blob: 065fc83c3c4c96efc3efac6cc5e4c660b51d7546 [file] [log] [blame]
# cython: profile=True
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ConfigParser
import csv
import datetime
import json
import glob
import multiprocessing as mp
import os
import platform
import random
import re
import struct
import sys
import threading
import time
import traceback
from bisect import bisect_right
from calendar import timegm
from collections import defaultdict, namedtuple
from decimal import Decimal
from Queue import Queue
from random import randint
from StringIO import StringIO
from select import select
from uuid import UUID
from util import profile_on, profile_off
from cassandra import OperationTimedOut
from cassandra.cluster import Cluster, DefaultConnection
from cassandra.cqltypes import ReversedType, UserType
from cassandra.metadata import protect_name, protect_names, protect_value
from cassandra.policies import RetryPolicy, WhiteListRoundRobinPolicy, DCAwareRoundRobinPolicy, FallthroughRetryPolicy
from cassandra.query import BatchStatement, BatchType, SimpleStatement, tuple_factory
from cassandra.util import Date, Time
from cql3handling import CqlRuleSet
from displaying import NO_COLOR_MAP
from formatting import format_value_default, CqlType, DateTimeFormat, EMPTY, get_formatter, BlobType
from sslhandling import ssl_settings
PROFILE_ON = False
STRACE_ON = False
DEBUG = False # This may be set to True when initializing the task
IS_LINUX = platform.system() == 'Linux'
IS_WINDOWS = platform.system() == 'Windows'
CopyOptions = namedtuple('CopyOptions', 'copy dialect unrecognized')
def safe_normpath(fname):
"""
:return the normalized path but only if there is a filename, we don't want to convert
an empty string (which means no file name) to a dot. Also expand any user variables such as ~ to the full path
"""
return os.path.normpath(os.path.expanduser(fname)) if fname else fname
def printdebugmsg(msg):
if DEBUG:
printmsg(msg)
def printmsg(msg, eol='\n', encoding='utf8'):
sys.stdout.write(msg.encode(encoding))
sys.stdout.write(eol)
sys.stdout.flush()
# Keep arguments in sync with printmsg
def swallowmsg(msg, eol='', encoding=''):
None
class OneWayPipe(object):
"""
A one way pipe protected by two process level locks, one for reading and one for writing.
"""
def __init__(self):
self.reader, self.writer = mp.Pipe(duplex=False)
self.rlock = mp.Lock()
self.wlock = mp.Lock()
def send(self, obj):
with self.wlock:
self.writer.send(obj)
def recv(self):
with self.rlock:
return self.reader.recv()
def close(self):
self.reader.close()
self.writer.close()
class ReceivingChannel(object):
"""
A one way channel that wraps a pipe to receive messages.
"""
def __init__(self, pipe):
self.pipe = pipe
def recv(self):
return self.pipe.recv()
def close(self):
self.pipe.close()
class SendingChannel(object):
"""
A one way channel that wraps a pipe and provides a feeding thread to send messages asynchronously.
"""
def __init__(self, pipe):
self.pipe = pipe
self.pending_messages = Queue()
def feed():
while True:
try:
msg = self.pending_messages.get()
self.pipe.send(msg)
except Exception, e:
printmsg('%s: %s' % (e.__class__.__name__, e.message))
feeding_thread = threading.Thread(target=feed)
feeding_thread.setDaemon(True)
feeding_thread.start()
def send(self, obj):
self.pending_messages.put(obj)
def num_pending(self):
return self.pending_messages.qsize() if self.pending_messages else 0
def close(self):
self.pipe.close()
class SendingChannels(object):
"""
A group of one way channels for sending messages.
"""
def __init__(self, num_channels):
self.pipes = [OneWayPipe() for _ in xrange(num_channels)]
self.channels = [SendingChannel(p) for p in self.pipes]
self.num_channels = num_channels
def close(self):
for ch in self.channels:
try:
ch.close()
except Exception:
pass
class ReceivingChannels(object):
"""
A group of one way channels for receiving messages.
"""
def __init__(self, num_channels):
self.pipes = [OneWayPipe() for _ in xrange(num_channels)]
self.channels = [ReceivingChannel(p) for p in self.pipes]
self._readers = [p.reader for p in self.pipes]
self._rlocks = [p.rlock for p in self.pipes]
self._rlocks_by_readers = dict([(p.reader, p.rlock) for p in self.pipes])
self.num_channels = num_channels
self.recv = self.recv_select if IS_LINUX else self.recv_polling
def recv_select(self, timeout):
"""
Implementation of the recv method for Linux, where select is available. Receive an object from
all pipes that are ready for reading without blocking.
"""
readable, _, _ = select(self._readers, [], [], timeout)
for r in readable:
with self._rlocks_by_readers[r]:
try:
yield r.recv()
except EOFError:
continue
def recv_polling(self, timeout):
"""
Implementation of the recv method for platforms where select() is not available for pipes.
We poll on all of the readers with a very small timeout. We stop when the timeout specified
has been received but we may exceed it since we check all processes during each sweep.
"""
start = time.time()
while True:
for i, r in enumerate(self._readers):
with self._rlocks[i]:
if r.poll(0.000000001):
try:
yield r.recv()
except EOFError:
continue
if time.time() - start > timeout:
break
def close(self):
for ch in self.channels:
try:
ch.close()
except Exception:
pass
class CopyTask(object):
"""
A base class for ImportTask and ExportTask
"""
def __init__(self, shell, ks, table, columns, fname, opts, protocol_version, config_file, direction):
self.shell = shell
self.ks = ks
self.table = table
self.table_meta = self.shell.get_table_meta(self.ks, self.table)
self.host = shell.conn.get_control_connection_host()
self.fname = safe_normpath(fname)
self.protocol_version = protocol_version
self.config_file = config_file
# if cqlsh is invoked with --debug then set the global debug flag to True
if shell.debug:
global DEBUG
DEBUG = True
# do not display messages when exporting to STDOUT unless --debug is set
self.printmsg = printmsg if self.fname is not None or direction == 'from' or DEBUG \
else swallowmsg
self.options = self.parse_options(opts, direction)
self.num_processes = self.options.copy['numprocesses']
self.encoding = self.options.copy['encoding']
self.printmsg('Using %d child processes' % (self.num_processes,))
if direction == 'from':
self.num_processes += 1 # add the feeder process
self.processes = []
self.inmsg = ReceivingChannels(self.num_processes)
self.outmsg = SendingChannels(self.num_processes)
self.columns = CopyTask.get_columns(shell, ks, table, columns)
self.time_start = time.time()
def maybe_read_config_file(self, opts, direction):
"""
Read optional sections from a configuration file that was specified in the command options or from the default
cqlshrc configuration file if none was specified.
"""
config_file = opts.pop('configfile', '')
if not config_file:
config_file = self.config_file
if not os.path.isfile(config_file):
return opts
configs = ConfigParser.RawConfigParser()
configs.readfp(open(config_file))
ret = dict()
config_sections = list(['copy', 'copy-%s' % (direction,),
'copy:%s.%s' % (self.ks, self.table),
'copy-%s:%s.%s' % (direction, self.ks, self.table)])
for section in config_sections:
if configs.has_section(section):
options = dict(configs.items(section))
self.printmsg("Reading options from %s:[%s]: %s" % (config_file, section, options))
ret.update(options)
# Update this last so the command line options take precedence over the configuration file options
if opts:
self.printmsg("Reading options from the command line: %s" % (opts,))
ret.update(opts)
if self.shell.debug: # this is important for testing, do not remove
self.printmsg("Using options: '%s'" % (ret,))
return ret
@staticmethod
def clean_options(opts):
"""
Convert all option values to valid string literals unless they are path names
"""
return dict([(k, v.decode('string_escape') if k not in ['errfile', 'ratefile'] else v)
for k, v, in opts.iteritems()])
def parse_options(self, opts, direction):
"""
Parse options for import (COPY FROM) and export (COPY TO) operations.
Extract from opts csv and dialect options.
:return: 3 dictionaries: the csv options, the dialect options, any unrecognized options.
"""
shell = self.shell
opts = self.clean_options(self.maybe_read_config_file(opts, direction))
dialect_options = dict()
dialect_options['quotechar'] = opts.pop('quote', '"')
dialect_options['escapechar'] = opts.pop('escape', '\\')
dialect_options['delimiter'] = opts.pop('delimiter', ',')
if dialect_options['quotechar'] == dialect_options['escapechar']:
dialect_options['doublequote'] = True
del dialect_options['escapechar']
else:
dialect_options['doublequote'] = False
copy_options = dict()
copy_options['nullval'] = opts.pop('null', '')
copy_options['header'] = bool(opts.pop('header', '').lower() == 'true')
copy_options['encoding'] = opts.pop('encoding', 'utf8')
copy_options['maxrequests'] = int(opts.pop('maxrequests', 6))
copy_options['pagesize'] = int(opts.pop('pagesize', 1000))
# by default the page timeout is 10 seconds per 1000 entries
# in the page size or 10 seconds if pagesize is smaller
copy_options['pagetimeout'] = int(opts.pop('pagetimeout', max(10, 10 * (copy_options['pagesize'] / 1000))))
copy_options['maxattempts'] = int(opts.pop('maxattempts', 5))
copy_options['dtformats'] = DateTimeFormat(opts.pop('datetimeformat', shell.display_timestamp_format),
shell.display_date_format, shell.display_nanotime_format,
milliseconds_only=True)
copy_options['floatprecision'] = int(opts.pop('floatprecision', '5'))
copy_options['doubleprecision'] = int(opts.pop('doubleprecision', '12'))
copy_options['chunksize'] = int(opts.pop('chunksize', 5000))
copy_options['ingestrate'] = int(opts.pop('ingestrate', 100000))
copy_options['maxbatchsize'] = int(opts.pop('maxbatchsize', 20))
copy_options['minbatchsize'] = int(opts.pop('minbatchsize', 10))
copy_options['reportfrequency'] = float(opts.pop('reportfrequency', 0.25))
copy_options['consistencylevel'] = shell.consistency_level
copy_options['decimalsep'] = opts.pop('decimalsep', '.')
copy_options['thousandssep'] = opts.pop('thousandssep', '')
copy_options['boolstyle'] = [s.strip() for s in opts.pop('boolstyle', 'True, False').split(',')]
copy_options['numprocesses'] = int(opts.pop('numprocesses', self.get_num_processes(16)))
copy_options['begintoken'] = opts.pop('begintoken', '')
copy_options['endtoken'] = opts.pop('endtoken', '')
copy_options['maxrows'] = int(opts.pop('maxrows', '-1'))
copy_options['skiprows'] = int(opts.pop('skiprows', '0'))
copy_options['skipcols'] = opts.pop('skipcols', '')
copy_options['maxparseerrors'] = int(opts.pop('maxparseerrors', '-1'))
copy_options['maxinserterrors'] = int(opts.pop('maxinserterrors', '1000'))
copy_options['errfile'] = safe_normpath(opts.pop('errfile', 'import_%s_%s.err' % (self.ks, self.table,)))
copy_options['ratefile'] = safe_normpath(opts.pop('ratefile', ''))
copy_options['maxoutputsize'] = int(opts.pop('maxoutputsize', '-1'))
copy_options['preparedstatements'] = bool(opts.pop('preparedstatements', 'true').lower() == 'true')
copy_options['ttl'] = int(opts.pop('ttl', -1))
# Hidden properties, they do not appear in the documentation but can be set in config files
# or on the cmd line but w/o completion
copy_options['maxinflightmessages'] = int(opts.pop('maxinflightmessages', '512'))
copy_options['maxbackoffattempts'] = int(opts.pop('maxbackoffattempts', '12'))
copy_options['maxpendingchunks'] = int(opts.pop('maxpendingchunks', '24'))
# set requesttimeout to a value high enough so that maxbatchsize rows will never timeout if the server
# responds: here we set it to 1 sec per 10 rows but no less than 60 seconds
copy_options['requesttimeout'] = int(opts.pop('requesttimeout', max(60, 1 * copy_options['maxbatchsize'] / 10)))
# set childtimeout higher than requesttimeout so that child processes have a chance to report request timeouts
copy_options['childtimeout'] = int(opts.pop('childtimeout', copy_options['requesttimeout'] + 30))
self.check_options(copy_options)
return CopyOptions(copy=copy_options, dialect=dialect_options, unrecognized=opts)
@staticmethod
def check_options(copy_options):
"""
Check any options that require a sanity check beyond a simple type conversion and if required
raise a value error:
- boolean styles must be exactly 2, they must be different and they cannot be empty
"""
bool_styles = copy_options['boolstyle']
if len(bool_styles) != 2 or bool_styles[0] == bool_styles[1] or not bool_styles[0] or not bool_styles[1]:
raise ValueError("Invalid boolean styles %s" % copy_options['boolstyle'])
@staticmethod
def get_num_processes(cap):
"""
Pick a reasonable number of child processes. We need to leave at
least one core for the parent or feeder process.
"""
return max(1, min(cap, CopyTask.get_num_cores() - 1))
@staticmethod
def get_num_cores():
"""
Return the number of cores if available. If the test environment variable
is set, then return the number carried by this variable. This is to test single-core
machine more easily.
"""
try:
num_cores_for_testing = os.environ.get('CQLSH_COPY_TEST_NUM_CORES', '')
ret = int(num_cores_for_testing) if num_cores_for_testing else mp.cpu_count()
printdebugmsg("Detected %d core(s)" % (ret,))
return ret
except NotImplementedError:
printdebugmsg("Failed to detect number of cores, returning 1")
return 1
@staticmethod
def describe_interval(seconds):
desc = []
for length, unit in ((86400, 'day'), (3600, 'hour'), (60, 'minute')):
num = int(seconds) / length
if num > 0:
desc.append('%d %s' % (num, unit))
if num > 1:
desc[-1] += 's'
seconds %= length
words = '%.03f seconds' % seconds
if len(desc) > 1:
words = ', '.join(desc) + ', and ' + words
elif len(desc) == 1:
words = desc[0] + ' and ' + words
return words
@staticmethod
def get_columns(shell, ks, table, columns):
"""
Return all columns if none were specified or only the columns specified.
Possible enhancement: introduce a regex like syntax (^) to allow users
to specify all columns except a few.
"""
return shell.get_column_names(ks, table) if not columns else columns
def close(self):
self.stop_processes()
self.inmsg.close()
self.outmsg.close()
def num_live_processes(self):
return sum(1 for p in self.processes if p.is_alive())
@staticmethod
def get_pid():
return os.getpid() if hasattr(os, 'getpid') else None
@staticmethod
def trace_process(pid):
if pid and STRACE_ON:
os.system("strace -vvvv -c -o strace.{pid}.out -e trace=all -p {pid}&".format(pid=pid))
def start_processes(self):
for i, process in enumerate(self.processes):
process.start()
self.trace_process(process.pid)
self.trace_process(self.get_pid())
def stop_processes(self):
for process in self.processes:
process.terminate()
def make_params(self):
"""
Return a dictionary of parameters to be used by the worker processes.
On Windows this dictionary must be pickle-able, therefore we do not pass the
parent connection since it may not be pickle-able. Also, on Windows child
processes are spawned and not forked, and therefore we don't need to shutdown
the parent connection anyway, see CASSANDRA-11749 for more details.
"""
shell = self.shell
return dict(ks=self.ks,
table=self.table,
local_dc=self.host.datacenter,
columns=self.columns,
options=self.options,
connect_timeout=shell.conn.connect_timeout,
hostname=self.host.address,
port=shell.port,
ssl=shell.ssl,
auth_provider=shell.auth_provider,
parent_cluster=shell.conn if not IS_WINDOWS else None,
cql_version=shell.conn.cql_version,
config_file=self.config_file,
protocol_version=self.protocol_version,
debug=shell.debug
)
def validate_columns(self):
shell = self.shell
if not self.columns:
shell.printerr("No column specified")
return False
for c in self.columns:
if c not in self.table_meta.columns:
shell.printerr('Invalid column name %s' % (c,))
return False
return True
def update_params(self, params, i):
"""
Add the communication pipes to the parameters to be passed to the worker process:
inpipe is the message pipe flowing from parent to child process, so outpipe from the parent point
of view and, vice-versa, outpipe is the message pipe flowing from child to parent, so inpipe
from the parent point of view, hence the two are swapped below.
"""
params['inpipe'] = self.outmsg.pipes[i]
params['outpipe'] = self.inmsg.pipes[i]
return params
class ExportWriter(object):
"""
A class that writes to one or more csv files, or STDOUT
"""
def __init__(self, fname, shell, columns, options):
self.fname = fname
self.shell = shell
self.columns = columns
self.options = options
self.header = options.copy['header']
self.max_output_size = long(options.copy['maxoutputsize'])
self.current_dest = None
self.num_files = 0
if self.max_output_size > 0:
if fname is not None:
self.write = self._write_with_split
self.num_written = 0
else:
shell.printerr("WARNING: maxoutputsize {} ignored when writing to STDOUT".format(self.max_output_size))
self.write = self._write_without_split
else:
self.write = self._write_without_split
def open(self):
self.current_dest = self._get_dest(self.fname)
if self.current_dest is None:
return False
if self.header:
writer = csv.writer(self.current_dest.output, **self.options.dialect)
writer.writerow(self.columns)
return True
def close(self):
self._close_current_dest()
def _next_dest(self):
self._close_current_dest()
self.current_dest = self._get_dest(self.fname + '.%d' % (self.num_files,))
def _get_dest(self, source_name):
"""
Open the output file if any or else use stdout. Return a namedtuple
containing the out and a boolean indicating if the output should be closed.
"""
CsvDest = namedtuple('CsvDest', 'output close')
if self.fname is None:
return CsvDest(output=sys.stdout, close=False)
else:
try:
ret = CsvDest(output=open(source_name, 'wb'), close=True)
self.num_files += 1
return ret
except IOError, e:
self.shell.printerr("Can't open %r for writing: %s" % (source_name, e))
return None
def _close_current_dest(self):
if self.current_dest and self.current_dest.close:
self.current_dest.output.close()
self.current_dest = None
def _write_without_split(self, data, _):
"""
Write the data to the current destination output.
"""
self.current_dest.output.write(data)
def _write_with_split(self, data, num):
"""
Write the data to the current destination output if we still
haven't reached the maximum number of rows. Otherwise split
the rows between the current destination and the next.
"""
if (self.num_written + num) > self.max_output_size:
num_remaining = self.max_output_size - self.num_written
last_switch = 0
for i, row in enumerate(filter(None, data.split(os.linesep))):
if i == num_remaining:
self._next_dest()
last_switch = i
num_remaining += self.max_output_size
self.current_dest.output.write(row + '\n')
self.num_written = num - last_switch
else:
self.num_written += num
self.current_dest.output.write(data)
class ExportTask(CopyTask):
"""
A class that exports data to .csv by instantiating one or more processes that work in parallel (ExportProcess).
"""
def __init__(self, shell, ks, table, columns, fname, opts, protocol_version, config_file):
CopyTask.__init__(self, shell, ks, table, columns, fname, opts, protocol_version, config_file, 'to')
options = self.options
self.begin_token = long(options.copy['begintoken']) if options.copy['begintoken'] else None
self.end_token = long(options.copy['endtoken']) if options.copy['endtoken'] else None
self.writer = ExportWriter(fname, shell, columns, options)
def run(self):
"""
Initiates the export by starting the worker processes.
Then hand over control to export_records.
"""
shell = self.shell
if self.options.unrecognized:
shell.printerr('Unrecognized COPY TO options: %s' % ', '.join(self.options.unrecognized.keys()))
return
if not self.validate_columns():
return 0
ranges = self.get_ranges()
if not ranges:
return 0
if not self.writer.open():
return 0
columns = u"[" + u", ".join(self.columns) + u"]"
self.printmsg(u"\nStarting copy of %s.%s with columns %s." % (self.ks, self.table, columns), encoding=self.encoding)
params = self.make_params()
for i in xrange(self.num_processes):
self.processes.append(ExportProcess(self.update_params(params, i)))
self.start_processes()
try:
self.export_records(ranges)
finally:
self.close()
def close(self):
CopyTask.close(self)
self.writer.close()
def get_ranges(self):
"""
return a queue of tuples, where the first tuple entry is a token range (from, to]
and the second entry is a list of hosts that own that range. Each host is responsible
for all the tokens in the range (from, to].
The ring information comes from the driver metadata token map, which is built by
querying System.PEERS.
We only consider replicas that are in the local datacenter. If there are no local replicas
we use the cqlsh session host.
"""
shell = self.shell
hostname = self.host.address
local_dc = self.host.datacenter
ranges = dict()
min_token = self.get_min_token()
begin_token = self.begin_token
end_token = self.end_token
def make_range(prev, curr):
"""
Return the intersection of (prev, curr) and (begin_token, end_token),
return None if the intersection is empty
"""
ret = (prev, curr)
if begin_token:
if ret[1] < begin_token:
return None
elif ret[0] < begin_token:
ret = (begin_token, ret[1])
if end_token:
if ret[0] > end_token:
return None
elif ret[1] > end_token:
ret = (ret[0], end_token)
return ret
def make_range_data(replicas=None):
hosts = []
if replicas:
for r in replicas:
if r.is_up is not False and r.datacenter == local_dc:
hosts.append(r.address)
if not hosts:
hosts.append(hostname) # fallback to default host if no replicas in current dc
return {'hosts': tuple(hosts), 'attempts': 0, 'rows': 0, 'workerno': -1}
if begin_token and begin_token < min_token:
shell.printerr('Begin token %d must be bigger or equal to min token %d' % (begin_token, min_token))
return ranges
if begin_token and end_token and begin_token > end_token:
shell.printerr('Begin token %d must be smaller than end token %d' % (begin_token, end_token))
return ranges
if shell.conn.metadata.token_map is None or min_token is None:
ranges[(begin_token, end_token)] = make_range_data()
return ranges
ring = shell.get_ring(self.ks).items()
ring.sort()
if not ring:
# If the ring is empty we get the entire ring from the host we are currently connected to
ranges[(begin_token, end_token)] = make_range_data()
elif len(ring) == 1:
# If there is only one token we get the entire ring from the replicas for that token
ranges[(begin_token, end_token)] = make_range_data(ring[0][1])
else:
# else we loop on the ring
first_range_data = None
previous = None
for token, replicas in ring:
if not first_range_data:
first_range_data = make_range_data(replicas) # we use it at the end when wrapping around
if token.value == min_token:
continue # avoids looping entire ring
current_range = make_range(previous, token.value)
if not current_range:
continue
ranges[current_range] = make_range_data(replicas)
previous = token.value
# For the last ring interval we query the same replicas that hold the first token in the ring
if previous is not None and (not end_token or previous < end_token):
ranges[(previous, end_token)] = first_range_data
if not ranges:
shell.printerr('Found no ranges to query, check begin and end tokens: %s - %s' % (begin_token, end_token))
return ranges
def get_min_token(self):
"""
:return the minimum token, which depends on the partitioner.
For partitioners that do not support tokens we return None, in
this cases we will not work in parallel, we'll just send all requests
to the cqlsh session host.
"""
partitioner = self.shell.conn.metadata.partitioner
if partitioner.endswith('RandomPartitioner'):
return -1
elif partitioner.endswith('Murmur3Partitioner'):
return -(2 ** 63) # Long.MIN_VALUE in Java
else:
return None
def send_work(self, ranges, tokens_to_send):
prev_worker_no = ranges[tokens_to_send[0]]['workerno']
i = prev_worker_no + 1 if -1 <= prev_worker_no < (self.num_processes - 1) else 0
for token_range in tokens_to_send:
ranges[token_range]['workerno'] = i
self.outmsg.channels[i].send((token_range, ranges[token_range]))
ranges[token_range]['attempts'] += 1
i = i + 1 if i < self.num_processes - 1 else 0
def export_records(self, ranges):
"""
Send records to child processes and monitor them by collecting their results
or any errors. We terminate when we have processed all the ranges or when one child
process has died (since in this case we will never get any ACK for the ranges
processed by it and at the moment we don't keep track of which ranges a
process is handling).
"""
shell = self.shell
processes = self.processes
meter = RateMeter(log_fcn=self.printmsg,
update_interval=self.options.copy['reportfrequency'],
log_file=self.options.copy['ratefile'])
total_requests = len(ranges)
max_attempts = self.options.copy['maxattempts']
self.send_work(ranges, ranges.keys())
num_processes = len(processes)
succeeded = 0
failed = 0
while (failed + succeeded) < total_requests and self.num_live_processes() == num_processes:
for token_range, result in self.inmsg.recv(timeout=0.1):
if token_range is None and result is None: # a request has finished
succeeded += 1
elif isinstance(result, Exception): # an error occurred
# This token_range failed, retry up to max_attempts if no rows received yet,
# If rows were already received we'd risk duplicating data.
# Note that there is still a slight risk of duplicating data, even if we have
# an error with no rows received yet, it's just less likely. To avoid retrying on
# all timeouts would however mean we could risk not exporting some rows.
if ranges[token_range]['attempts'] < max_attempts and ranges[token_range]['rows'] == 0:
shell.printerr('Error for %s: %s (will try again later attempt %d of %d)'
% (token_range, result, ranges[token_range]['attempts'], max_attempts))
self.send_work(ranges, [token_range])
else:
shell.printerr('Error for %s: %s (permanently given up after %d rows and %d attempts)'
% (token_range, result, ranges[token_range]['rows'],
ranges[token_range]['attempts']))
failed += 1
else: # partial result received
data, num = result
self.writer.write(data, num)
meter.increment(n=num)
ranges[token_range]['rows'] += num
if self.num_live_processes() < len(processes):
for process in processes:
if not process.is_alive():
shell.printerr('Child process %d died with exit code %d' % (process.pid, process.exitcode))
if succeeded < total_requests:
shell.printerr('Exported %d ranges out of %d total ranges, some records might be missing'
% (succeeded, total_requests))
self.printmsg("\n%d rows exported to %d files in %s." %
(meter.get_total_records(),
self.writer.num_files,
self.describe_interval(time.time() - self.time_start)))
class FilesReader(object):
"""
A wrapper around a csv reader to keep track of when we have
exhausted reading input files. We are passed a comma separated
list of paths, where each path is a valid glob expression.
We generate a source generator and we read each source one
by one.
"""
def __init__(self, fname, options):
self.chunk_size = options.copy['chunksize']
self.header = options.copy['header']
self.max_rows = options.copy['maxrows']
self.skip_rows = options.copy['skiprows']
self.fname = fname
self.sources = None # must be created later due to pickle problems on Windows
self.num_sources = 0
self.current_source = None
self.num_read = 0
def get_source(self, paths):
"""
Return a source generator. Each source is a named tuple
wrapping the source input, file name and a boolean indicating
if it requires closing.
"""
def make_source(fname):
try:
return open(fname, 'rb')
except IOError, e:
raise IOError("Can't open %r for reading: %s" % (fname, e))
for path in paths.split(','):
path = path.strip()
if os.path.isfile(path):
yield make_source(path)
else:
result = glob.glob(path)
if len(result) == 0:
raise IOError("Can't open %r for reading: no matching file found" % (path,))
for f in result:
yield (make_source(f))
def start(self):
self.sources = self.get_source(self.fname)
self.next_source()
@property
def exhausted(self):
return not self.current_source
def next_source(self):
"""
Close the current source, if any, and open the next one. Return true
if there is another source, false otherwise.
"""
self.close_current_source()
while self.current_source is None:
try:
self.current_source = self.sources.next()
if self.current_source:
self.num_sources += 1
except StopIteration:
return False
if self.header:
self.current_source.next()
return True
def close_current_source(self):
if not self.current_source:
return
self.current_source.close()
self.current_source = None
def close(self):
self.close_current_source()
def read_rows(self, max_rows):
if not self.current_source:
return []
rows = []
for i in xrange(min(max_rows, self.chunk_size)):
try:
row = self.current_source.next()
self.num_read += 1
if 0 <= self.max_rows < self.num_read:
self.next_source()
break
if self.num_read > self.skip_rows:
rows.append(row)
except StopIteration:
self.next_source()
break
return filter(None, rows)
class PipeReader(object):
"""
A class for reading rows received on a pipe, this is used for reading input from STDIN
"""
def __init__(self, inpipe, options):
self.inpipe = inpipe
self.chunk_size = options.copy['chunksize']
self.header = options.copy['header']
self.max_rows = options.copy['maxrows']
self.skip_rows = options.copy['skiprows']
self.num_read = 0
self.exhausted = False
self.num_sources = 1
def start(self):
pass
def read_rows(self, max_rows):
rows = []
for i in xrange(min(max_rows, self.chunk_size)):
row = self.inpipe.recv()
if row is None:
self.exhausted = True
break
self.num_read += 1
if 0 <= self.max_rows < self.num_read:
self.exhausted = True
break # max rows exceeded
if self.header or self.num_read < self.skip_rows:
self.header = False # skip header or initial skip_rows rows
continue
rows.append(row)
return rows
class ImportProcessResult(object):
"""
An object sent from ImportProcess instances to the parent import task in order to indicate progress.
"""
def __init__(self, imported=0):
self.imported = imported
class FeedingProcessResult(object):
"""
An object sent from FeedingProcess instances to the parent import task in order to indicate progress.
"""
def __init__(self, sent, reader):
self.sent = sent
self.num_sources = reader.num_sources
self.skip_rows = reader.skip_rows
class ImportTaskError(object):
"""
An object sent from child processes (feeder or workers) to the parent import task to indicate an error.
"""
def __init__(self, name, msg, rows=None, attempts=1, final=True):
self.name = name
self.msg = msg
self.rows = rows if rows else []
self.attempts = attempts
self.final = final
def is_parse_error(self):
"""
We treat read and parse errors as unrecoverable and we have different global counters for giving up when
a maximum has been reached. We consider value and type errors as parse errors as well since they
are typically non recoverable.
"""
name = self.name
return name.startswith('ValueError') or name.startswith('TypeError') or \
name.startswith('ParseError') or name.startswith('IndexError') or name.startswith('ReadError')
class ImportErrorHandler(object):
"""
A class for managing import errors
"""
def __init__(self, task):
self.shell = task.shell
self.options = task.options
self.max_attempts = self.options.copy['maxattempts']
self.max_parse_errors = self.options.copy['maxparseerrors']
self.max_insert_errors = self.options.copy['maxinserterrors']
self.err_file = self.options.copy['errfile']
self.parse_errors = 0
self.insert_errors = 0
self.num_rows_failed = 0
if os.path.isfile(self.err_file):
now = datetime.datetime.now()
old_err_file = self.err_file + now.strftime('.%Y%m%d_%H%M%S')
printdebugmsg("Renaming existing %s to %s\n" % (self.err_file, old_err_file))
os.rename(self.err_file, old_err_file)
def max_exceeded(self):
if self.insert_errors > self.max_insert_errors >= 0:
self.shell.printerr("Exceeded maximum number of insert errors %d" % self.max_insert_errors)
return True
if self.parse_errors > self.max_parse_errors >= 0:
self.shell.printerr("Exceeded maximum number of parse errors %d" % self.max_parse_errors)
return True
return False
def add_failed_rows(self, rows):
self.num_rows_failed += len(rows)
with open(self.err_file, "a") as f:
writer = csv.writer(f, **self.options.dialect)
for row in rows:
writer.writerow(row)
def handle_error(self, err):
"""
Handle an error by printing the appropriate error message and incrementing the correct counter.
"""
shell = self.shell
if err.is_parse_error():
self.parse_errors += len(err.rows)
self.add_failed_rows(err.rows)
shell.printerr("Failed to import %d rows: %s - %s, given up without retries"
% (len(err.rows), err.name, err.msg))
else:
if not err.final:
shell.printerr("Failed to import %d rows: %s - %s, will retry later, attempt %d of %d"
% (len(err.rows), err.name, err.msg, err.attempts, self.max_attempts))
else:
self.insert_errors += len(err.rows)
self.add_failed_rows(err.rows)
shell.printerr("Failed to import %d rows: %s - %s, given up after %d attempts"
% (len(err.rows), err.name, err.msg, err.attempts))
class ImportTask(CopyTask):
"""
A class to import data from .csv by instantiating one or more processes
that work in parallel (ImportProcess).
"""
def __init__(self, shell, ks, table, columns, fname, opts, protocol_version, config_file):
CopyTask.__init__(self, shell, ks, table, columns, fname, opts, protocol_version, config_file, 'from')
options = self.options
self.skip_columns = [c.strip() for c in self.options.copy['skipcols'].split(',')]
self.valid_columns = [c for c in self.columns if c not in self.skip_columns]
self.receive_meter = RateMeter(log_fcn=self.printmsg,
update_interval=options.copy['reportfrequency'],
log_file=options.copy['ratefile'])
self.error_handler = ImportErrorHandler(self)
self.feeding_result = None
self.sent = 0
def make_params(self):
ret = CopyTask.make_params(self)
ret['skip_columns'] = self.skip_columns
ret['valid_columns'] = self.valid_columns
return ret
def validate_columns(self):
if not CopyTask.validate_columns(self):
return False
shell = self.shell
if not self.valid_columns:
shell.printerr("No valid column specified")
return False
for c in self.table_meta.primary_key:
if c.name not in self.valid_columns:
shell.printerr("Primary key column '%s' missing or skipped" % (c.name,))
return False
return True
def run(self):
shell = self.shell
if self.options.unrecognized:
shell.printerr('Unrecognized COPY FROM options: %s' % ', '.join(self.options.unrecognized.keys()))
return
if not self.validate_columns():
return 0
columns = u"[" + u", ".join(self.valid_columns) + u"]"
self.printmsg(u"\nStarting copy of %s.%s with columns %s." % (self.ks, self.table, columns), encoding=self.encoding)
try:
params = self.make_params()
for i in range(self.num_processes - 1):
self.processes.append(ImportProcess(self.update_params(params, i)))
feeder = FeedingProcess(self.outmsg.pipes[-1], self.inmsg.pipes[-1],
self.outmsg.pipes[:-1], self.fname, self.options,
self.shell.conn if not IS_WINDOWS else None)
self.processes.append(feeder)
self.start_processes()
pr = profile_on() if PROFILE_ON else None
self.import_records()
if pr:
profile_off(pr, file_name='parent_profile_%d.txt' % (os.getpid(),))
except Exception, exc:
shell.printerr(unicode(exc))
if shell.debug:
traceback.print_exc()
return 0
finally:
self.close()
def send_stdin_rows(self):
"""
We need to pass stdin rows to the feeder process as it is not safe to pickle or share stdin
directly (in case of file the child process would close it). This is a very primitive support
for STDIN import in that we we won't start reporting progress until STDIN is fully consumed. I
think this is reasonable.
"""
shell = self.shell
self.printmsg("[Use . on a line by itself to end input]")
for row in shell.use_stdin_reader(prompt='[copy] ', until=r'.'):
self.outmsg.channels[-1].send(row)
self.outmsg.channels[-1].send(None)
if shell.tty:
print
def import_records(self):
"""
Keep on running until we have stuff to receive or send and until all processes are running.
Send data (batches or retries) up to the max ingest rate. If we are waiting for stuff to
receive check the incoming queue.
"""
if not self.fname:
self.send_stdin_rows()
child_timeout = self.options.copy['childtimeout']
last_recv_num_records = 0
last_recv_time = time.time()
while self.feeding_result is None or self.receive_meter.total_records < self.feeding_result.sent:
self.receive_results()
if self.feeding_result is not None:
if self.receive_meter.total_records != last_recv_num_records:
last_recv_num_records = self.receive_meter.total_records
last_recv_time = time.time()
elif (time.time() - last_recv_time) > child_timeout:
self.shell.printerr("No records inserted in {} seconds, aborting".format(child_timeout))
break
if self.error_handler.max_exceeded() or not self.all_processes_running():
break
if self.error_handler.num_rows_failed:
self.shell.printerr("Failed to process %d rows; failed rows written to %s" %
(self.error_handler.num_rows_failed,
self.error_handler.err_file))
if not self.all_processes_running():
self.shell.printerr("{} child process(es) died unexpectedly, aborting"
.format(self.num_processes - self.num_live_processes()))
else:
if self.error_handler.max_exceeded():
self.processes[-1].terminate() # kill the feeder
for i, _ in enumerate(self.processes):
if self.processes[i].is_alive():
self.outmsg.channels[i].send(None)
# allow time for worker processes to exit cleanly
attempts = 50 # 100 milliseconds per attempt, so 5 seconds total
while attempts > 0 and self.num_live_processes() > 0:
time.sleep(0.1)
attempts -= 1
self.printmsg("\n%d rows imported from %d files in %s (%d skipped)." %
(self.receive_meter.get_total_records(),
self.feeding_result.num_sources if self.feeding_result else 0,
self.describe_interval(time.time() - self.time_start),
self.feeding_result.skip_rows if self.feeding_result else 0))
def all_processes_running(self):
return self.num_live_processes() == len(self.processes)
def receive_results(self):
"""
Receive results from the worker processes, which will send the number of rows imported
or from the feeder process, which will send the number of rows sent when it has finished sending rows.
"""
aggregate_result = ImportProcessResult()
try:
for result in self.inmsg.recv(timeout=0.1):
if isinstance(result, ImportProcessResult):
aggregate_result.imported += result.imported
elif isinstance(result, ImportTaskError):
self.error_handler.handle_error(result)
elif isinstance(result, FeedingProcessResult):
self.feeding_result = result
else:
raise ValueError("Unexpected result: %s" % (result,))
finally:
self.receive_meter.increment(aggregate_result.imported)
class FeedingProcess(mp.Process):
"""
A process that reads from import sources and sends chunks to worker processes.
"""
def __init__(self, inpipe, outpipe, worker_pipes, fname, options, parent_cluster):
mp.Process.__init__(self, target=self.run)
self.inpipe = inpipe
self.outpipe = outpipe
self.worker_pipes = worker_pipes
self.inmsg = None # must be created after forking on Windows
self.outmsg = None # must be created after forking on Windows
self.worker_channels = None # must be created after forking on Windows
self.reader = FilesReader(fname, options) if fname else PipeReader(inpipe, options)
self.send_meter = RateMeter(log_fcn=None, update_interval=1)
self.ingest_rate = options.copy['ingestrate']
self.num_worker_processes = options.copy['numprocesses']
self.max_pending_chunks = options.copy['maxpendingchunks']
self.chunk_id = 0
self.parent_cluster = parent_cluster
def on_fork(self):
"""
Create the channels and release any parent connections after forking,
see CASSANDRA-11749 for details.
"""
self.inmsg = ReceivingChannel(self.inpipe)
self.outmsg = SendingChannel(self.outpipe)
self.worker_channels = [SendingChannel(p) for p in self.worker_pipes]
if self.parent_cluster:
printdebugmsg("Closing parent cluster sockets")
self.parent_cluster.shutdown()
def run(self):
pr = profile_on() if PROFILE_ON else None
self.inner_run()
if pr:
profile_off(pr, file_name='feeder_profile_%d.txt' % (os.getpid(),))
def inner_run(self):
"""
Send one batch per worker process to the queue unless we have exceeded the ingest rate.
In the export case we queue everything and let the worker processes throttle using max_requests,
here we throttle using the ingest rate in the feeding process because of memory usage concerns.
When finished we send back to the parent process the total number of rows sent.
"""
self.on_fork()
reader = self.reader
try:
reader.start()
except IOError, exc:
self.outmsg.send(ImportTaskError(exc.__class__.__name__, exc.message))
channels = self.worker_channels
max_pending_chunks = self.max_pending_chunks
sent = 0
failed_attempts = 0
while not reader.exhausted:
channels_eligible = filter(lambda c: c.num_pending() < max_pending_chunks, channels)
if not channels_eligible:
failed_attempts += 1
delay = randint(1, pow(2, failed_attempts))
printdebugmsg("All workers busy, sleeping for %d second(s)" % (delay,))
time.sleep(delay)
continue
elif failed_attempts > 0:
failed_attempts = 0
for ch in channels_eligible:
try:
max_rows = self.ingest_rate - self.send_meter.current_record
if max_rows <= 0:
self.send_meter.maybe_update(sleep=False)
continue
rows = reader.read_rows(max_rows)
if rows:
sent += self.send_chunk(ch, rows)
except Exception, exc:
self.outmsg.send(ImportTaskError(exc.__class__.__name__, exc.message))
if reader.exhausted:
break
# send back to the parent process the number of rows sent to the worker processes
self.outmsg.send(FeedingProcessResult(sent, reader))
# wait for poison pill (None)
self.inmsg.recv()
def send_chunk(self, ch, rows):
self.chunk_id += 1
num_rows = len(rows)
self.send_meter.increment(num_rows)
ch.send({'id': self.chunk_id, 'rows': rows, 'imported': 0, 'num_rows_sent': num_rows})
return num_rows
def close(self):
self.reader.close()
self.inmsg.close()
self.outmsg.close()
for ch in self.worker_channels:
ch.close()
class ChildProcess(mp.Process):
"""
An child worker process, this is for common functionality between ImportProcess and ExportProcess.
"""
def __init__(self, params, target):
mp.Process.__init__(self, target=target)
self.inpipe = params['inpipe']
self.outpipe = params['outpipe']
self.inmsg = None # must be initialized after fork on Windows
self.outmsg = None # must be initialized after fork on Windows
self.ks = params['ks']
self.table = params['table']
self.local_dc = params['local_dc']
self.columns = params['columns']
self.debug = params['debug']
self.port = params['port']
self.hostname = params['hostname']
self.connect_timeout = params['connect_timeout']
self.cql_version = params['cql_version']
self.auth_provider = params['auth_provider']
self.parent_cluster = params['parent_cluster']
self.ssl = params['ssl']
self.protocol_version = params['protocol_version']
self.config_file = params['config_file']
options = params['options']
self.date_time_format = options.copy['dtformats']
self.consistency_level = options.copy['consistencylevel']
self.decimal_sep = options.copy['decimalsep']
self.thousands_sep = options.copy['thousandssep']
self.boolean_styles = options.copy['boolstyle']
self.max_attempts = options.copy['maxattempts']
self.encoding = options.copy['encoding']
# Here we inject some failures for testing purposes, only if this environment variable is set
if os.environ.get('CQLSH_COPY_TEST_FAILURES', ''):
self.test_failures = json.loads(os.environ.get('CQLSH_COPY_TEST_FAILURES', ''))
else:
self.test_failures = None
def on_fork(self):
"""
Create the channels and release any parent connections after forking, see CASSANDRA-11749 for details.
"""
self.inmsg = ReceivingChannel(self.inpipe)
self.outmsg = SendingChannel(self.outpipe)
if self.parent_cluster:
printdebugmsg("Closing parent cluster sockets")
self.parent_cluster.shutdown()
def close(self):
printdebugmsg("Closing queues...")
self.inmsg.close()
self.outmsg.close()
class ExpBackoffRetryPolicy(RetryPolicy):
"""
A retry policy with exponential back-off for read timeouts and write timeouts
"""
def __init__(self, parent_process):
RetryPolicy.__init__(self)
self.max_attempts = parent_process.max_attempts
def on_read_timeout(self, query, consistency, required_responses,
received_responses, data_retrieved, retry_num):
return self._handle_timeout(consistency, retry_num)
def on_write_timeout(self, query, consistency, write_type,
required_responses, received_responses, retry_num):
return self._handle_timeout(consistency, retry_num)
def _handle_timeout(self, consistency, retry_num):
delay = self.backoff(retry_num)
if delay > 0:
printdebugmsg("Timeout received, retrying after %d seconds" % (delay,))
time.sleep(delay)
return self.RETRY, consistency
elif delay == 0:
printdebugmsg("Timeout received, retrying immediately")
return self.RETRY, consistency
else:
printdebugmsg("Timeout received, giving up after %d attempts" % (retry_num + 1))
return self.RETHROW, None
def backoff(self, retry_num):
"""
Perform exponential back-off up to a maximum number of times, where
this maximum is per query.
To back-off we should wait a random number of seconds
between 0 and 2^c - 1, where c is the number of total failures.
:return : the number of seconds to wait for, -1 if we should not retry
"""
if retry_num >= self.max_attempts:
return -1
delay = randint(0, pow(2, retry_num + 1) - 1)
return delay
class ExportSession(object):
"""
A class for connecting to a cluster and storing the number
of requests that this connection is processing. It wraps the methods
for executing a query asynchronously and for shutting down the
connection to the cluster.
"""
def __init__(self, cluster, export_process):
session = cluster.connect(export_process.ks)
session.row_factory = tuple_factory
session.default_fetch_size = export_process.options.copy['pagesize']
session.default_timeout = export_process.options.copy['pagetimeout']
printdebugmsg("Created connection to %s with page size %d and timeout %d seconds per page"
% (cluster.contact_points, session.default_fetch_size, session.default_timeout))
self.cluster = cluster
self.session = session
self.requests = 1
self.lock = threading.Lock()
self.consistency_level = export_process.consistency_level
def add_request(self):
with self.lock:
self.requests += 1
def complete_request(self):
with self.lock:
self.requests -= 1
def num_requests(self):
with self.lock:
return self.requests
def execute_async(self, query):
return self.session.execute_async(SimpleStatement(query, consistency_level=self.consistency_level))
def shutdown(self):
self.cluster.shutdown()
class ExportProcess(ChildProcess):
"""
An child worker process for the export task, ExportTask.
"""
def __init__(self, params):
ChildProcess.__init__(self, params=params, target=self.run)
options = params['options']
self.float_precision = options.copy['floatprecision']
self.double_precision = options.copy['doubleprecision']
self.nullval = options.copy['nullval']
self.max_requests = options.copy['maxrequests']
self.hosts_to_sessions = dict()
self.formatters = dict()
self.options = options
def run(self):
try:
self.inner_run()
finally:
self.close()
def inner_run(self):
"""
The parent sends us (range, info) on the inbound queue (inmsg)
in order to request us to process a range, for which we can
select any of the hosts in info, which also contains other information for this
range such as the number of attempts already performed. We can signal errors
on the outbound queue (outmsg) by sending (range, error) or
we can signal a global error by sending (None, error).
We terminate when the inbound queue is closed.
"""
self.on_fork()
while True:
if self.num_requests() > self.max_requests:
time.sleep(0.001) # 1 millisecond
continue
token_range, info = self.inmsg.recv()
self.start_request(token_range, info)
@staticmethod
def get_error_message(err, print_traceback=False):
if isinstance(err, str):
msg = err
elif isinstance(err, BaseException):
msg = "%s - %s" % (err.__class__.__name__, err)
if print_traceback and sys.exc_info()[1] == err:
traceback.print_exc()
else:
msg = unicode(err)
return msg
def report_error(self, err, token_range):
msg = self.get_error_message(err, print_traceback=self.debug)
printdebugmsg(msg)
self.send((token_range, Exception(msg)))
def send(self, response):
self.outmsg.send(response)
def start_request(self, token_range, info):
"""
Begin querying a range by executing an async query that
will later on invoke the callbacks attached in attach_callbacks.
"""
session = self.get_session(info['hosts'], token_range)
if session:
metadata = session.cluster.metadata.keyspaces[self.ks].tables[self.table]
query = self.prepare_query(metadata.partition_key, token_range, info['attempts'])
future = session.execute_async(query)
self.attach_callbacks(token_range, future, session)
def num_requests(self):
return sum(session.num_requests() for session in self.hosts_to_sessions.values())
def get_session(self, hosts, token_range):
"""
We return a session connected to one of the hosts passed in, which are valid replicas for
the token range. We sort replicas by favouring those without any active requests yet or with the
smallest number of requests. If we fail to connect we report an error so that the token will
be retried again later.
:return: An ExportSession connected to the chosen host.
"""
# sorted replicas favouring those with no connections yet
hosts = sorted(hosts,
key=lambda hh: 0 if hh not in self.hosts_to_sessions else self.hosts_to_sessions[hh].requests)
errors = []
ret = None
for host in hosts:
try:
ret = self.connect(host)
except Exception, e:
errors.append(self.get_error_message(e))
if ret:
if errors:
printdebugmsg("Warning: failed to connect to some replicas: %s" % (errors,))
return ret
self.report_error("Failed to connect to all replicas %s for %s, errors: %s" % (hosts, token_range, errors),
token_range)
return None
def connect(self, host):
if host in self.hosts_to_sessions.keys():
session = self.hosts_to_sessions[host]
session.add_request()
return session
new_cluster = Cluster(
contact_points=(host,),
port=self.port,
cql_version=self.cql_version,
protocol_version=self.protocol_version,
auth_provider=self.auth_provider,
ssl_options=ssl_settings(host, self.config_file) if self.ssl else None,
load_balancing_policy=WhiteListRoundRobinPolicy([host]),
default_retry_policy=ExpBackoffRetryPolicy(self),
compression=None,
control_connection_timeout=self.connect_timeout,
connect_timeout=self.connect_timeout,
idle_heartbeat_interval=0)
session = ExportSession(new_cluster, self)
self.hosts_to_sessions[host] = session
return session
def attach_callbacks(self, token_range, future, session):
metadata = session.cluster.metadata
ks_meta = metadata.keyspaces[self.ks]
table_meta = ks_meta.tables[self.table]
cql_types = [CqlType(table_meta.columns[c].cql_type, ks_meta) for c in self.columns]
def result_callback(rows):
if future.has_more_pages:
future.start_fetching_next_page()
self.write_rows_to_csv(token_range, rows, cql_types)
else:
self.write_rows_to_csv(token_range, rows, cql_types)
self.send((None, None))
session.complete_request()
def err_callback(err):
self.report_error(err, token_range)
session.complete_request()
future.add_callbacks(callback=result_callback, errback=err_callback)
def write_rows_to_csv(self, token_range, rows, cql_types):
if not rows:
return # no rows in this range
try:
output = StringIO()
writer = csv.writer(output, **self.options.dialect)
for row in rows:
writer.writerow(map(self.format_value, row, cql_types))
data = (output.getvalue(), len(rows))
self.send((token_range, data))
output.close()
except Exception, e:
self.report_error(e, token_range)
def format_value(self, val, cqltype):
if val is None or val == EMPTY:
return format_value_default(self.nullval, colormap=NO_COLOR_MAP)
formatter = self.formatters.get(cqltype, None)
if not formatter:
formatter = get_formatter(val, cqltype)
self.formatters[cqltype] = formatter
if not hasattr(cqltype, 'precision'):
cqltype.precision = self.double_precision if cqltype.type_name == 'double' else self.float_precision
return formatter(val, cqltype=cqltype,
encoding=self.encoding, colormap=NO_COLOR_MAP, date_time_format=self.date_time_format,
float_precision=cqltype.precision, nullval=self.nullval, quote=False,
decimal_sep=self.decimal_sep, thousands_sep=self.thousands_sep,
boolean_styles=self.boolean_styles)
def close(self):
ChildProcess.close(self)
for session in self.hosts_to_sessions.values():
session.shutdown()
def prepare_query(self, partition_key, token_range, attempts):
"""
Return the export query or a fake query with some failure injected.
"""
if self.test_failures:
return self.maybe_inject_failures(partition_key, token_range, attempts)
else:
return self.prepare_export_query(partition_key, token_range)
def maybe_inject_failures(self, partition_key, token_range, attempts):
"""
Examine self.test_failures and see if token_range is either a token range
supposed to cause a failure (failing_range) or to terminate the worker process
(exit_range). If not then call prepare_export_query(), which implements the
normal behavior.
"""
start_token, end_token = token_range
if not start_token or not end_token:
# exclude first and last ranges to make things simpler
return self.prepare_export_query(partition_key, token_range)
if 'failing_range' in self.test_failures:
failing_range = self.test_failures['failing_range']
if start_token >= failing_range['start'] and end_token <= failing_range['end']:
if attempts < failing_range['num_failures']:
return 'SELECT * from bad_table'
if 'exit_range' in self.test_failures:
exit_range = self.test_failures['exit_range']
if start_token >= exit_range['start'] and end_token <= exit_range['end']:
sys.exit(1)
return self.prepare_export_query(partition_key, token_range)
def prepare_export_query(self, partition_key, token_range):
"""
Return a query where we select all the data for this token range
"""
pk_cols = ", ".join(protect_names(col.name for col in partition_key))
columnlist = ', '.join(protect_names(self.columns))
start_token, end_token = token_range
query = 'SELECT %s FROM %s.%s' % (columnlist, protect_name(self.ks), protect_name(self.table))
if start_token is not None or end_token is not None:
query += ' WHERE'
if start_token is not None:
query += ' token(%s) > %s' % (pk_cols, start_token)
if start_token is not None and end_token is not None:
query += ' AND'
if end_token is not None:
query += ' token(%s) <= %s' % (pk_cols, end_token)
return query
class ParseError(Exception):
""" We failed to parse an import record """
pass
class ImportConversion(object):
"""
A class for converting strings to values when importing from csv, used by ImportProcess,
the parent.
"""
def __init__(self, parent, table_meta, statement=None):
self.ks = parent.ks
self.table = parent.table
self.columns = parent.valid_columns
self.nullval = parent.nullval
self.decimal_sep = parent.decimal_sep
self.thousands_sep = parent.thousands_sep
self.boolean_styles = parent.boolean_styles
self.date_time_format = parent.date_time_format.timestamp_format
self.debug = parent.debug
self.encoding = parent.encoding
self.table_meta = table_meta
self.primary_key_indexes = [self.columns.index(col.name) for col in self.table_meta.primary_key]
self.partition_key_indexes = [self.columns.index(col.name) for col in self.table_meta.partition_key]
if statement is None:
self.use_prepared_statements = False
statement = self._get_primary_key_statement(parent, table_meta)
else:
self.use_prepared_statements = True
self.is_counter = parent.is_counter(table_meta)
self.proto_version = statement.protocol_version
# the cql types and converters for the prepared statement, either the full statement or only the primary keys
self.cqltypes = [c.type for c in statement.column_metadata]
self.converters = [self._get_converter(c.type) for c in statement.column_metadata]
# the cql types for the entire statement, these are the same as the types above but
# only when using prepared statements
self.coltypes = [table_meta.columns[name].cql_type for name in parent.valid_columns]
# these functions are used for non-prepared statements to protect values with quotes if required
self.protectors = [self._get_protector(t) for t in self.coltypes]
@staticmethod
def _get_protector(t):
if t in ('ascii', 'text', 'timestamp', 'date', 'time', 'inet'):
return lambda v: protect_value(v)
else:
return lambda v: v
@staticmethod
def _get_primary_key_statement(parent, table_meta):
"""
We prepare a query statement to find out the types of the partition key columns so we can
route the update query to the correct replicas. As far as I understood this is the easiest
way to find out the types of the partition columns, we will never use this prepared statement
"""
where_clause = ' AND '.join(['%s = ?' % (protect_name(c.name)) for c in table_meta.partition_key])
select_query = 'SELECT * FROM %s.%s WHERE %s' % (protect_name(parent.ks),
protect_name(parent.table),
where_clause)
return parent.session.prepare(select_query)
@staticmethod
def unprotect(v):
if v is not None:
return CqlRuleSet.dequote_value(v)
def _get_converter(self, cql_type):
"""
Return a function that converts a string into a value the can be passed
into BoundStatement.bind() for the given cql type. See cassandra.cqltypes
for more details.
"""
unprotect = self.unprotect
def convert(t, v):
v = unprotect(v)
if v == self.nullval:
return self.get_null_val()
return converters.get(t.typename, convert_unknown)(v, ct=t)
def convert_mandatory(t, v):
v = unprotect(v)
if v == self.nullval:
raise ParseError('Empty values are not allowed')
return converters.get(t.typename, convert_unknown)(v, ct=t)
def convert_blob(v, **_):
return BlobType(v[2:].decode("hex"))
def convert_text(v, **_):
return v
def convert_uuid(v, **_):
return UUID(v)
def convert_bool(v, **_):
return True if v.lower() == self.boolean_styles[0].lower() else False
def get_convert_integer_fcn(adapter=int):
"""
Return a slow and a fast integer conversion function depending on self.thousands_sep
"""
if self.thousands_sep:
return lambda v, ct=cql_type: adapter(v.replace(self.thousands_sep, ''))
else:
return lambda v, ct=cql_type: adapter(v)
def get_convert_decimal_fcn(adapter=float):
"""
Return a slow and a fast decimal conversion function depending on self.thousands_sep and self.decimal_sep
"""
if self.thousands_sep and self.decimal_sep:
return lambda v, ct=cql_type: adapter(v.replace(self.thousands_sep, '').replace(self.decimal_sep, '.'))
elif self.thousands_sep:
return lambda v, ct=cql_type: adapter(v.replace(self.thousands_sep, ''))
elif self.decimal_sep:
return lambda v, ct=cql_type: adapter(v.replace(self.decimal_sep, '.'))
else:
return lambda v, ct=cql_type: adapter(v)
def split(val, sep=','):
"""
Split "val" into a list of values whenever the separator "sep" is found, but
ignore separators inside parentheses or single quotes, except for the two
outermost parentheses, which will be ignored. This method is called when parsing composite
types, "val" should be at least 2 characters long, the first char should be an
open parenthesis and the last char should be a matching closing parenthesis. We could also
check exactly which parenthesis type depending on the caller, but I don't want to enforce
too many checks that don't necessarily provide any additional benefits, and risk breaking
data that could previously be imported, even if strictly speaking it is incorrect CQL.
For example, right now we accept sets that start with '[' and ']', I don't want to break this
by enforcing '{' and '}' in a minor release.
"""
def is_open_paren(cc):
return cc == '{' or cc == '[' or cc == '('
def is_close_paren(cc):
return cc == '}' or cc == ']' or cc == ')'
def paren_match(c1, c2):
return (c1 == '{' and c2 == '}') or (c1 == '[' and c2 == ']') or (c1 == '(' and c2 == ')')
if len(val) < 2 or not paren_match(val[0], val[-1]):
raise ParseError('Invalid composite string, it should start and end with matching parentheses: {}'
.format(val))
ret = []
last = 1
level = 0
quote = False
for i, c in enumerate(val):
if c == '\'':
quote = not quote
elif not quote:
if is_open_paren(c):
level += 1
elif is_close_paren(c):
level -= 1
elif c == sep and level == 1:
ret.append(val[last:i])
last = i + 1
else:
if last < len(val) - 1:
ret.append(val[last:-1])
return ret
# this should match all possible CQL and CQLSH datetime formats
p = re.compile(r"(\d{4})\-(\d{2})\-(\d{2})\s?(?:'T')?" # YYYY-MM-DD[( |'T')]
+ r"(?:(\d{2}):(\d{2})(?::(\d{2})(?:\.(\d{1,6}))?))?" # [HH:MM[:SS[.NNNNNN]]]
+ r"(?:([+\-])(\d{2}):?(\d{2}))?") # [(+|-)HH[:]MM]]
def convert_datetime(val, **_):
try:
tval = time.strptime(val, self.date_time_format)
return timegm(tval) * 1e3 # scale seconds to millis for the raw value
except ValueError:
pass # if it's not in the default format we try CQL formats
m = p.match(val)
if not m:
try:
# in case of overflow COPY TO prints dates as milliseconds from the epoch, see
# deserialize_date_fallback_int in cqlsh.py
return int(val)
except ValueError:
raise ValueError("can't interpret %r as a date with format %s or as int" % (val,
self.date_time_format))
# https://docs.python.org/2/library/time.html#time.struct_time
tval = time.struct_time((int(m.group(1)), int(m.group(2)), int(m.group(3)), # year, month, day
int(m.group(4)) if m.group(4) else 0, # hour
int(m.group(5)) if m.group(5) else 0, # minute
int(m.group(6)) if m.group(6) else 0, # second
0, 1, -1)) # day of week, day of year, dst-flag
# convert sub-seconds (a number between 1 and 6 digits) to milliseconds
milliseconds = 0 if not m.group(7) else int(m.group(7)) * pow(10, 3 - len(m.group(7)))
if m.group(8):
offset = (int(m.group(9)) * 3600 + int(m.group(10)) * 60) * int(m.group(8) + '1')
else:
offset = -time.timezone
# scale seconds to millis for the raw value
return ((timegm(tval) + offset) * 1e3) + milliseconds
def convert_date(v, **_):
return Date(v)
def convert_time(v, **_):
return Time(v)
def convert_tuple(val, ct=cql_type):
return tuple(convert_mandatory(t, v) for t, v in zip(ct.subtypes, split(val)))
def convert_list(val, ct=cql_type):
return tuple(convert_mandatory(ct.subtypes[0], v) for v in split(val))
def convert_set(val, ct=cql_type):
return frozenset(convert_mandatory(ct.subtypes[0], v) for v in split(val))
def convert_map(val, ct=cql_type):
"""
We need to pass to BoundStatement.bind() a dict() because it calls iteritems(),
except we can't create a dict with another dict as the key, hence we use a class
that adds iteritems to a frozen set of tuples (which is how dict are normally made
immutable in python).
"""
class ImmutableDict(frozenset):
iteritems = frozenset.__iter__
return ImmutableDict(frozenset((convert_mandatory(ct.subtypes[0], v[0]), convert(ct.subtypes[1], v[1]))
for v in [split('{%s}' % vv, sep=':') for vv in split(val)]))
def convert_user_type(val, ct=cql_type):
"""
A user type is a dictionary except that we must convert each key into
an attribute, so we are using named tuples. It must also be hashable,
so we cannot use dictionaries. Maybe there is a way to instantiate ct
directly but I could not work it out.
Also note that it is possible that the subfield names in the csv are in the
wrong order, so we must sort them according to ct.fieldnames, see CASSANDRA-12959.
"""
vals = [v for v in [split('{%s}' % vv, sep=':') for vv in split(val)]]
dict_vals = dict((unprotect(v[0]), v[1]) for v in vals)
sorted_converted_vals = [(n, convert(t, dict_vals[n]) if n in dict_vals else self.get_null_val())
for n, t in zip(ct.fieldnames, ct.subtypes)]
ret_type = namedtuple(ct.typename, [v[0] for v in sorted_converted_vals])
return ret_type(*tuple(v[1] for v in sorted_converted_vals))
def convert_single_subtype(val, ct=cql_type):
return converters.get(ct.subtypes[0].typename, convert_unknown)(val, ct=ct.subtypes[0])
def convert_unknown(val, ct=cql_type):
if issubclass(ct, UserType):
return convert_user_type(val, ct=ct)
elif issubclass(ct, ReversedType):
return convert_single_subtype(val, ct=ct)
printdebugmsg("Unknown type %s (%s) for val %s" % (ct, ct.typename, val))
return val
converters = {
'blob': convert_blob,
'decimal': get_convert_decimal_fcn(adapter=Decimal),
'uuid': convert_uuid,
'boolean': convert_bool,
'tinyint': get_convert_integer_fcn(),
'ascii': convert_text,
'float': get_convert_decimal_fcn(),
'double': get_convert_decimal_fcn(),
'bigint': get_convert_integer_fcn(adapter=long),
'int': get_convert_integer_fcn(),
'varint': get_convert_integer_fcn(),
'inet': convert_text,
'counter': get_convert_integer_fcn(adapter=long),
'timestamp': convert_datetime,
'timeuuid': convert_uuid,
'date': convert_date,
'smallint': get_convert_integer_fcn(),
'time': convert_time,
'text': convert_text,
'varchar': convert_text,
'list': convert_list,
'set': convert_set,
'map': convert_map,
'tuple': convert_tuple,
'frozen': convert_single_subtype,
}
return converters.get(cql_type.typename, convert_unknown)
def get_null_val(self):
"""
Return the null value that is inserted for fields that are missing from csv files.
For counters we should return zero so that the counter value won't be incremented.
For everything else we return nulls, this means None if we use prepared statements
or "NULL" otherwise. Note that for counters we never use prepared statements, so we
only check is_counter when use_prepared_statements is false.
"""
return None if self.use_prepared_statements else ("0" if self.is_counter else "NULL")
def convert_row(self, row):
"""
Convert the row into a list of parsed values if using prepared statements, else simply apply the
protection functions to escape values with quotes when required. Also check on the row length and
make sure primary partition key values aren't missing.
"""
converters = self.converters if self.use_prepared_statements else self.protectors
if len(row) != len(converters):
raise ParseError('Invalid row length %d should be %d' % (len(row), len(converters)))
for i in self.primary_key_indexes:
if row[i] == self.nullval:
raise ParseError(self.get_null_primary_key_message(i))
def convert(c, v):
try:
return c(v) if v != self.nullval else self.get_null_val()
except Exception, e:
# if we could not convert an empty string, then self.nullval has been set to a marker
# because the user needs to import empty strings, except that the converters for some types
# will fail to convert an empty string, in this case the null value should be inserted
# see CASSANDRA-12794
if v == '':
return self.get_null_val()
if self.debug:
traceback.print_exc()
raise ParseError("Failed to parse %s : %s" % (val, e.message))
return [convert(conv, val) for conv, val in zip(converters, row)]
def get_null_primary_key_message(self, idx):
message = "Cannot insert null value for primary key column '%s'." % (self.columns[idx],)
if self.nullval == '':
message += " If you want to insert empty strings, consider using" \
" the WITH NULL=<marker> option for COPY."
return message
def get_row_partition_key_values_fcn(self):
"""
Return a function to convert a row into a string composed of the partition key values serialized
and binary packed (the tokens on the ring). Depending on whether we are using prepared statements, we
may have to convert the primary key values first, so we have two different serialize_value implementations.
We also return different functions depending on how many partition key indexes we have (single or multiple).
See also BoundStatement.routing_key.
"""
def serialize_value_prepared(n, v):
return self.cqltypes[n].serialize(v, self.proto_version)
def serialize_value_not_prepared(n, v):
return self.cqltypes[n].serialize(self.converters[n](self.unprotect(v)), self.proto_version)
partition_key_indexes = self.partition_key_indexes
serialize = serialize_value_prepared if self.use_prepared_statements else serialize_value_not_prepared
def serialize_row_single(row):
return serialize(partition_key_indexes[0], row[partition_key_indexes[0]])
def serialize_row_multiple(row):
pk_values = []
for i in partition_key_indexes:
val = serialize(i, row[i])
length = len(val)
pk_values.append(struct.pack(">H%dsB" % length, length, val, 0))
return b"".join(pk_values)
if len(partition_key_indexes) == 1:
return serialize_row_single
return serialize_row_multiple
class TokenMap(object):
"""
A wrapper around the metadata token map to speed things up by caching ring token *values* and
replicas. It is very important that we use the token values, which are primitive types, rather
than the tokens classes when calling bisect_right() in split_batches(). If we use primitive values,
the bisect is done in compiled code whilst with token classes each comparison requires a call
into the interpreter to perform the cmp operation defined in Python. A simple test with 1 million bisect
operations on an array of 2048 tokens was done in 0.37 seconds with primitives and 2.25 seconds with
token classes. This is significant for large datasets because we need to do a bisect for each single row,
and if VNODES are used, the size of the token map can get quite large too.
"""
def __init__(self, ks, hostname, local_dc, session):
self.ks = ks
self.hostname = hostname
self.local_dc = local_dc
self.metadata = session.cluster.metadata
self._initialize_ring()
# Note that refresh metadata is disabled by default and we currenlty do not intercept it
# If hosts are added, removed or moved during a COPY operation our token map is no longer optimal
# However we can cope with hosts going down and up since we filter for replicas that are up when
# making each batch
def _initialize_ring(self):
token_map = self.metadata.token_map
if token_map is None:
self.ring = [0]
self.replicas = [(self.metadata.get_host(self.hostname),)]
self.pk_to_token_value = lambda pk: 0
return
token_map.rebuild_keyspace(self.ks, build_if_absent=True)
tokens_to_hosts = token_map.tokens_to_hosts_by_ks.get(self.ks, None)
from_key = token_map.token_class.from_key
self.ring = [token.value for token in token_map.ring]
self.replicas = [tuple(tokens_to_hosts[token]) for token in token_map.ring]
self.pk_to_token_value = lambda pk: from_key(pk).value
@staticmethod
def get_ring_pos(ring, val):
idx = bisect_right(ring, val)
return idx if idx < len(ring) else 0
def filter_replicas(self, hosts):
shuffled = tuple(sorted(hosts, key=lambda k: random.random()))
return filter(lambda r: r.is_up is not False and r.datacenter == self.local_dc, shuffled) if hosts else ()
class FastTokenAwarePolicy(DCAwareRoundRobinPolicy):
"""
Send to any replicas attached to the query, or else fall back to DCAwareRoundRobinPolicy. Perform
exponential back-off if too many in flight requests to all replicas are already in progress.
"""
def __init__(self, parent):
DCAwareRoundRobinPolicy.__init__(self, parent.local_dc, 0)
self.max_backoff_attempts = parent.max_backoff_attempts
self.max_inflight_messages = parent.max_inflight_messages
def make_query_plan(self, working_keyspace=None, query=None):
"""
Extend TokenAwarePolicy.make_query_plan() so that we choose the same replicas in preference
and most importantly we avoid repeating the (slow) bisect. We also implement a backoff policy
by sleeping an exponentially larger delay in case all connections to eligible replicas have
too many in flight requests.
"""
connections = ConnectionWrapper.connections
replicas = list(query.replicas) if hasattr(query, 'replicas') else []
replicas.extend([r for r in DCAwareRoundRobinPolicy.make_query_plan(self, working_keyspace, query)
if r not in replicas])
if replicas:
def replica_is_not_overloaded(r):
if r.address in connections:
conn = connections[r.address]
return conn.in_flight < min(conn.max_request_id, self.max_inflight_messages)
return True
for i in xrange(self.max_backoff_attempts):
for r in filter(replica_is_not_overloaded, replicas):
yield r
# the back-off starts at 10 ms (0.01) and it can go up to to 2^max_backoff_attempts,
# which is currently 12, so 2^12 = 4096 = ~40 seconds when dividing by 0.01
delay = randint(1, pow(2, i + 1)) * 0.01
printdebugmsg("All replicas busy, sleeping for %d second(s)..." % (delay,))
time.sleep(delay)
printdebugmsg("Replicas too busy, given up")
class ConnectionWrapper(DefaultConnection):
"""
A wrapper to the driver default connection that helps in keeping track of messages in flight.
The newly created connection is registered into a global dictionary so that FastTokenAwarePolicy
is able to determine if a connection has too many in flight requests.
"""
connections = {}
def __init__(self, *args, **kwargs):
DefaultConnection.__init__(self, *args, **kwargs)
self.connections[self.host] = self
class ImportProcess(ChildProcess):
def __init__(self, params):
ChildProcess.__init__(self, params=params, target=self.run)
self.skip_columns = params['skip_columns']
self.valid_columns = [c.encode(self.encoding) for c in params['valid_columns']]
self.skip_column_indexes = [i for i, c in enumerate(self.columns) if c in self.skip_columns]
options = params['options']
self.nullval = options.copy['nullval']
self.max_attempts = options.copy['maxattempts']
self.min_batch_size = options.copy['minbatchsize']
self.max_batch_size = options.copy['maxbatchsize']
self.use_prepared_statements = options.copy['preparedstatements']
self.ttl = options.copy['ttl']
self.max_inflight_messages = options.copy['maxinflightmessages']
self.max_backoff_attempts = options.copy['maxbackoffattempts']
self.request_timeout = options.copy['requesttimeout']
self.dialect_options = options.dialect
self._session = None
self.query = None
self.conv = None
self.make_statement = None
@property
def session(self):
if not self._session:
cluster = Cluster(
contact_points=(self.hostname,),
port=self.port,
cql_version=self.cql_version,
protocol_version=self.protocol_version,
auth_provider=self.auth_provider,
load_balancing_policy=FastTokenAwarePolicy(self),
ssl_options=ssl_settings(self.hostname, self.config_file) if self.ssl else None,
default_retry_policy=FallthroughRetryPolicy(), # we throw on timeouts and retry in the error callback
compression=None,
control_connection_timeout=self.connect_timeout,
connect_timeout=self.connect_timeout,
idle_heartbeat_interval=0,
connection_class=ConnectionWrapper)
self._session = cluster.connect(self.ks)
self._session.default_timeout = self.request_timeout
return self._session
def run(self):
try:
pr = profile_on() if PROFILE_ON else None
self.on_fork()
self.inner_run(*self.make_params())
if pr:
profile_off(pr, file_name='worker_profile_%d.txt' % (os.getpid(),))
except Exception, exc:
self.report_error(exc)
finally:
self.close()
def close(self):
if self._session:
self._session.cluster.shutdown()
ChildProcess.close(self)
def is_counter(self, table_meta):
return "counter" in [table_meta.columns[name].cql_type for name in self.valid_columns]
def make_params(self):
metadata = self.session.cluster.metadata
table_meta = metadata.keyspaces[self.ks].tables[self.table]
prepared_statement = None
if self.is_counter(table_meta):
query = 'UPDATE %s.%s SET %%s WHERE %%s' % (protect_name(self.ks), protect_name(self.table))
make_statement = self.wrap_make_statement(self.make_counter_batch_statement)
elif self.use_prepared_statements:
query = 'INSERT INTO %s.%s (%s) VALUES (%s)' % (protect_name(self.ks),
protect_name(self.table),
', '.join(protect_names(self.valid_columns),),
', '.join(['?' for _ in self.valid_columns]))
if self.ttl >= 0:
query += 'USING TTL %s' % (self.ttl,)
query = self.session.prepare(query)
query.consistency_level = self.consistency_level
prepared_statement = query
make_statement = self.wrap_make_statement(self.make_prepared_batch_statement)
else:
query = 'INSERT INTO %s.%s (%s) VALUES (%%s)' % (protect_name(self.ks),
protect_name(self.table),
', '.join(protect_names(self.valid_columns),))
if self.ttl >= 0:
query += 'USING TTL %s' % (self.ttl,)
make_statement = self.wrap_make_statement(self.make_non_prepared_batch_statement)
conv = ImportConversion(self, table_meta, prepared_statement)
tm = TokenMap(self.ks, self.hostname, self.local_dc, self.session)
return query, conv, tm, make_statement
def inner_run(self, query, conv, tm, make_statement):
"""
Main run method. Note that we bind self methods that are called inside loops
for performance reasons.
"""
self.query = query
self.conv = conv
self.make_statement = make_statement
convert_rows = self.convert_rows
split_into_batches = self.split_into_batches
result_callback = self.result_callback
err_callback = self.err_callback
session = self.session
while True:
chunk = self.inmsg.recv()
if chunk is None:
break
try:
chunk['rows'] = convert_rows(conv, chunk)
for replicas, batch in split_into_batches(chunk, conv, tm):
statement = make_statement(query, conv, chunk, batch, replicas)
if statement:
future = session.execute_async(statement)
future.add_callbacks(callback=result_callback, callback_args=(batch, chunk),
errback=err_callback, errback_args=(batch, chunk, replicas))
# do not handle else case, if a statement could not be created, the exception is handled
# in self.wrap_make_statement and the error is reported, if a failure is injected that
# causes the statement to be None, then we should not report the error so that we can test
# the parent process handling missing batches from child processes
except Exception, exc:
self.report_error(exc, chunk, chunk['rows'])
def wrap_make_statement(self, inner_make_statement):
def make_statement(query, conv, chunk, batch, replicas):
try:
return inner_make_statement(query, conv, batch, replicas)
except Exception, exc:
print "Failed to make batch statement: {}".format(exc)
self.report_error(exc, chunk, batch['rows'])
return None
def make_statement_with_failures(query, conv, chunk, batch, replicas):
failed_batch, apply_failure = self.maybe_inject_failures(batch)
if apply_failure:
return failed_batch
return make_statement(query, conv, chunk, batch, replicas)
return make_statement_with_failures if self.test_failures else make_statement
def make_counter_batch_statement(self, query, conv, batch, replicas):
statement = BatchStatement(batch_type=BatchType.COUNTER, consistency_level=self.consistency_level)
statement.replicas = replicas
statement.keyspace = self.ks
for row in batch['rows']:
where_clause = []
set_clause = []
for i, value in enumerate(row):
if i in conv.primary_key_indexes:
where_clause.append("%s=%s" % (self.valid_columns[i], value))
else:
set_clause.append("%s=%s+%s" % (self.valid_columns[i], self.valid_columns[i], value))
full_query_text = query % (','.join(set_clause), ' AND '.join(where_clause))
statement.add(full_query_text)
return statement
def make_prepared_batch_statement(self, query, _, batch, replicas):
"""
Return a batch statement. This is an optimized version of:
statement = BatchStatement(batch_type=BatchType.UNLOGGED, consistency_level=self.consistency_level)
for row in batch['rows']:
statement.add(query, row)
We could optimize further by removing bound_statements altogether but we'd have to duplicate much
more driver's code (BoundStatement.bind()).
"""
statement = BatchStatement(batch_type=BatchType.UNLOGGED, consistency_level=self.consistency_level)
statement.replicas = replicas
statement.keyspace = self.ks
statement._statements_and_parameters = [(True, query.query_id, query.bind(r).values) for r in batch['rows']]
return statement
def make_non_prepared_batch_statement(self, query, _, batch, replicas):
statement = BatchStatement(batch_type=BatchType.UNLOGGED, consistency_level=self.consistency_level)
statement.replicas = replicas
statement.keyspace = self.ks
statement._statements_and_parameters = [(False, query % (','.join(r),), ()) for r in batch['rows']]
return statement
def convert_rows(self, conv, chunk):
"""
Return converted rows and report any errors during conversion.
"""
def filter_row_values(row):
return [v for i, v in enumerate(row) if i not in self.skip_column_indexes]
if self.skip_column_indexes:
rows = [filter_row_values(r) for r in list(csv.reader(chunk['rows'], **self.dialect_options))]
else:
rows = list(csv.reader(chunk['rows'], **self.dialect_options))
errors = defaultdict(list)
def convert_row(r):
try:
return conv.convert_row(r)
except Exception, err:
errors[err.message].append(r)
return None
converted_rows = filter(None, [convert_row(r) for r in rows])
if errors:
for msg, rows in errors.iteritems():
self.report_error(ParseError(msg), chunk, rows)
return converted_rows
def maybe_inject_failures(self, batch):
"""
Examine self.test_failures and see if the batch is a batch
supposed to cause a failure (failing_batch), or to terminate the worker process
(exit_batch), or not to be sent (unsent_batch).
@return any statement that will cause a failure or None if the statement should not be sent
plus a boolean indicating if a failure should be applied at all
"""
if 'failing_batch' in self.test_failures:
failing_batch = self.test_failures['failing_batch']
if failing_batch['id'] == batch['id']:
if batch['attempts'] < failing_batch['failures']:
statement = SimpleStatement("INSERT INTO badtable (a, b) VALUES (1, 2)",
consistency_level=self.consistency_level)
return statement, True # use this statement, which will cause an error
if 'exit_batch' in self.test_failures:
exit_batch = self.test_failures['exit_batch']
if exit_batch['id'] == batch['id']:
sys.exit(1)
if 'unsent_batch' in self.test_failures:
unsent_batch = self.test_failures['unsent_batch']
if unsent_batch['id'] == batch['id']:
return None, True # do not send this batch, which will cause missing acks in the parent process
return None, False # carry on as normal, do not apply any failures
@staticmethod
def make_batch(batch_id, rows, attempts=1):
return {'id': batch_id, 'rows': rows, 'attempts': attempts}
def split_into_batches(self, chunk, conv, tm):
"""
Batch rows by ring position or replica.
If there are at least min_batch_size rows for a ring position then split these rows into
groups of max_batch_size and send a batch for each group, using all replicas for this ring position.
Otherwise, we are forced to batch by replica, and here unfortunately we can only choose one replica to
guarantee common replicas across partition keys. We are typically able
to batch by ring position for small clusters or when VNODES are not used. For large clusters with VNODES
it may not be possible, in this case it helps to increase the CHUNK SIZE but up to a limit, otherwise
we may choke the cluster.
"""
rows_by_ring_pos = defaultdict(list)
errors = defaultdict(list)
min_batch_size = self.min_batch_size
max_batch_size = self.max_batch_size
ring = tm.ring
get_row_partition_key_values = conv.get_row_partition_key_values_fcn()
pk_to_token_value = tm.pk_to_token_value
get_ring_pos = tm.get_ring_pos
make_batch = self.make_batch
for row in chunk['rows']:
try:
pk = get_row_partition_key_values(row)
rows_by_ring_pos[get_ring_pos(ring, pk_to_token_value(pk))].append(row)
except Exception, e:
errors[e.message].append(row)
if errors:
for msg, rows in errors.iteritems():
self.report_error(ParseError(msg), chunk, rows)
replicas = tm.replicas
filter_replicas = tm.filter_replicas
rows_by_replica = defaultdict(list)
for ring_pos, rows in rows_by_ring_pos.iteritems():
if len(rows) > min_batch_size:
for i in xrange(0, len(rows), max_batch_size):
yield filter_replicas(replicas[ring_pos]), make_batch(chunk['id'], rows[i:i + max_batch_size])
else:
# select only the first valid replica to guarantee more overlap or none at all
rows_by_replica[filter_replicas(replicas[ring_pos])[:1]].extend(rows)
# Now send the batches by replica
for replicas, rows in rows_by_replica.iteritems():
for i in xrange(0, len(rows), max_batch_size):
yield replicas, make_batch(chunk['id'], rows[i:i + max_batch_size])
def result_callback(self, _, batch, chunk):
self.update_chunk(batch['rows'], chunk)
def err_callback(self, response, batch, chunk, replicas):
if isinstance(response, OperationTimedOut) and chunk['imported'] == chunk['num_rows_sent']:
return # occasionally the driver sends false timeouts for rows already processed (PYTHON-652)
err_is_final = batch['attempts'] >= self.max_attempts
self.report_error(response, chunk, batch['rows'], batch['attempts'], err_is_final)
if not err_is_final:
batch['attempts'] += 1
statement = self.make_statement(self.query, self.conv, chunk, batch, replicas)
future = self.session.execute_async(statement)
future.add_callbacks(callback=self.result_callback, callback_args=(batch, chunk),
errback=self.err_callback, errback_args=(batch, chunk, replicas))
def report_error(self, err, chunk=None, rows=None, attempts=1, final=True):
if self.debug and sys.exc_info()[1] == err:
traceback.print_exc()
self.outmsg.send(ImportTaskError(err.__class__.__name__, err.message, rows, attempts, final))
if final and chunk is not None:
self.update_chunk(rows, chunk)
def update_chunk(self, rows, chunk):
chunk['imported'] += len(rows)
if chunk['imported'] == chunk['num_rows_sent']:
self.outmsg.send(ImportProcessResult(chunk['num_rows_sent']))
class RateMeter(object):
def __init__(self, log_fcn, update_interval=0.25, log_file=''):
self.log_fcn = log_fcn # the function for logging, may be None to disable logging
self.update_interval = update_interval # how often we update in seconds
self.log_file = log_file # an optional file where to log statistics in addition to stdout
self.start_time = time.time() # the start time
self.last_checkpoint_time = self.start_time # last time we logged
self.current_rate = 0.0 # rows per second
self.current_record = 0 # number of records since we last updated
self.total_records = 0 # total number of records
if os.path.isfile(self.log_file):
os.unlink(self.log_file)
def increment(self, n=1):
self.current_record += n
self.maybe_update()
def maybe_update(self, sleep=False):
if self.current_record == 0:
return
new_checkpoint_time = time.time()
time_difference = new_checkpoint_time - self.last_checkpoint_time
if time_difference >= self.update_interval:
self.update(new_checkpoint_time)
self.log_message()
elif sleep:
remaining_time = time_difference - self.update_interval
if remaining_time > 0.000001:
time.sleep(remaining_time)
def update(self, new_checkpoint_time):
time_difference = new_checkpoint_time - self.last_checkpoint_time
if time_difference >= 1e-09:
self.current_rate = self.get_new_rate(self.current_record / time_difference)
self.last_checkpoint_time = new_checkpoint_time
self.total_records += self.current_record
self.current_record = 0
def get_new_rate(self, new_rate):
"""
return the rate of the last period: this is the new rate but
averaged with the last rate to smooth a bit
"""
if self.current_rate == 0.0:
return new_rate
else:
return (self.current_rate + new_rate) / 2.0
def get_avg_rate(self):
"""
return the average rate since we started measuring
"""
time_difference = time.time() - self.start_time
return self.total_records / time_difference if time_difference >= 1e-09 else 0
def log_message(self):
if not self.log_fcn:
return
output = 'Processed: %d rows; Rate: %7.0f rows/s; Avg. rate: %7.0f rows/s\r' % \
(self.total_records, self.current_rate, self.get_avg_rate())
self.log_fcn(output, eol='\r')
if self.log_file:
with open(self.log_file, "a") as f:
f.write(output + '\n')
def get_total_records(self):
self.update(time.time())
self.log_message()
return self.total_records