blob: 6fa283794a8f2fdd1545d85c64314c5bbad667c7 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
Use OCW to download, evaluate and plot (contour map) two datasets
against a reference dataset and OCW standard metrics.
In this example:
1. Download two netCDF files from a local site.
2. Load the local files into OCW dataset objects.
3. Interface with the Regional Climate Model Evaluation Database (
to load the CRU3.1 Daily Precipitation dataset (
4. Process each dataset to the same same shape.
a.) Restrict the datasets re: geographic and time boundaries.
b.) Convert the dataset water flux to common units.
c.) Normalize the dataset date / times to monthly.
d.) Spatially regrid each dataset.
5. Calculate the mean annual value for each dataset.
6. Evaluate the datasets against the reference data set and OCW standard metric and plot
a contour map.
OCW modules demonstrated:
1. datasource/local
2. datasource/rcmed
3. dataset
4. dataset_processor
5. metrics
6. evaluation
7. plotter
8. utils
from __future__ import print_function
import datetime
import ssl
import sys
from os import path
import numpy as np
import ocw.data_source.local as local
import ocw.data_source.rcmed as rcmed
import ocw.dataset_processor as dsp
import ocw.evaluation as evaluation
import ocw.metrics as metrics
import ocw.plotter as plotter
import ocw.utils as utils
from ocw.dataset import Bounds as Bounds
if sys.version_info[0] >= 3:
from urllib.request import urlretrieve
# Not Python 3 - today, it is most likely to be Python 2
# But note that this might need an update when Python 4
# might be around one day
from urllib import urlretrieve
if hasattr(ssl, '_create_unverified_context'):
ssl._create_default_https_context = ssl._create_unverified_context
# File URL leader
# Three Local Model Files
FILE_1 = ""
FILE_2 = ""
# Filename for the output image/plot (without file extension)
OUTPUT_PLOT = "pr_africa_bias_annual"
# variable that we are analyzing
varName = 'pr'
# Spatial and temporal configurations
LAT_MIN = -45.0
LAT_MAX = 42.24
LON_MIN = -24.0
LON_MAX = 60.0
START = datetime.datetime(2000, 1, 1)
END = datetime.datetime(2007, 12, 31)
EVAL_BOUNDS = Bounds(lat_min=LAT_MIN, lat_max=LAT_MAX,
lon_min=LON_MIN, lon_max=LON_MAX, start=START, end=END)
# regridding parameters
gridLonStep = 0.5
gridLatStep = 0.5
# list for all target_datasets
target_datasets = []
# list for names for all the datasets
allNames = []
# Download necessary NetCDF file if not present
if not path.exists(FILE_1):
urlretrieve(FILE_LEADER + FILE_1, FILE_1)
if not path.exists(FILE_2):
urlretrieve(FILE_LEADER + FILE_2, FILE_2)
# Step 1: Load Local NetCDF File into OCW Dataset Objects and store in list.
target_datasets.append(local.load_file(FILE_1, varName, name="KNMI"))
target_datasets.append(local.load_file(FILE_2, varName, name="UCT"))
# Step 2: Fetch an OCW Dataset Object from the data_source.rcmed module.
print("Working with the rcmed interface to get CRU3.1 Monthly Mean Precipitation")
# the dataset_id and the parameter id were determined from
CRU31 = rcmed.parameter_dataset(
# Step 3: Resample Datasets so they are the same shape.
print("Resampling datasets")
CRU31 = dsp.water_flux_unit_conversion(CRU31)
CRU31 = dsp.temporal_rebin(CRU31, temporal_resolution='monthly')
for member, each_target_dataset in enumerate(target_datasets):
target_datasets[member] = dsp.subset(target_datasets[member], EVAL_BOUNDS)
target_datasets[member] = dsp.water_flux_unit_conversion(target_datasets[member])
target_datasets[member] = dsp.temporal_rebin(
target_datasets[member], temporal_resolution='monthly')
# Spatially Regrid the Dataset Objects to a user defined grid.
# Using the bounds we will create a new set of lats and lons
print("Regridding datasets")
new_lats = np.arange(LAT_MIN, LAT_MAX, gridLatStep)
new_lons = np.arange(LON_MIN, LON_MAX, gridLonStep)
CRU31 = dsp.spatial_regrid(CRU31, new_lats, new_lons)
for member, each_target_dataset in enumerate(target_datasets):
target_datasets[member] = dsp.spatial_regrid(
target_datasets[member], new_lats, new_lons)
# make the model ensemble
target_datasets_ensemble = dsp.ensemble(target_datasets) = "ENS"
# append to the target_datasets for final analysis
# find the mean value
# way to get the mean. Note the function exists in
_, CRU31.values = utils.calc_climatology_year(CRU31)
for member, each_target_dataset in enumerate(target_datasets):
_, target_datasets[member].values =\
for target in target_datasets:
# determine the metrics
mean_bias = metrics.Bias()
# create the Evaluation object
RCMs_to_CRU_evaluation = evaluation.Evaluation(CRU31, # Reference dataset for the evaluation
# list of target datasets for
# the evaluation
# 1 or more metrics to use in
# the evaluation
# extract the relevant data from RCMs_to_CRU_evaluation.results
# the results returns a list (num_target_datasets, num_metrics). See docs for further details
# remove the metric dimension
rcm_bias = RCMs_to_CRU_evaluation.results[0]
plotter.draw_contour_map(rcm_bias, new_lats, new_lons, gridshape=(
2, 3), fname=OUTPUT_PLOT, subtitles=allNames, cmap='coolwarm_r')