows the construction of a zero-volume cube from a float[] |
| */ |
| Datum |
| cube_a_f8(PG_FUNCTION_ARGS) |
| { |
| ArrayType *ur = PG_GETARG_ARRAYTYPE_P(0); |
| NDBOX *result; |
| int i; |
| int dim; |
| int size; |
| double *dur; |
| |
| if (array_contains_nulls(ur)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("cannot work with arrays containing NULLs"))); |
| |
| dim = ARRNELEMS(ur); |
| if (dim > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array is too long"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| |
| dur = ARRPTR(ur); |
| |
| size = POINT_SIZE(dim); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| SET_POINT_BIT(result); |
| |
| for (i = 0; i < dim; i++) |
| result->x[i] = dur[i]; |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| Datum |
| cube_subset(PG_FUNCTION_ARGS) |
| { |
| NDBOX *c = PG_GETARG_NDBOX_P(0); |
| ArrayType *idx = PG_GETARG_ARRAYTYPE_P(1); |
| NDBOX *result; |
| int size, |
| dim, |
| i; |
| int *dx; |
| |
| if (array_contains_nulls(idx)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("cannot work with arrays containing NULLs"))); |
| |
| dx = (int32 *) ARR_DATA_PTR(idx); |
| |
| dim = ARRNELEMS(idx); |
| if (dim > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("array is too long"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| |
| size = IS_POINT(c) ? POINT_SIZE(dim) : CUBE_SIZE(dim); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| |
| if (IS_POINT(c)) |
| SET_POINT_BIT(result); |
| |
| for (i = 0; i < dim; i++) |
| { |
| if ((dx[i] <= 0) || (dx[i] > DIM(c))) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("Index out of bounds"))); |
| result->x[i] = c->x[dx[i] - 1]; |
| if (!IS_POINT(c)) |
| result->x[i + dim] = c->x[dx[i] + DIM(c) - 1]; |
| } |
| |
| PG_FREE_IF_COPY(c, 0); |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| Datum |
| cube_out(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| StringInfoData buf; |
| int dim = DIM(cube); |
| int i; |
| |
| initStringInfo(&buf); |
| |
| appendStringInfoChar(&buf, '('); |
| for (i = 0; i < dim; i++) |
| { |
| if (i > 0) |
| appendStringInfoString(&buf, ", "); |
| appendStringInfoString(&buf, float8out_internal(LL_COORD(cube, i))); |
| } |
| appendStringInfoChar(&buf, ')'); |
| |
| if (!cube_is_point_internal(cube)) |
| { |
| appendStringInfoString(&buf, ",("); |
| for (i = 0; i < dim; i++) |
| { |
| if (i > 0) |
| appendStringInfoString(&buf, ", "); |
| appendStringInfoString(&buf, float8out_internal(UR_COORD(cube, i))); |
| } |
| appendStringInfoChar(&buf, ')'); |
| } |
| |
| PG_FREE_IF_COPY(cube, 0); |
| PG_RETURN_CSTRING(buf.data); |
| } |
| |
| /* |
| * cube_send - a binary output handler for cube type |
| */ |
| Datum |
| cube_send(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| StringInfoData buf; |
| int32 i, |
| nitems = DIM(cube); |
| |
| pq_begintypsend(&buf); |
| pq_sendint32(&buf, cube->header); |
| if (!IS_POINT(cube)) |
| nitems += nitems; |
| /* for symmetry with cube_recv, we don't use LL_COORD/UR_COORD here */ |
| for (i = 0; i < nitems; i++) |
| pq_sendfloat8(&buf, cube->x[i]); |
| |
| PG_RETURN_BYTEA_P(pq_endtypsend(&buf)); |
| } |
| |
| /* |
| * cube_recv - a binary input handler for cube type |
| */ |
| Datum |
| cube_recv(PG_FUNCTION_ARGS) |
| { |
| StringInfo buf = (StringInfo) PG_GETARG_POINTER(0); |
| int32 header; |
| int32 i, |
| nitems; |
| NDBOX *cube; |
| |
| header = pq_getmsgint(buf, sizeof(int32)); |
| nitems = (header & DIM_MASK); |
| if (nitems > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("cube dimension is too large"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| if ((header & POINT_BIT) == 0) |
| nitems += nitems; |
| cube = palloc(offsetof(NDBOX, x) + sizeof(double) * nitems); |
| SET_VARSIZE(cube, offsetof(NDBOX, x) + sizeof(double) * nitems); |
| cube->header = header; |
| for (i = 0; i < nitems; i++) |
| cube->x[i] = pq_getmsgfloat8(buf); |
| |
| PG_RETURN_NDBOX_P(cube); |
| } |
| |
| |
| /***************************************************************************** |
| * GiST functions |
| *****************************************************************************/ |
| |
| /* |
| ** The GiST Consistent method for boxes |
| ** Should return false if for all data items x below entry, |
| ** the predicate x op query == false, where op is the oper |
| ** corresponding to strategy in the pg_amop table. |
| */ |
| Datum |
| g_cube_consistent(PG_FUNCTION_ARGS) |
| { |
| GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); |
| NDBOX *query = PG_GETARG_NDBOX_P(1); |
| StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2); |
| |
| /* Oid subtype = PG_GETARG_OID(3); */ |
| bool *recheck = (bool *) PG_GETARG_POINTER(4); |
| bool res; |
| |
| /* All cases served by this function are exact */ |
| *recheck = false; |
| |
| /* |
| * if entry is not leaf, use g_cube_internal_consistent, else use |
| * g_cube_leaf_consistent |
| */ |
| if (GIST_LEAF(entry)) |
| res = g_cube_leaf_consistent(DatumGetNDBOXP(entry->key), |
| query, strategy); |
| else |
| res = g_cube_internal_consistent(DatumGetNDBOXP(entry->key), |
| query, strategy); |
| |
| PG_FREE_IF_COPY(query, 1); |
| PG_RETURN_BOOL(res); |
| } |
| |
| |
| /* |
| ** The GiST Union method for boxes |
| ** returns the minimal bounding box that encloses all the entries in entryvec |
| */ |
| Datum |
| g_cube_union(PG_FUNCTION_ARGS) |
| { |
| GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); |
| int *sizep = (int *) PG_GETARG_POINTER(1); |
| NDBOX *out = (NDBOX *) NULL; |
| NDBOX *tmp; |
| int i; |
| |
| tmp = DatumGetNDBOXP(entryvec->vector[0].key); |
| |
| /* |
| * sizep = sizeof(NDBOX); -- NDBOX has variable size |
| */ |
| *sizep = VARSIZE(tmp); |
| |
| for (i = 1; i < entryvec->n; i++) |
| { |
| out = g_cube_binary_union(tmp, |
| DatumGetNDBOXP(entryvec->vector[i].key), |
| sizep); |
| tmp = out; |
| } |
| |
| PG_RETURN_POINTER(out); |
| } |
| |
| /* |
| ** GiST Compress and Decompress methods for boxes |
| ** do not do anything. |
| */ |
| |
| Datum |
| g_cube_compress(PG_FUNCTION_ARGS) |
| { |
| PG_RETURN_DATUM(PG_GETARG_DATUM(0)); |
| } |
| |
| Datum |
| g_cube_decompress(PG_FUNCTION_ARGS) |
| { |
| GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); |
| NDBOX *key = DatumGetNDBOXP(entry->key); |
| |
| if (key != DatumGetNDBOXP(entry->key)) |
| { |
| GISTENTRY *retval = (GISTENTRY *) palloc(sizeof(GISTENTRY)); |
| |
| gistentryinit(*retval, PointerGetDatum(key), |
| entry->rel, entry->page, |
| entry->offset, false); |
| PG_RETURN_POINTER(retval); |
| } |
| PG_RETURN_POINTER(entry); |
| } |
| |
| |
| /* |
| ** The GiST Penalty method for boxes |
| ** As in the R-tree paper, we use change in area as our penalty metric |
| */ |
| Datum |
| g_cube_penalty(PG_FUNCTION_ARGS) |
| { |
| GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0); |
| GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1); |
| float *result = (float *) PG_GETARG_POINTER(2); |
| NDBOX *ud; |
| double tmp1, |
| tmp2; |
| |
| ud = cube_union_v0(DatumGetNDBOXP(origentry->key), |
| DatumGetNDBOXP(newentry->key)); |
| rt_cube_size(ud, &tmp1); |
| rt_cube_size(DatumGetNDBOXP(origentry->key), &tmp2); |
| *result = (float) (tmp1 - tmp2); |
| |
| PG_RETURN_FLOAT8(*result); |
| } |
| |
| |
| |
| /* |
| ** The GiST PickSplit method for boxes |
| ** We use Guttman's poly time split algorithm |
| */ |
| Datum |
| g_cube_picksplit(PG_FUNCTION_ARGS) |
| { |
| GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0); |
| GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1); |
| OffsetNumber i, |
| j; |
| NDBOX *datum_alpha, |
| *datum_beta; |
| NDBOX *datum_l, |
| *datum_r; |
| NDBOX *union_d, |
| *union_dl, |
| *union_dr; |
| NDBOX *inter_d; |
| bool firsttime; |
| double size_alpha, |
| size_beta, |
| size_union, |
| size_inter; |
| double size_waste, |
| waste; |
| double size_l, |
| size_r; |
| int nbytes; |
| OffsetNumber seed_1 = 1, |
| seed_2 = 2; |
| OffsetNumber *left, |
| *right; |
| OffsetNumber maxoff; |
| |
| maxoff = entryvec->n - 2; |
| nbytes = (maxoff + 2) * sizeof(OffsetNumber); |
| v->spl_left = (OffsetNumber *) palloc(nbytes); |
| v->spl_right = (OffsetNumber *) palloc(nbytes); |
| |
| firsttime = true; |
| waste = 0.0; |
| |
| for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i)) |
| { |
| datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key); |
| for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j)) |
| { |
| datum_beta = DatumGetNDBOXP(entryvec->vector[j].key); |
| |
| /* compute the wasted space by unioning these guys */ |
| /* size_waste = size_union - size_inter; */ |
| union_d = cube_union_v0(datum_alpha, datum_beta); |
| rt_cube_size(union_d, &size_union); |
| inter_d = DatumGetNDBOXP(DirectFunctionCall2(cube_inter, |
| entryvec->vector[i].key, |
| entryvec->vector[j].key)); |
| rt_cube_size(inter_d, &size_inter); |
| size_waste = size_union - size_inter; |
| |
| /* |
| * are these a more promising split than what we've already seen? |
| */ |
| |
| if (size_waste > waste || firsttime) |
| { |
| waste = size_waste; |
| seed_1 = i; |
| seed_2 = j; |
| firsttime = false; |
| } |
| } |
| } |
| |
| left = v->spl_left; |
| v->spl_nleft = 0; |
| right = v->spl_right; |
| v->spl_nright = 0; |
| |
| datum_alpha = DatumGetNDBOXP(entryvec->vector[seed_1].key); |
| datum_l = cube_union_v0(datum_alpha, datum_alpha); |
| rt_cube_size(datum_l, &size_l); |
| datum_beta = DatumGetNDBOXP(entryvec->vector[seed_2].key); |
| datum_r = cube_union_v0(datum_beta, datum_beta); |
| rt_cube_size(datum_r, &size_r); |
| |
| /* |
| * Now split up the regions between the two seeds. An important property |
| * of this split algorithm is that the split vector v has the indices of |
| * items to be split in order in its left and right vectors. We exploit |
| * this property by doing a merge in the code that actually splits the |
| * page. |
| * |
| * For efficiency, we also place the new index tuple in this loop. This is |
| * handled at the very end, when we have placed all the existing tuples |
| * and i == maxoff + 1. |
| */ |
| |
| maxoff = OffsetNumberNext(maxoff); |
| for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i)) |
| { |
| /* |
| * If we've already decided where to place this item, just put it on |
| * the right list. Otherwise, we need to figure out which page needs |
| * the least enlargement in order to store the item. |
| */ |
| |
| if (i == seed_1) |
| { |
| *left++ = i; |
| v->spl_nleft++; |
| continue; |
| } |
| else if (i == seed_2) |
| { |
| *right++ = i; |
| v->spl_nright++; |
| continue; |
| } |
| |
| /* okay, which page needs least enlargement? */ |
| datum_alpha = DatumGetNDBOXP(entryvec->vector[i].key); |
| union_dl = cube_union_v0(datum_l, datum_alpha); |
| union_dr = cube_union_v0(datum_r, datum_alpha); |
| rt_cube_size(union_dl, &size_alpha); |
| rt_cube_size(union_dr, &size_beta); |
| |
| /* pick which page to add it to */ |
| if (size_alpha - size_l < size_beta - size_r) |
| { |
| datum_l = union_dl; |
| size_l = size_alpha; |
| *left++ = i; |
| v->spl_nleft++; |
| } |
| else |
| { |
| datum_r = union_dr; |
| size_r = size_beta; |
| *right++ = i; |
| v->spl_nright++; |
| } |
| } |
| *left = *right = FirstOffsetNumber; /* sentinel value */ |
| |
| v->spl_ldatum = PointerGetDatum(datum_l); |
| v->spl_rdatum = PointerGetDatum(datum_r); |
| |
| PG_RETURN_POINTER(v); |
| } |
| |
| /* |
| ** Equality method |
| */ |
| Datum |
| g_cube_same(PG_FUNCTION_ARGS) |
| { |
| NDBOX *b1 = PG_GETARG_NDBOX_P(0); |
| NDBOX *b2 = PG_GETARG_NDBOX_P(1); |
| bool *result = (bool *) PG_GETARG_POINTER(2); |
| |
| if (cube_cmp_v0(b1, b2) == 0) |
| *result = true; |
| else |
| *result = false; |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* |
| ** SUPPORT ROUTINES |
| */ |
| bool |
| g_cube_leaf_consistent(NDBOX *key, |
| NDBOX *query, |
| StrategyNumber strategy) |
| { |
| bool retval; |
| |
| switch (strategy) |
| { |
| case RTOverlapStrategyNumber: |
| retval = cube_overlap_v0(key, query); |
| break; |
| case RTSameStrategyNumber: |
| retval = (cube_cmp_v0(key, query) == 0); |
| break; |
| case RTContainsStrategyNumber: |
| case RTOldContainsStrategyNumber: |
| retval = cube_contains_v0(key, query); |
| break; |
| case RTContainedByStrategyNumber: |
| case RTOldContainedByStrategyNumber: |
| retval = cube_contains_v0(query, key); |
| break; |
| default: |
| retval = false; |
| } |
| return retval; |
| } |
| |
| bool |
| g_cube_internal_consistent(NDBOX *key, |
| NDBOX *query, |
| StrategyNumber strategy) |
| { |
| bool retval; |
| |
| switch (strategy) |
| { |
| case RTOverlapStrategyNumber: |
| retval = (bool) cube_overlap_v0(key, query); |
| break; |
| case RTSameStrategyNumber: |
| case RTContainsStrategyNumber: |
| case RTOldContainsStrategyNumber: |
| retval = (bool) cube_contains_v0(key, query); |
| break; |
| case RTContainedByStrategyNumber: |
| case RTOldContainedByStrategyNumber: |
| retval = (bool) cube_overlap_v0(key, query); |
| break; |
| default: |
| retval = false; |
| } |
| return retval; |
| } |
| |
| NDBOX * |
| g_cube_binary_union(NDBOX *r1, NDBOX *r2, int *sizep) |
| { |
| NDBOX *retval; |
| |
| retval = cube_union_v0(r1, r2); |
| *sizep = VARSIZE(retval); |
| |
| return retval; |
| } |
| |
| |
| /* cube_union_v0 */ |
| NDBOX * |
| cube_union_v0(NDBOX *a, NDBOX *b) |
| { |
| int i; |
| NDBOX *result; |
| int dim; |
| int size; |
| |
| /* trivial case */ |
| if (a == b) |
| return a; |
| |
| /* swap the arguments if needed, so that 'a' is always larger than 'b' */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| } |
| dim = DIM(a); |
| |
| size = CUBE_SIZE(dim); |
| result = palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| |
| /* First compute the union of the dimensions present in both args */ |
| for (i = 0; i < DIM(b); i++) |
| { |
| result->x[i] = Min(Min(LL_COORD(a, i), UR_COORD(a, i)), |
| Min(LL_COORD(b, i), UR_COORD(b, i))); |
| result->x[i + DIM(a)] = Max(Max(LL_COORD(a, i), UR_COORD(a, i)), |
| Max(LL_COORD(b, i), UR_COORD(b, i))); |
| } |
| /* continue on the higher dimensions only present in 'a' */ |
| for (; i < DIM(a); i++) |
| { |
| result->x[i] = Min(0, |
| Min(LL_COORD(a, i), UR_COORD(a, i)) |
| ); |
| result->x[i + dim] = Max(0, |
| Max(LL_COORD(a, i), UR_COORD(a, i)) |
| ); |
| } |
| |
| /* |
| * Check if the result was in fact a point, and set the flag in the datum |
| * accordingly. (we don't bother to repalloc it smaller) |
| */ |
| if (cube_is_point_internal(result)) |
| { |
| size = POINT_SIZE(dim); |
| SET_VARSIZE(result, size); |
| SET_POINT_BIT(result); |
| } |
| |
| return result; |
| } |
| |
| Datum |
| cube_union(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0); |
| NDBOX *b = PG_GETARG_NDBOX_P(1); |
| NDBOX *res; |
| |
| res = cube_union_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_NDBOX_P(res); |
| } |
| |
| /* cube_inter */ |
| Datum |
| cube_inter(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0); |
| NDBOX *b = PG_GETARG_NDBOX_P(1); |
| NDBOX *result; |
| bool swapped = false; |
| int i; |
| int dim; |
| int size; |
| |
| /* swap the arguments if needed, so that 'a' is always larger than 'b' */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| swapped = true; |
| } |
| dim = DIM(a); |
| |
| size = CUBE_SIZE(dim); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| |
| /* First compute intersection of the dimensions present in both args */ |
| for (i = 0; i < DIM(b); i++) |
| { |
| result->x[i] = Max(Min(LL_COORD(a, i), UR_COORD(a, i)), |
| Min(LL_COORD(b, i), UR_COORD(b, i))); |
| result->x[i + DIM(a)] = Min(Max(LL_COORD(a, i), UR_COORD(a, i)), |
| Max(LL_COORD(b, i), UR_COORD(b, i))); |
| } |
| /* continue on the higher dimensions only present in 'a' */ |
| for (; i < DIM(a); i++) |
| { |
| result->x[i] = Max(0, |
| Min(LL_COORD(a, i), UR_COORD(a, i)) |
| ); |
| result->x[i + DIM(a)] = Min(0, |
| Max(LL_COORD(a, i), UR_COORD(a, i)) |
| ); |
| } |
| |
| /* |
| * Check if the result was in fact a point, and set the flag in the datum |
| * accordingly. (we don't bother to repalloc it smaller) |
| */ |
| if (cube_is_point_internal(result)) |
| { |
| size = POINT_SIZE(dim); |
| result = repalloc(result, size); |
| SET_VARSIZE(result, size); |
| SET_POINT_BIT(result); |
| } |
| |
| if (swapped) |
| { |
| PG_FREE_IF_COPY(b, 0); |
| PG_FREE_IF_COPY(a, 1); |
| } |
| else |
| { |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| } |
| |
| /* |
| * Is it OK to return a non-null intersection for non-overlapping boxes? |
| */ |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* cube_size */ |
| Datum |
| cube_size(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0); |
| double result; |
| |
| rt_cube_size(a, &result); |
| PG_FREE_IF_COPY(a, 0); |
| PG_RETURN_FLOAT8(result); |
| } |
| |
| void |
| rt_cube_size(NDBOX *a, double *size) |
| { |
| double result; |
| int i; |
| |
| if (a == (NDBOX *) NULL) |
| { |
| /* special case for GiST */ |
| result = 0.0; |
| } |
| else if (IS_POINT(a) || DIM(a) == 0) |
| { |
| /* necessarily has zero size */ |
| result = 0.0; |
| } |
| else |
| { |
| result = 1.0; |
| for (i = 0; i < DIM(a); i++) |
| result *= fabs(UR_COORD(a, i) - LL_COORD(a, i)); |
| } |
| *size = result; |
| } |
| |
| /* make up a metric in which one box will be 'lower' than the other |
| -- this can be useful for sorting and to determine uniqueness */ |
| int32 |
| cube_cmp_v0(NDBOX *a, NDBOX *b) |
| { |
| int i; |
| int dim; |
| |
| dim = Min(DIM(a), DIM(b)); |
| |
| /* compare the common dimensions */ |
| for (i = 0; i < dim; i++) |
| { |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) > |
| Min(LL_COORD(b, i), UR_COORD(b, i))) |
| return 1; |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) < |
| Min(LL_COORD(b, i), UR_COORD(b, i))) |
| return -1; |
| } |
| for (i = 0; i < dim; i++) |
| { |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) > |
| Max(LL_COORD(b, i), UR_COORD(b, i))) |
| return 1; |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) < |
| Max(LL_COORD(b, i), UR_COORD(b, i))) |
| return -1; |
| } |
| |
| /* compare extra dimensions to zero */ |
| if (DIM(a) > DIM(b)) |
| { |
| for (i = dim; i < DIM(a); i++) |
| { |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0) |
| return 1; |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) < 0) |
| return -1; |
| } |
| for (i = dim; i < DIM(a); i++) |
| { |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) > 0) |
| return 1; |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0) |
| return -1; |
| } |
| |
| /* |
| * if all common dimensions are equal, the cube with more dimensions |
| * wins |
| */ |
| return 1; |
| } |
| if (DIM(a) < DIM(b)) |
| { |
| for (i = dim; i < DIM(b); i++) |
| { |
| if (Min(LL_COORD(b, i), UR_COORD(b, i)) > 0) |
| return -1; |
| if (Min(LL_COORD(b, i), UR_COORD(b, i)) < 0) |
| return 1; |
| } |
| for (i = dim; i < DIM(b); i++) |
| { |
| if (Max(LL_COORD(b, i), UR_COORD(b, i)) > 0) |
| return -1; |
| if (Max(LL_COORD(b, i), UR_COORD(b, i)) < 0) |
| return 1; |
| } |
| |
| /* |
| * if all common dimensions are equal, the cube with more dimensions |
| * wins |
| */ |
| return -1; |
| } |
| |
| /* They're really equal */ |
| return 0; |
| } |
| |
| Datum |
| cube_cmp(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_INT32(res); |
| } |
| |
| |
| Datum |
| cube_eq(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res == 0); |
| } |
| |
| |
| Datum |
| cube_ne(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res != 0); |
| } |
| |
| |
| Datum |
| cube_lt(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res < 0); |
| } |
| |
| |
| Datum |
| cube_gt(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res > 0); |
| } |
| |
| |
| Datum |
| cube_le(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res <= 0); |
| } |
| |
| |
| Datum |
| cube_ge(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| int32 res; |
| |
| res = cube_cmp_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res >= 0); |
| } |
| |
| |
| /* Contains */ |
| /* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */ |
| bool |
| cube_contains_v0(NDBOX *a, NDBOX *b) |
| { |
| int i; |
| |
| if ((a == NULL) || (b == NULL)) |
| return false; |
| |
| if (DIM(a) < DIM(b)) |
| { |
| /* |
| * the further comparisons will make sense if the excess dimensions of |
| * (b) were zeroes Since both UL and UR coordinates must be zero, we |
| * can check them all without worrying about which is which. |
| */ |
| for (i = DIM(a); i < DIM(b); i++) |
| { |
| if (LL_COORD(b, i) != 0) |
| return false; |
| if (UR_COORD(b, i) != 0) |
| return false; |
| } |
| } |
| |
| /* Can't care less about the excess dimensions of (a), if any */ |
| for (i = 0; i < Min(DIM(a), DIM(b)); i++) |
| { |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) > |
| Min(LL_COORD(b, i), UR_COORD(b, i))) |
| return false; |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) < |
| Max(LL_COORD(b, i), UR_COORD(b, i))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| Datum |
| cube_contains(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool res; |
| |
| res = cube_contains_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res); |
| } |
| |
| /* Contained */ |
| /* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */ |
| Datum |
| cube_contained(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool res; |
| |
| res = cube_contains_v0(b, a); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res); |
| } |
| |
| /* Overlap */ |
| /* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */ |
| bool |
| cube_overlap_v0(NDBOX *a, NDBOX *b) |
| { |
| int i; |
| |
| if ((a == NULL) || (b == NULL)) |
| return false; |
| |
| /* swap the box pointers if needed */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| } |
| |
| /* compare within the dimensions of (b) */ |
| for (i = 0; i < DIM(b); i++) |
| { |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) > Max(LL_COORD(b, i), UR_COORD(b, i))) |
| return false; |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) < Min(LL_COORD(b, i), UR_COORD(b, i))) |
| return false; |
| } |
| |
| /* compare to zero those dimensions in (a) absent in (b) */ |
| for (i = DIM(b); i < DIM(a); i++) |
| { |
| if (Min(LL_COORD(a, i), UR_COORD(a, i)) > 0) |
| return false; |
| if (Max(LL_COORD(a, i), UR_COORD(a, i)) < 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| Datum |
| cube_overlap(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool res; |
| |
| res = cube_overlap_v0(a, b); |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| PG_RETURN_BOOL(res); |
| } |
| |
| |
| /* Distance */ |
| /* The distance is computed as a per axis sum of the squared distances |
| between 1D projections of the boxes onto Cartesian axes. Assuming zero |
| distance between overlapping projections, this metric coincides with the |
| "common sense" geometric distance */ |
| Datum |
| cube_distance(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool swapped = false; |
| double d, |
| distance; |
| int i; |
| |
| /* swap the box pointers if needed */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| swapped = true; |
| } |
| |
| distance = 0.0; |
| /* compute within the dimensions of (b) */ |
| for (i = 0; i < DIM(b); i++) |
| { |
| d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), LL_COORD(b, i), UR_COORD(b, i)); |
| distance += d * d; |
| } |
| |
| /* compute distance to zero for those dimensions in (a) absent in (b) */ |
| for (i = DIM(b); i < DIM(a); i++) |
| { |
| d = distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0); |
| distance += d * d; |
| } |
| |
| if (swapped) |
| { |
| PG_FREE_IF_COPY(b, 0); |
| PG_FREE_IF_COPY(a, 1); |
| } |
| else |
| { |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| } |
| |
| PG_RETURN_FLOAT8(sqrt(distance)); |
| } |
| |
| Datum |
| distance_taxicab(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool swapped = false; |
| double distance; |
| int i; |
| |
| /* swap the box pointers if needed */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| swapped = true; |
| } |
| |
| distance = 0.0; |
| /* compute within the dimensions of (b) */ |
| for (i = 0; i < DIM(b); i++) |
| distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), |
| LL_COORD(b, i), UR_COORD(b, i))); |
| |
| /* compute distance to zero for those dimensions in (a) absent in (b) */ |
| for (i = DIM(b); i < DIM(a); i++) |
| distance += fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), |
| 0.0, 0.0)); |
| |
| if (swapped) |
| { |
| PG_FREE_IF_COPY(b, 0); |
| PG_FREE_IF_COPY(a, 1); |
| } |
| else |
| { |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| } |
| |
| PG_RETURN_FLOAT8(distance); |
| } |
| |
| Datum |
| distance_chebyshev(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0), |
| *b = PG_GETARG_NDBOX_P(1); |
| bool swapped = false; |
| double d, |
| distance; |
| int i; |
| |
| /* swap the box pointers if needed */ |
| if (DIM(a) < DIM(b)) |
| { |
| NDBOX *tmp = b; |
| |
| b = a; |
| a = tmp; |
| swapped = true; |
| } |
| |
| distance = 0.0; |
| /* compute within the dimensions of (b) */ |
| for (i = 0; i < DIM(b); i++) |
| { |
| d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), |
| LL_COORD(b, i), UR_COORD(b, i))); |
| if (d > distance) |
| distance = d; |
| } |
| |
| /* compute distance to zero for those dimensions in (a) absent in (b) */ |
| for (i = DIM(b); i < DIM(a); i++) |
| { |
| d = fabs(distance_1D(LL_COORD(a, i), UR_COORD(a, i), 0.0, 0.0)); |
| if (d > distance) |
| distance = d; |
| } |
| |
| if (swapped) |
| { |
| PG_FREE_IF_COPY(b, 0); |
| PG_FREE_IF_COPY(a, 1); |
| } |
| else |
| { |
| PG_FREE_IF_COPY(a, 0); |
| PG_FREE_IF_COPY(b, 1); |
| } |
| |
| PG_RETURN_FLOAT8(distance); |
| } |
| |
| Datum |
| g_cube_distance(PG_FUNCTION_ARGS) |
| { |
| GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0); |
| StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2); |
| NDBOX *cube = DatumGetNDBOXP(entry->key); |
| double retval; |
| |
| if (strategy == CubeKNNDistanceCoord) |
| { |
| /* |
| * Handle ordering by ~> operator. See comments of cube_coord_llur() |
| * for details |
| */ |
| int coord = PG_GETARG_INT32(1); |
| bool isLeaf = GistPageIsLeaf(entry->page); |
| bool inverse = false; |
| |
| /* 0 is the only unsupported coordinate value */ |
| if (coord == 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("zero cube index is not defined"))); |
| |
| /* Return inversed value for negative coordinate */ |
| if (coord < 0) |
| { |
| coord = -coord; |
| inverse = true; |
| } |
| |
| if (coord <= 2 * DIM(cube)) |
| { |
| /* dimension index */ |
| int index = (coord - 1) / 2; |
| |
| /* whether this is upper bound (lower bound otherwise) */ |
| bool upper = ((coord - 1) % 2 == 1); |
| |
| if (IS_POINT(cube)) |
| { |
| retval = cube->x[index]; |
| } |
| else |
| { |
| if (isLeaf) |
| { |
| /* For leaf just return required upper/lower bound */ |
| if (upper) |
| retval = Max(cube->x[index], cube->x[index + DIM(cube)]); |
| else |
| retval = Min(cube->x[index], cube->x[index + DIM(cube)]); |
| } |
| else |
| { |
| /* |
| * For non-leaf we should always return lower bound, |
| * because even upper bound of a child in the subtree can |
| * be as small as our lower bound. For inversed case we |
| * return upper bound because it becomes lower bound for |
| * inversed value. |
| */ |
| if (!inverse) |
| retval = Min(cube->x[index], cube->x[index + DIM(cube)]); |
| else |
| retval = Max(cube->x[index], cube->x[index + DIM(cube)]); |
| } |
| } |
| } |
| else |
| { |
| retval = 0.0; |
| } |
| |
| /* Inverse return value if needed */ |
| if (inverse) |
| retval = -retval; |
| } |
| else |
| { |
| NDBOX *query = PG_GETARG_NDBOX_P(1); |
| |
| switch (strategy) |
| { |
| case CubeKNNDistanceTaxicab: |
| retval = DatumGetFloat8(DirectFunctionCall2(distance_taxicab, |
| PointerGetDatum(cube), PointerGetDatum(query))); |
| break; |
| case CubeKNNDistanceEuclid: |
| retval = DatumGetFloat8(DirectFunctionCall2(cube_distance, |
| PointerGetDatum(cube), PointerGetDatum(query))); |
| break; |
| case CubeKNNDistanceChebyshev: |
| retval = DatumGetFloat8(DirectFunctionCall2(distance_chebyshev, |
| PointerGetDatum(cube), PointerGetDatum(query))); |
| break; |
| default: |
| elog(ERROR, "unrecognized cube strategy number: %d", strategy); |
| retval = 0; /* keep compiler quiet */ |
| break; |
| } |
| } |
| PG_RETURN_FLOAT8(retval); |
| } |
| |
| static double |
| distance_1D(double a1, double a2, double b1, double b2) |
| { |
| /* interval (a) is entirely on the left of (b) */ |
| if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2)) |
| return (Min(b1, b2) - Max(a1, a2)); |
| |
| /* interval (a) is entirely on the right of (b) */ |
| if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2)) |
| return (Min(a1, a2) - Max(b1, b2)); |
| |
| /* the rest are all sorts of intersections */ |
| return 0.0; |
| } |
| |
| /* Test if a box is also a point */ |
| Datum |
| cube_is_point(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| bool result; |
| |
| result = cube_is_point_internal(cube); |
| PG_FREE_IF_COPY(cube, 0); |
| PG_RETURN_BOOL(result); |
| } |
| |
| static bool |
| cube_is_point_internal(NDBOX *cube) |
| { |
| int i; |
| |
| if (IS_POINT(cube)) |
| return true; |
| |
| /* |
| * Even if the point-flag is not set, all the lower-left coordinates might |
| * match the upper-right coordinates, so that the value is in fact a |
| * point. Such values don't arise with current code - the point flag is |
| * always set if appropriate - but they might be present on-disk in |
| * clusters upgraded from pre-9.4 versions. |
| */ |
| for (i = 0; i < DIM(cube); i++) |
| { |
| if (LL_COORD(cube, i) != UR_COORD(cube, i)) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Return dimensions in use in the data structure */ |
| Datum |
| cube_dim(PG_FUNCTION_ARGS) |
| { |
| NDBOX *c = PG_GETARG_NDBOX_P(0); |
| int dim = DIM(c); |
| |
| PG_FREE_IF_COPY(c, 0); |
| PG_RETURN_INT32(dim); |
| } |
| |
| /* Return a specific normalized LL coordinate */ |
| Datum |
| cube_ll_coord(PG_FUNCTION_ARGS) |
| { |
| NDBOX *c = PG_GETARG_NDBOX_P(0); |
| int n = PG_GETARG_INT32(1); |
| double result; |
| |
| if (DIM(c) >= n && n > 0) |
| result = Min(LL_COORD(c, n - 1), UR_COORD(c, n - 1)); |
| else |
| result = 0; |
| |
| PG_FREE_IF_COPY(c, 0); |
| PG_RETURN_FLOAT8(result); |
| } |
| |
| /* Return a specific normalized UR coordinate */ |
| Datum |
| cube_ur_coord(PG_FUNCTION_ARGS) |
| { |
| NDBOX *c = PG_GETARG_NDBOX_P(0); |
| int n = PG_GETARG_INT32(1); |
| double result; |
| |
| if (DIM(c) >= n && n > 0) |
| result = Max(LL_COORD(c, n - 1), UR_COORD(c, n - 1)); |
| else |
| result = 0; |
| |
| PG_FREE_IF_COPY(c, 0); |
| PG_RETURN_FLOAT8(result); |
| } |
| |
| /* |
| * Function returns cube coordinate. |
| * Numbers from 1 to DIM denotes first corner coordinates. |
| * Numbers from DIM+1 to 2*DIM denotes second corner coordinates. |
| */ |
| Datum |
| cube_coord(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| int coord = PG_GETARG_INT32(1); |
| |
| if (coord <= 0 || coord > 2 * DIM(cube)) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("cube index %d is out of bounds", coord))); |
| |
| if (IS_POINT(cube)) |
| PG_RETURN_FLOAT8(cube->x[(coord - 1) % DIM(cube)]); |
| else |
| PG_RETURN_FLOAT8(cube->x[coord - 1]); |
| } |
| |
| |
| /*---- |
| * This function works like cube_coord(), but rearranges coordinates in the |
| * way suitable to support coordinate ordering using KNN-GiST. For historical |
| * reasons this extension allows us to create cubes in form ((2,1),(1,2)) and |
| * instead of normalizing such cube to ((1,1),(2,2)) it stores cube in original |
| * way. But in order to get cubes ordered by one of dimensions from the index |
| * without explicit sort step we need this representation-independent coordinate |
| * getter. Moreover, indexed dataset may contain cubes of different dimensions |
| * number. Accordingly, this coordinate getter should be able to return |
| * lower/upper bound for particular dimension independently on number of cube |
| * dimensions. Also, KNN-GiST supports only ascending sorting. In order to |
| * support descending sorting, this function returns inverse of value when |
| * negative coordinate is given. |
| * |
| * Long story short, this function uses following meaning of coordinates: |
| * # (2 * N - 1) -- lower bound of Nth dimension, |
| * # (2 * N) -- upper bound of Nth dimension, |
| * # - (2 * N - 1) -- negative of lower bound of Nth dimension, |
| * # - (2 * N) -- negative of upper bound of Nth dimension. |
| * |
| * When given coordinate exceeds number of cube dimensions, then 0 returned |
| * (reproducing logic of GiST indexing of variable-length cubes). |
| */ |
| Datum |
| cube_coord_llur(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| int coord = PG_GETARG_INT32(1); |
| bool inverse = false; |
| float8 result; |
| |
| /* 0 is the only unsupported coordinate value */ |
| if (coord == 0) |
| ereport(ERROR, |
| (errcode(ERRCODE_ARRAY_ELEMENT_ERROR), |
| errmsg("zero cube index is not defined"))); |
| |
| /* Return inversed value for negative coordinate */ |
| if (coord < 0) |
| { |
| coord = -coord; |
| inverse = true; |
| } |
| |
| if (coord <= 2 * DIM(cube)) |
| { |
| /* dimension index */ |
| int index = (coord - 1) / 2; |
| |
| /* whether this is upper bound (lower bound otherwise) */ |
| bool upper = ((coord - 1) % 2 == 1); |
| |
| if (IS_POINT(cube)) |
| { |
| result = cube->x[index]; |
| } |
| else |
| { |
| if (upper) |
| result = Max(cube->x[index], cube->x[index + DIM(cube)]); |
| else |
| result = Min(cube->x[index], cube->x[index + DIM(cube)]); |
| } |
| } |
| else |
| { |
| /* |
| * Return zero if coordinate is out of bound. That reproduces logic |
| * of how cubes with low dimension number are expanded during GiST |
| * indexing. |
| */ |
| result = 0.0; |
| } |
| |
| /* Inverse value if needed */ |
| if (inverse) |
| result = -result; |
| |
| PG_RETURN_FLOAT8(result); |
| } |
| |
| /* Increase or decrease box size by a radius in at least n dimensions. */ |
| Datum |
| cube_enlarge(PG_FUNCTION_ARGS) |
| { |
| NDBOX *a = PG_GETARG_NDBOX_P(0); |
| double r = PG_GETARG_FLOAT8(1); |
| int32 n = PG_GETARG_INT32(2); |
| NDBOX *result; |
| int dim = 0; |
| int size; |
| int i, |
| j; |
| |
| if (n > CUBE_MAX_DIM) |
| n = CUBE_MAX_DIM; |
| if (r > 0 && n > 0) |
| dim = n; |
| if (DIM(a) > dim) |
| dim = DIM(a); |
| |
| size = CUBE_SIZE(dim); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, dim); |
| |
| for (i = 0, j = dim; i < DIM(a); i++, j++) |
| { |
| if (LL_COORD(a, i) >= UR_COORD(a, i)) |
| { |
| result->x[i] = UR_COORD(a, i) - r; |
| result->x[j] = LL_COORD(a, i) + r; |
| } |
| else |
| { |
| result->x[i] = LL_COORD(a, i) - r; |
| result->x[j] = UR_COORD(a, i) + r; |
| } |
| if (result->x[i] > result->x[j]) |
| { |
| result->x[i] = (result->x[i] + result->x[j]) / 2; |
| result->x[j] = result->x[i]; |
| } |
| } |
| /* dim > a->dim only if r > 0 */ |
| for (; i < dim; i++, j++) |
| { |
| result->x[i] = -r; |
| result->x[j] = r; |
| } |
| |
| /* |
| * Check if the result was in fact a point, and set the flag in the datum |
| * accordingly. (we don't bother to repalloc it smaller) |
| */ |
| if (cube_is_point_internal(result)) |
| { |
| size = POINT_SIZE(dim); |
| SET_VARSIZE(result, size); |
| SET_POINT_BIT(result); |
| } |
| |
| PG_FREE_IF_COPY(a, 0); |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* Create a one dimensional box with identical upper and lower coordinates */ |
| Datum |
| cube_f8(PG_FUNCTION_ARGS) |
| { |
| double x = PG_GETARG_FLOAT8(0); |
| NDBOX *result; |
| int size; |
| |
| size = POINT_SIZE(1); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, 1); |
| SET_POINT_BIT(result); |
| result->x[0] = x; |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* Create a one dimensional box */ |
| Datum |
| cube_f8_f8(PG_FUNCTION_ARGS) |
| { |
| double x0 = PG_GETARG_FLOAT8(0); |
| double x1 = PG_GETARG_FLOAT8(1); |
| NDBOX *result; |
| int size; |
| |
| if (x0 == x1) |
| { |
| size = POINT_SIZE(1); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, 1); |
| SET_POINT_BIT(result); |
| result->x[0] = x0; |
| } |
| else |
| { |
| size = CUBE_SIZE(1); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, 1); |
| result->x[0] = x0; |
| result->x[1] = x1; |
| } |
| |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* Add a dimension to an existing cube with the same values for the new |
| coordinate */ |
| Datum |
| cube_c_f8(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| double x = PG_GETARG_FLOAT8(1); |
| NDBOX *result; |
| int size; |
| int i; |
| |
| if (DIM(cube) + 1 > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("can't extend cube"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| |
| if (IS_POINT(cube)) |
| { |
| size = POINT_SIZE((DIM(cube) + 1)); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, DIM(cube) + 1); |
| SET_POINT_BIT(result); |
| for (i = 0; i < DIM(cube); i++) |
| result->x[i] = cube->x[i]; |
| result->x[DIM(result) - 1] = x; |
| } |
| else |
| { |
| size = CUBE_SIZE((DIM(cube) + 1)); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, DIM(cube) + 1); |
| for (i = 0; i < DIM(cube); i++) |
| { |
| result->x[i] = cube->x[i]; |
| result->x[DIM(result) + i] = cube->x[DIM(cube) + i]; |
| } |
| result->x[DIM(result) - 1] = x; |
| result->x[2 * DIM(result) - 1] = x; |
| } |
| |
| PG_FREE_IF_COPY(cube, 0); |
| PG_RETURN_NDBOX_P(result); |
| } |
| |
| /* Add a dimension to an existing cube */ |
| Datum |
| cube_c_f8_f8(PG_FUNCTION_ARGS) |
| { |
| NDBOX *cube = PG_GETARG_NDBOX_P(0); |
| double x1 = PG_GETARG_FLOAT8(1); |
| double x2 = PG_GETARG_FLOAT8(2); |
| NDBOX *result; |
| int size; |
| int i; |
| |
| if (DIM(cube) + 1 > CUBE_MAX_DIM) |
| ereport(ERROR, |
| (errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED), |
| errmsg("can't extend cube"), |
| errdetail("A cube cannot have more than %d dimensions.", |
| CUBE_MAX_DIM))); |
| |
| if (IS_POINT(cube) && (x1 == x2)) |
| { |
| size = POINT_SIZE((DIM(cube) + 1)); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, DIM(cube) + 1); |
| SET_POINT_BIT(result); |
| for (i = 0; i < DIM(cube); i++) |
| result->x[i] = cube->x[i]; |
| result->x[DIM(result) - 1] = x1; |
| } |
| else |
| { |
| size = CUBE_SIZE((DIM(cube) + 1)); |
| result = (NDBOX *) palloc0(size); |
| SET_VARSIZE(result, size); |
| SET_DIM(result, DIM(cube) + 1); |
| for (i = 0; i < DIM(cube); i++) |
| { |
| result->x[i] = LL_COORD(cube, i); |
| result->x[DIM(result) + i] = UR_COORD(cube, i); |
| } |
| result->x[DIM(result) - 1] = x1; |
| result->x[2 * DIM(result) - 1] = x2; |
| } |
| |
| PG_FREE_IF_COPY(cube, 0); |
| PG_RETURN_NDBOX_P(result); |
| } |