blob: 898e402b3aa60a83858b2a03a61808a0ab9b8772 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to you under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.calcite.sql2rel;
import org.apache.calcite.avatica.util.Spaces;
import org.apache.calcite.linq4j.Ord;
import org.apache.calcite.plan.Convention;
import org.apache.calcite.plan.RelOptCluster;
import org.apache.calcite.plan.RelOptPlanner;
import org.apache.calcite.plan.RelOptSamplingParameters;
import org.apache.calcite.plan.RelOptTable;
import org.apache.calcite.plan.RelOptUtil;
import org.apache.calcite.plan.RelTraitSet;
import org.apache.calcite.prepare.Prepare;
import org.apache.calcite.prepare.RelOptTableImpl;
import org.apache.calcite.rel.RelCollation;
import org.apache.calcite.rel.RelCollationTraitDef;
import org.apache.calcite.rel.RelCollations;
import org.apache.calcite.rel.RelFieldCollation;
import org.apache.calcite.rel.RelNode;
import org.apache.calcite.rel.RelRoot;
import org.apache.calcite.rel.SingleRel;
import org.apache.calcite.rel.core.Aggregate;
import org.apache.calcite.rel.core.AggregateCall;
import org.apache.calcite.rel.core.Collect;
import org.apache.calcite.rel.core.CorrelationId;
import org.apache.calcite.rel.core.Filter;
import org.apache.calcite.rel.core.Join;
import org.apache.calcite.rel.core.JoinInfo;
import org.apache.calcite.rel.core.JoinRelType;
import org.apache.calcite.rel.core.Project;
import org.apache.calcite.rel.core.RelFactories;
import org.apache.calcite.rel.core.Sample;
import org.apache.calcite.rel.core.Sort;
import org.apache.calcite.rel.core.Uncollect;
import org.apache.calcite.rel.logical.LogicalAggregate;
import org.apache.calcite.rel.logical.LogicalCorrelate;
import org.apache.calcite.rel.logical.LogicalFilter;
import org.apache.calcite.rel.logical.LogicalIntersect;
import org.apache.calcite.rel.logical.LogicalJoin;
import org.apache.calcite.rel.logical.LogicalMinus;
import org.apache.calcite.rel.logical.LogicalProject;
import org.apache.calcite.rel.logical.LogicalSort;
import org.apache.calcite.rel.logical.LogicalTableFunctionScan;
import org.apache.calcite.rel.logical.LogicalTableModify;
import org.apache.calcite.rel.logical.LogicalTableScan;
import org.apache.calcite.rel.logical.LogicalUnion;
import org.apache.calcite.rel.logical.LogicalValues;
import org.apache.calcite.rel.metadata.JaninoRelMetadataProvider;
import org.apache.calcite.rel.metadata.RelColumnMapping;
import org.apache.calcite.rel.metadata.RelMetadataQuery;
import org.apache.calcite.rel.stream.Delta;
import org.apache.calcite.rel.stream.LogicalDelta;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.rel.type.RelDataTypeFactory;
import org.apache.calcite.rel.type.RelDataTypeField;
import org.apache.calcite.rex.RexBuilder;
import org.apache.calcite.rex.RexCall;
import org.apache.calcite.rex.RexCallBinding;
import org.apache.calcite.rex.RexCorrelVariable;
import org.apache.calcite.rex.RexDynamicParam;
import org.apache.calcite.rex.RexFieldAccess;
import org.apache.calcite.rex.RexFieldCollation;
import org.apache.calcite.rex.RexInputRef;
import org.apache.calcite.rex.RexLiteral;
import org.apache.calcite.rex.RexNode;
import org.apache.calcite.rex.RexRangeRef;
import org.apache.calcite.rex.RexShuttle;
import org.apache.calcite.rex.RexSubQuery;
import org.apache.calcite.rex.RexUtil;
import org.apache.calcite.rex.RexWindowBound;
import org.apache.calcite.schema.ModifiableTable;
import org.apache.calcite.schema.ModifiableView;
import org.apache.calcite.schema.Table;
import org.apache.calcite.schema.TranslatableTable;
import org.apache.calcite.sql.JoinConditionType;
import org.apache.calcite.sql.JoinType;
import org.apache.calcite.sql.SemiJoinType;
import org.apache.calcite.sql.SqlAggFunction;
import org.apache.calcite.sql.SqlBasicCall;
import org.apache.calcite.sql.SqlCall;
import org.apache.calcite.sql.SqlCallBinding;
import org.apache.calcite.sql.SqlDataTypeSpec;
import org.apache.calcite.sql.SqlDelete;
import org.apache.calcite.sql.SqlDynamicParam;
import org.apache.calcite.sql.SqlExplainLevel;
import org.apache.calcite.sql.SqlFunction;
import org.apache.calcite.sql.SqlIdentifier;
import org.apache.calcite.sql.SqlInsert;
import org.apache.calcite.sql.SqlIntervalQualifier;
import org.apache.calcite.sql.SqlJoin;
import org.apache.calcite.sql.SqlKind;
import org.apache.calcite.sql.SqlLiteral;
import org.apache.calcite.sql.SqlMerge;
import org.apache.calcite.sql.SqlNode;
import org.apache.calcite.sql.SqlNodeList;
import org.apache.calcite.sql.SqlNumericLiteral;
import org.apache.calcite.sql.SqlOperator;
import org.apache.calcite.sql.SqlOperatorTable;
import org.apache.calcite.sql.SqlOrderBy;
import org.apache.calcite.sql.SqlSampleSpec;
import org.apache.calcite.sql.SqlSelect;
import org.apache.calcite.sql.SqlSelectKeyword;
import org.apache.calcite.sql.SqlSetOperator;
import org.apache.calcite.sql.SqlUnnestOperator;
import org.apache.calcite.sql.SqlUpdate;
import org.apache.calcite.sql.SqlUtil;
import org.apache.calcite.sql.SqlValuesOperator;
import org.apache.calcite.sql.SqlWindow;
import org.apache.calcite.sql.SqlWith;
import org.apache.calcite.sql.SqlWithItem;
import org.apache.calcite.sql.fun.SqlCountAggFunction;
import org.apache.calcite.sql.fun.SqlInOperator;
import org.apache.calcite.sql.fun.SqlRowOperator;
import org.apache.calcite.sql.fun.SqlStdOperatorTable;
import org.apache.calcite.sql.parser.SqlParserPos;
import org.apache.calcite.sql.type.SqlReturnTypeInference;
import org.apache.calcite.sql.type.SqlTypeName;
import org.apache.calcite.sql.type.SqlTypeUtil;
import org.apache.calcite.sql.type.TableFunctionReturnTypeInference;
import org.apache.calcite.sql.util.SqlBasicVisitor;
import org.apache.calcite.sql.util.SqlVisitor;
import org.apache.calcite.sql.validate.AggregatingSelectScope;
import org.apache.calcite.sql.validate.CollectNamespace;
import org.apache.calcite.sql.validate.DelegatingScope;
import org.apache.calcite.sql.validate.ListScope;
import org.apache.calcite.sql.validate.ParameterScope;
import org.apache.calcite.sql.validate.SelectScope;
import org.apache.calcite.sql.validate.SqlMonotonicity;
import org.apache.calcite.sql.validate.SqlQualified;
import org.apache.calcite.sql.validate.SqlUserDefinedTableFunction;
import org.apache.calcite.sql.validate.SqlUserDefinedTableMacro;
import org.apache.calcite.sql.validate.SqlValidator;
import org.apache.calcite.sql.validate.SqlValidatorImpl;
import org.apache.calcite.sql.validate.SqlValidatorNamespace;
import org.apache.calcite.sql.validate.SqlValidatorScope;
import org.apache.calcite.sql.validate.SqlValidatorUtil;
import org.apache.calcite.tools.RelBuilder;
import org.apache.calcite.util.ImmutableBitSet;
import org.apache.calcite.util.ImmutableIntList;
import org.apache.calcite.util.Litmus;
import org.apache.calcite.util.NlsString;
import org.apache.calcite.util.NumberUtil;
import org.apache.calcite.util.Pair;
import org.apache.calcite.util.Util;
import org.apache.calcite.util.trace.CalciteTrace;
import com.google.common.base.Function;
import com.google.common.base.Preconditions;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import org.slf4j.Logger;
import java.lang.reflect.Type;
import java.math.BigDecimal;
import java.util.AbstractList;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;
import static org.apache.calcite.sql.SqlUtil.stripAs;
import static org.apache.calcite.util.Static.RESOURCE;
/**
* Converts a SQL parse tree (consisting of
* {@link org.apache.calcite.sql.SqlNode} objects) into a relational algebra
* expression (consisting of {@link org.apache.calcite.rel.RelNode} objects).
*
* <p>The public entry points are: {@link #convertQuery},
* {@link #convertExpression(SqlNode)}.
*/
public class SqlToRelConverter {
//~ Static fields/initializers ---------------------------------------------
protected static final Logger SQL2REL_LOGGER =
CalciteTrace.getSqlToRelTracer();
private static final BigDecimal TWO = BigDecimal.valueOf(2L);
/** Size of the smallest IN list that will be converted to a semijoin to a
* static table. */
public static final int IN_SUBQUERY_THRESHOLD = 20;
//~ Instance fields --------------------------------------------------------
protected final SqlValidator validator;
protected final RexBuilder rexBuilder;
protected final Prepare.CatalogReader catalogReader;
protected final RelOptCluster cluster;
private DefaultValueFactory defaultValueFactory;
private SubqueryConverter subqueryConverter;
protected final List<RelNode> leaves = new ArrayList<>();
private final List<SqlDynamicParam> dynamicParamSqlNodes = new ArrayList<>();
private final SqlOperatorTable opTab;
private boolean shouldConvertTableAccess;
protected final RelDataTypeFactory typeFactory;
private final SqlNodeToRexConverter exprConverter;
private boolean decorrelationEnabled;
private boolean trimUnusedFields;
private boolean shouldCreateValuesRel;
private boolean isExplain;
private int nDynamicParamsInExplain;
/**
* Fields used in name resolution for correlated subqueries.
*/
private final Map<CorrelationId, DeferredLookup> mapCorrelToDeferred =
new HashMap<>();
/**
* Stack of names of datasets requested by the <code>
* TABLE(SAMPLE(&lt;datasetName&gt;, &lt;query&gt;))</code> construct.
*/
private final Deque<String> datasetStack = new ArrayDeque<>();
/**
* Mapping of non-correlated subqueries that have been converted to their
* equivalent constants. Used to avoid re-evaluating the subquery if it's
* already been evaluated.
*/
private final Map<SqlNode, RexNode> mapConvertedNonCorrSubqs =
new HashMap<>();
public final RelOptTable.ViewExpander viewExpander;
/** Whether to expand sub-queries. If false, each sub-query becomes a
* {@link org.apache.calcite.rex.RexSubQuery}. */
private boolean expand = true;
//~ Constructors -----------------------------------------------------------
/**
* Creates a converter.
*
* @param viewExpander Preparing statement
* @param validator Validator
* @param catalogReader Schema
* @param planner Planner
* @param rexBuilder Rex builder
* @param convertletTable Expression converter
*/
@Deprecated // will be removed before 2.0
public SqlToRelConverter(
RelOptTable.ViewExpander viewExpander,
SqlValidator validator,
Prepare.CatalogReader catalogReader,
RelOptPlanner planner,
RexBuilder rexBuilder,
SqlRexConvertletTable convertletTable) {
this(viewExpander, validator, catalogReader,
RelOptCluster.create(planner, rexBuilder), convertletTable);
}
/* Creates a converter. */
public SqlToRelConverter(
RelOptTable.ViewExpander viewExpander,
SqlValidator validator,
Prepare.CatalogReader catalogReader,
RelOptCluster cluster,
SqlRexConvertletTable convertletTable) {
this.viewExpander = viewExpander;
this.opTab =
(validator
== null) ? SqlStdOperatorTable.instance()
: validator.getOperatorTable();
this.validator = validator;
this.catalogReader = catalogReader;
this.defaultValueFactory = new NullDefaultValueFactory();
this.subqueryConverter = new NoOpSubqueryConverter();
this.rexBuilder = cluster.getRexBuilder();
this.typeFactory = rexBuilder.getTypeFactory();
this.cluster = Preconditions.checkNotNull(cluster);
this.shouldConvertTableAccess = true;
this.exprConverter =
new SqlNodeToRexConverterImpl(convertletTable);
decorrelationEnabled = true;
trimUnusedFields = false;
shouldCreateValuesRel = true;
isExplain = false;
nDynamicParamsInExplain = 0;
}
//~ Methods ----------------------------------------------------------------
/**
* @return the RelOptCluster in use.
*/
public RelOptCluster getCluster() {
return cluster;
}
/**
* Returns the row-expression builder.
*/
public RexBuilder getRexBuilder() {
return rexBuilder;
}
/**
* Returns the number of dynamic parameters encountered during translation;
* this must only be called after {@link #convertQuery}.
*
* @return number of dynamic parameters
*/
public int getDynamicParamCount() {
return dynamicParamSqlNodes.size();
}
/**
* Returns the type inferred for a dynamic parameter.
*
* @param index 0-based index of dynamic parameter
* @return inferred type, never null
*/
public RelDataType getDynamicParamType(int index) {
SqlNode sqlNode = dynamicParamSqlNodes.get(index);
if (sqlNode == null) {
throw Util.needToImplement("dynamic param type inference");
}
return validator.getValidatedNodeType(sqlNode);
}
/**
* Returns the current count of the number of dynamic parameters in an
* EXPLAIN PLAN statement.
*
* @param increment if true, increment the count
* @return the current count before the optional increment
*/
public int getDynamicParamCountInExplain(boolean increment) {
int retVal = nDynamicParamsInExplain;
if (increment) {
++nDynamicParamsInExplain;
}
return retVal;
}
/**
* @return mapping of non-correlated subqueries that have been converted to
* the constants that they evaluate to
*/
public Map<SqlNode, RexNode> getMapConvertedNonCorrSubqs() {
return mapConvertedNonCorrSubqs;
}
/**
* Adds to the current map of non-correlated converted subqueries the
* elements from another map that contains non-correlated subqueries that
* have been converted by another SqlToRelConverter.
*
* @param alreadyConvertedNonCorrSubqs the other map
*/
public void addConvertedNonCorrSubqs(
Map<SqlNode, RexNode> alreadyConvertedNonCorrSubqs) {
mapConvertedNonCorrSubqs.putAll(alreadyConvertedNonCorrSubqs);
}
/**
* Set a new DefaultValueFactory. To have any effect, this must be called
* before any convert method.
*
* @param factory new DefaultValueFactory
*/
public void setDefaultValueFactory(DefaultValueFactory factory) {
defaultValueFactory = factory;
}
/**
* Sets a new SubqueryConverter. To have any effect, this must be called
* before any convert method.
*
* @param converter new SubqueryConverter
*/
public void setSubqueryConverter(SubqueryConverter converter) {
subqueryConverter = converter;
}
/**
* Indicates that the current statement is part of an EXPLAIN PLAN statement
*
* @param nDynamicParams number of dynamic parameters in the statement
*/
public void setIsExplain(int nDynamicParams) {
isExplain = true;
nDynamicParamsInExplain = nDynamicParams;
}
/**
* Controls whether table access references are converted to physical rels
* immediately. The optimizer doesn't like leaf rels to have
* {@link Convention#NONE}. However, if we are doing further conversion
* passes (e.g. {@link RelStructuredTypeFlattener}), then we may need to
* defer conversion. To have any effect, this must be called before any
* convert method.
*
* @param enabled true for immediate conversion (the default); false to
* generate logical LogicalTableScan instances
*/
public void enableTableAccessConversion(boolean enabled) {
shouldConvertTableAccess = enabled;
}
/**
* Controls whether instances of
* {@link org.apache.calcite.rel.logical.LogicalValues} are generated. These
* may not be supported by all physical implementations. To have any effect,
* this must be called before any convert method.
*
* @param enabled true to allow LogicalValues to be generated (the default);
* false to force substitution of Project+OneRow instead
*/
public void enableValuesRelCreation(boolean enabled) {
shouldCreateValuesRel = enabled;
}
private void checkConvertedType(SqlNode query, RelNode result) {
if (query.isA(SqlKind.DML)) {
return;
}
// Verify that conversion from SQL to relational algebra did
// not perturb any type information. (We can't do this if the
// SQL statement is something like an INSERT which has no
// validator type information associated with its result,
// hence the namespace check above.)
final List<RelDataTypeField> validatedFields =
validator.getValidatedNodeType(query).getFieldList();
final RelDataType validatedRowType =
validator.getTypeFactory().createStructType(
Pair.right(validatedFields),
SqlValidatorUtil.uniquify(Pair.left(validatedFields),
catalogReader.isCaseSensitive()));
final List<RelDataTypeField> convertedFields =
result.getRowType().getFieldList().subList(0, validatedFields.size());
final RelDataType convertedRowType =
validator.getTypeFactory().createStructType(convertedFields);
if (!RelOptUtil.equal("validated row type", validatedRowType,
"converted row type", convertedRowType, Litmus.IGNORE)) {
throw new AssertionError("Conversion to relational algebra failed to "
+ "preserve datatypes:\n"
+ "validated type:\n"
+ validatedRowType.getFullTypeString()
+ "\nconverted type:\n"
+ convertedRowType.getFullTypeString()
+ "\nrel:\n"
+ RelOptUtil.toString(result));
}
}
public RelNode flattenTypes(
RelNode rootRel,
boolean restructure) {
RelStructuredTypeFlattener typeFlattener =
new RelStructuredTypeFlattener(rexBuilder, createToRelContext());
return typeFlattener.rewrite(rootRel, restructure);
}
/**
* If subquery is correlated and decorrelation is enabled, performs
* decorrelation.
*
* @param query Query
* @param rootRel Root relational expression
* @return New root relational expression after decorrelation
*/
public RelNode decorrelate(SqlNode query, RelNode rootRel) {
if (!enableDecorrelation()) {
return rootRel;
}
final RelNode result = decorrelateQuery(rootRel);
if (result != rootRel) {
checkConvertedType(query, result);
}
return result;
}
/**
* Walks over a tree of relational expressions, replacing each
* {@link RelNode} with a 'slimmed down' relational expression that projects
* only the fields required by its consumer.
*
* <p>This may make things easier for the optimizer, by removing crud that
* would expand the search space, but is difficult for the optimizer itself
* to do it, because optimizer rules must preserve the number and type of
* fields. Hence, this transform that operates on the entire tree, similar
* to the {@link RelStructuredTypeFlattener type-flattening transform}.
*
* <p>Currently this functionality is disabled in farrago/luciddb; the
* default implementation of this method does nothing.
*
* @param ordered Whether the relational expression must produce results in
* a particular order (typically because it has an ORDER BY at top level)
* @param rootRel Relational expression that is at the root of the tree
* @return Trimmed relational expression
*/
public RelNode trimUnusedFields(boolean ordered, RelNode rootRel) {
// Trim fields that are not used by their consumer.
if (isTrimUnusedFields()) {
final RelFieldTrimmer trimmer = newFieldTrimmer();
final List<RelCollation> collations =
rootRel.getTraitSet().getTraits(RelCollationTraitDef.INSTANCE);
rootRel = trimmer.trim(rootRel);
if (!ordered
&& collations != null
&& !collations.isEmpty()
&& !collations.equals(ImmutableList.of(RelCollations.EMPTY))) {
final RelTraitSet traitSet = rootRel.getTraitSet()
.replace(RelCollationTraitDef.INSTANCE, collations);
rootRel = rootRel.copy(traitSet, rootRel.getInputs());
}
if (SQL2REL_LOGGER.isDebugEnabled()) {
SQL2REL_LOGGER.debug(
RelOptUtil.dumpPlan(
"Plan after trimming unused fields",
rootRel,
false,
SqlExplainLevel.EXPPLAN_ATTRIBUTES));
}
}
return rootRel;
}
/**
* Creates a RelFieldTrimmer.
*
* @return Field trimmer
*/
protected RelFieldTrimmer newFieldTrimmer() {
final RelBuilder relBuilder =
RelFactories.LOGICAL_BUILDER.create(cluster, null);
return new RelFieldTrimmer(validator, relBuilder);
}
/**
* Converts an unvalidated query's parse tree into a relational expression.
*
* @param query Query to convert
* @param needsValidation Whether to validate the query before converting;
* <code>false</code> if the query has already been
* validated.
* @param top Whether the query is top-level, say if its result
* will become a JDBC result set; <code>false</code> if
* the query will be part of a view.
*/
public RelRoot convertQuery(
SqlNode query,
final boolean needsValidation,
final boolean top) {
if (needsValidation) {
query = validator.validate(query);
}
RelMetadataQuery.THREAD_PROVIDERS.set(
JaninoRelMetadataProvider.of(cluster.getMetadataProvider()));
RelNode result = convertQueryRecursive(query, top, null).rel;
if (top) {
if (isStream(query)) {
result = new LogicalDelta(cluster, result.getTraitSet(), result);
}
}
RelCollation collation = RelCollations.EMPTY;
if (!query.isA(SqlKind.DML)) {
if (isOrdered(query)) {
collation = requiredCollation(result);
}
}
checkConvertedType(query, result);
if (SQL2REL_LOGGER.isDebugEnabled()) {
SQL2REL_LOGGER.debug(
RelOptUtil.dumpPlan(
"Plan after converting SqlNode to RelNode",
result,
false,
SqlExplainLevel.EXPPLAN_ATTRIBUTES));
}
final RelDataType validatedRowType = validator.getValidatedNodeType(query);
return RelRoot.of(result, validatedRowType, query.getKind())
.withCollation(collation);
}
private static boolean isStream(SqlNode query) {
return query instanceof SqlSelect
&& ((SqlSelect) query).isKeywordPresent(SqlSelectKeyword.STREAM);
}
public static boolean isOrdered(SqlNode query) {
switch (query.getKind()) {
case SELECT:
return ((SqlSelect) query).getOrderList() != null
&& ((SqlSelect) query).getOrderList().size() > 0;
case WITH:
return isOrdered(((SqlWith) query).body);
case ORDER_BY:
return ((SqlOrderBy) query).orderList.size() > 0;
default:
return false;
}
}
private RelCollation requiredCollation(RelNode r) {
if (r instanceof Sort) {
return ((Sort) r).collation;
}
if (r instanceof Project) {
return requiredCollation(((Project) r).getInput());
}
if (r instanceof Delta) {
return requiredCollation(((Delta) r).getInput());
}
throw new AssertionError();
}
/**
* Converts a SELECT statement's parse tree into a relational expression.
*/
public RelNode convertSelect(SqlSelect select, boolean top) {
final SqlValidatorScope selectScope = validator.getWhereScope(select);
final Blackboard bb = createBlackboard(selectScope, null, top);
convertSelectImpl(bb, select);
return bb.root;
}
/**
* Factory method for creating translation workspace.
*/
protected Blackboard createBlackboard(SqlValidatorScope scope,
Map<String, RexNode> nameToNodeMap, boolean top) {
return new Blackboard(scope, nameToNodeMap, top);
}
/**
* Implementation of {@link #convertSelect(SqlSelect, boolean)};
* derived class may override.
*/
protected void convertSelectImpl(
final Blackboard bb,
SqlSelect select) {
convertFrom(
bb,
select.getFrom());
convertWhere(
bb,
select.getWhere());
final List<SqlNode> orderExprList = new ArrayList<>();
final List<RelFieldCollation> collationList = new ArrayList<>();
gatherOrderExprs(
bb,
select,
select.getOrderList(),
orderExprList,
collationList);
final RelCollation collation =
cluster.traitSet().canonize(RelCollations.of(collationList));
if (validator.isAggregate(select)) {
convertAgg(
bb,
select,
orderExprList);
} else {
convertSelectList(
bb,
select,
orderExprList);
}
if (select.isDistinct()) {
distinctify(bb, true);
}
convertOrder(
select, bb, collation, orderExprList, select.getOffset(),
select.getFetch());
bb.setRoot(bb.root, true);
}
/**
* Having translated 'SELECT ... FROM ... [GROUP BY ...] [HAVING ...]', adds
* a relational expression to make the results unique.
*
* <p>If the SELECT clause contains duplicate expressions, adds
* {@link org.apache.calcite.rel.logical.LogicalProject}s so that we are
* grouping on the minimal set of keys. The performance gain isn't huge, but
* it is difficult to detect these duplicate expressions later.
*
* @param bb Blackboard
* @param checkForDupExprs Check for duplicate expressions
*/
private void distinctify(
Blackboard bb,
boolean checkForDupExprs) {
// Look for duplicate expressions in the project.
// Say we have 'select x, y, x, z'.
// Then dups will be {[2, 0]}
// and oldToNew will be {[0, 0], [1, 1], [2, 0], [3, 2]}
RelNode rel = bb.root;
if (checkForDupExprs && (rel instanceof LogicalProject)) {
LogicalProject project = (LogicalProject) rel;
final List<RexNode> projectExprs = project.getProjects();
final List<Integer> origins = new ArrayList<>();
int dupCount = 0;
for (int i = 0; i < projectExprs.size(); i++) {
int x = findExpr(projectExprs.get(i), projectExprs, i);
if (x >= 0) {
origins.add(x);
++dupCount;
} else {
origins.add(i);
}
}
if (dupCount == 0) {
distinctify(bb, false);
return;
}
final Map<Integer, Integer> squished = Maps.newHashMap();
final List<RelDataTypeField> fields = rel.getRowType().getFieldList();
final List<Pair<RexNode, String>> newProjects = Lists.newArrayList();
for (int i = 0; i < fields.size(); i++) {
if (origins.get(i) == i) {
squished.put(i, newProjects.size());
newProjects.add(RexInputRef.of2(i, fields));
}
}
rel =
LogicalProject.create(rel, Pair.left(newProjects),
Pair.right(newProjects));
bb.root = rel;
distinctify(bb, false);
rel = bb.root;
// Create the expressions to reverse the mapping.
// Project($0, $1, $0, $2).
final List<Pair<RexNode, String>> undoProjects = Lists.newArrayList();
for (int i = 0; i < fields.size(); i++) {
final int origin = origins.get(i);
RelDataTypeField field = fields.get(i);
undoProjects.add(
Pair.of(
(RexNode) new RexInputRef(
squished.get(origin), field.getType()),
field.getName()));
}
rel =
LogicalProject.create(rel, Pair.left(undoProjects),
Pair.right(undoProjects));
bb.setRoot(
rel,
false);
return;
}
// Usual case: all of the expressions in the SELECT clause are
// different.
final ImmutableBitSet groupSet =
ImmutableBitSet.range(rel.getRowType().getFieldCount());
rel =
createAggregate(bb, false, groupSet, ImmutableList.of(groupSet),
ImmutableList.<AggregateCall>of());
bb.setRoot(
rel,
false);
}
private int findExpr(RexNode seek, List<RexNode> exprs, int count) {
for (int i = 0; i < count; i++) {
RexNode expr = exprs.get(i);
if (expr.toString().equals(seek.toString())) {
return i;
}
}
return -1;
}
/**
* Converts a query's ORDER BY clause, if any.
*
* @param select Query
* @param bb Blackboard
* @param collation Collation list
* @param orderExprList Method populates this list with orderBy expressions
* not present in selectList
* @param offset Expression for number of rows to discard before
* returning first row
* @param fetch Expression for number of rows to fetch
*/
protected void convertOrder(
SqlSelect select,
Blackboard bb,
RelCollation collation,
List<SqlNode> orderExprList,
SqlNode offset,
SqlNode fetch) {
if (select.getOrderList() == null
|| select.getOrderList().getList().isEmpty()) {
assert collation.getFieldCollations().isEmpty();
if ((offset == null
|| ((SqlLiteral) offset).bigDecimalValue().equals(BigDecimal.ZERO))
&& fetch == null) {
return;
}
}
// Create a sorter using the previously constructed collations.
bb.setRoot(
LogicalSort.create(bb.root, collation,
offset == null ? null : convertExpression(offset),
fetch == null ? null : convertExpression(fetch)),
false);
// If extra expressions were added to the project list for sorting,
// add another project to remove them. But make the collation empty, because
// we can't represent the real collation.
//
// If it is the top node, use the real collation, but don't trim fields.
if (orderExprList.size() > 0 && !bb.top) {
final List<RexNode> exprs = new ArrayList<>();
final RelDataType rowType = bb.root.getRowType();
final int fieldCount =
rowType.getFieldCount() - orderExprList.size();
for (int i = 0; i < fieldCount; i++) {
exprs.add(rexBuilder.makeInputRef(bb.root, i));
}
bb.setRoot(
LogicalProject.create(bb.root, exprs,
rowType.getFieldNames().subList(0, fieldCount)),
false);
}
}
/**
* Returns whether a given node contains a {@link SqlInOperator}.
*
* @param node a RexNode tree
*/
private static boolean containsInOperator(
SqlNode node) {
try {
SqlVisitor<Void> visitor =
new SqlBasicVisitor<Void>() {
public Void visit(SqlCall call) {
if (call.getOperator() instanceof SqlInOperator) {
throw new Util.FoundOne(call);
}
return super.visit(call);
}
};
node.accept(visitor);
return false;
} catch (Util.FoundOne e) {
Util.swallow(e, null);
return true;
}
}
/**
* Push down all the NOT logical operators into any IN/NOT IN operators.
*
* @param sqlNode the root node from which to look for NOT operators
* @return the transformed SqlNode representation with NOT pushed down.
*/
private static SqlNode pushDownNotForIn(SqlNode sqlNode) {
if ((sqlNode instanceof SqlCall) && containsInOperator(sqlNode)) {
SqlCall sqlCall = (SqlCall) sqlNode;
if ((sqlCall.getOperator() == SqlStdOperatorTable.AND)
|| (sqlCall.getOperator() == SqlStdOperatorTable.OR)) {
SqlNode[] sqlOperands = ((SqlBasicCall) sqlCall).operands;
for (int i = 0; i < sqlOperands.length; i++) {
sqlOperands[i] = pushDownNotForIn(sqlOperands[i]);
}
return sqlNode;
} else if (sqlCall.getOperator() == SqlStdOperatorTable.NOT) {
SqlNode childNode = sqlCall.operand(0);
assert childNode instanceof SqlCall;
SqlBasicCall childSqlCall = (SqlBasicCall) childNode;
if (childSqlCall.getOperator() == SqlStdOperatorTable.AND) {
SqlNode[] andOperands = childSqlCall.getOperands();
SqlNode[] orOperands = new SqlNode[andOperands.length];
for (int i = 0; i < orOperands.length; i++) {
orOperands[i] =
SqlStdOperatorTable.NOT.createCall(
SqlParserPos.ZERO,
andOperands[i]);
}
for (int i = 0; i < orOperands.length; i++) {
orOperands[i] = pushDownNotForIn(orOperands[i]);
}
return SqlStdOperatorTable.OR.createCall(SqlParserPos.ZERO,
orOperands[0], orOperands[1]);
} else if (childSqlCall.getOperator() == SqlStdOperatorTable.OR) {
SqlNode[] orOperands = childSqlCall.getOperands();
SqlNode[] andOperands = new SqlNode[orOperands.length];
for (int i = 0; i < andOperands.length; i++) {
andOperands[i] =
SqlStdOperatorTable.NOT.createCall(
SqlParserPos.ZERO,
orOperands[i]);
}
for (int i = 0; i < andOperands.length; i++) {
andOperands[i] = pushDownNotForIn(andOperands[i]);
}
return SqlStdOperatorTable.AND.createCall(SqlParserPos.ZERO,
andOperands[0], andOperands[1]);
} else if (childSqlCall.getOperator() == SqlStdOperatorTable.NOT) {
SqlNode[] notOperands = childSqlCall.getOperands();
assert notOperands.length == 1;
return pushDownNotForIn(notOperands[0]);
} else if (childSqlCall.getOperator() instanceof SqlInOperator) {
SqlNode[] inOperands = childSqlCall.getOperands();
SqlInOperator inOp =
(SqlInOperator) childSqlCall.getOperator();
if (inOp.isNotIn()) {
return SqlStdOperatorTable.IN.createCall(
SqlParserPos.ZERO,
inOperands[0],
inOperands[1]);
} else {
return SqlStdOperatorTable.NOT_IN.createCall(
SqlParserPos.ZERO,
inOperands[0],
inOperands[1]);
}
} else {
// childSqlCall is "leaf" node in a logical expression tree
// (only considering AND, OR, NOT)
return sqlNode;
}
} else {
// sqlNode is "leaf" node in a logical expression tree
// (only considering AND, OR, NOT)
return sqlNode;
}
} else {
// tree rooted at sqlNode does not contain inOperator
return sqlNode;
}
}
/**
* Converts a WHERE clause.
*
* @param bb Blackboard
* @param where WHERE clause, may be null
*/
private void convertWhere(
final Blackboard bb,
final SqlNode where) {
if (where == null) {
return;
}
SqlNode newWhere = pushDownNotForIn(where);
replaceSubqueries(bb, newWhere, RelOptUtil.Logic.UNKNOWN_AS_FALSE);
final RexNode convertedWhere = bb.convertExpression(newWhere);
// only allocate filter if the condition is not TRUE
if (convertedWhere.isAlwaysTrue()) {
return;
}
final RelNode filter = RelOptUtil.createFilter(bb.root, convertedWhere);
final RelNode r;
final CorrelationUse p = getCorrelationUse(bb, filter);
if (p != null) {
assert p.r instanceof Filter;
Filter f = (Filter) p.r;
r = LogicalFilter.create(f.getInput(), f.getCondition(),
ImmutableSet.of(p.id));
} else {
r = filter;
}
bb.setRoot(r, false);
}
private void replaceSubqueries(
final Blackboard bb,
final SqlNode expr,
RelOptUtil.Logic logic) {
findSubqueries(bb, expr, logic, false);
for (SubQuery node : bb.subqueryList) {
substituteSubquery(bb, node);
}
}
private void substituteSubquery(Blackboard bb, SubQuery subQuery) {
final RexNode expr = subQuery.expr;
if (expr != null) {
// Already done.
return;
}
final SqlBasicCall call;
final RelNode rel;
final SqlNode query;
final Pair<RelNode, Boolean> converted;
switch (subQuery.node.getKind()) {
case CURSOR:
convertCursor(bb, subQuery);
return;
case MULTISET_QUERY_CONSTRUCTOR:
case MULTISET_VALUE_CONSTRUCTOR:
case ARRAY_QUERY_CONSTRUCTOR:
rel = convertMultisets(ImmutableList.of(subQuery.node), bb);
subQuery.expr = bb.register(rel, JoinRelType.INNER);
return;
case IN:
call = (SqlBasicCall) subQuery.node;
query = call.operand(1);
if (!expand && !(query instanceof SqlNodeList)) {
return;
}
final SqlNode leftKeyNode = call.operand(0);
final List<RexNode> leftKeys;
switch (leftKeyNode.getKind()) {
case ROW:
leftKeys = Lists.newArrayList();
for (SqlNode sqlExpr : ((SqlBasicCall) leftKeyNode).getOperandList()) {
leftKeys.add(bb.convertExpression(sqlExpr));
}
break;
default:
leftKeys = ImmutableList.of(bb.convertExpression(leftKeyNode));
}
final boolean isNotIn = ((SqlInOperator) call.getOperator()).isNotIn();
if (query instanceof SqlNodeList) {
SqlNodeList valueList = (SqlNodeList) query;
if (!containsNullLiteral(valueList)
&& valueList.size() < getInSubqueryThreshold()) {
// We're under the threshold, so convert to OR.
subQuery.expr =
convertInToOr(
bb,
leftKeys,
valueList,
isNotIn);
return;
}
// Otherwise, let convertExists translate
// values list into an inline table for the
// reference to Q below.
}
// Project out the search columns from the left side
// Q1:
// "select from emp where emp.deptno in (select col1 from T)"
//
// is converted to
//
// "select from
// emp inner join (select distinct col1 from T)) q
// on emp.deptno = q.col1
//
// Q2:
// "select from emp where emp.deptno not in (Q)"
//
// is converted to
//
// "select from
// emp left outer join (select distinct col1, TRUE from T) q
// on emp.deptno = q.col1
// where emp.deptno <> null
// and q.indicator <> TRUE"
//
final boolean outerJoin = bb.subqueryNeedsOuterJoin
|| isNotIn
|| subQuery.logic == RelOptUtil.Logic.TRUE_FALSE_UNKNOWN;
final RelDataType targetRowType =
SqlTypeUtil.promoteToRowType(typeFactory,
validator.getValidatedNodeType(leftKeyNode), null);
converted =
convertExists(query, RelOptUtil.SubqueryType.IN, subQuery.logic,
outerJoin, targetRowType);
if (converted.right) {
// Generate
// emp CROSS JOIN (SELECT COUNT(*) AS c,
// COUNT(deptno) AS ck FROM dept)
final RelDataType longType =
typeFactory.createSqlType(SqlTypeName.BIGINT);
final RelNode seek = converted.left.getInput(0); // fragile
final int keyCount = leftKeys.size();
final List<Integer> args = ImmutableIntList.range(0, keyCount);
LogicalAggregate aggregate =
LogicalAggregate.create(seek, false, ImmutableBitSet.of(), null,
ImmutableList.of(
AggregateCall.create(SqlStdOperatorTable.COUNT, false,
ImmutableList.<Integer>of(), -1, longType, null),
AggregateCall.create(SqlStdOperatorTable.COUNT, false,
args, -1, longType, null)));
LogicalJoin join =
LogicalJoin.create(bb.root, aggregate, rexBuilder.makeLiteral(true),
ImmutableSet.<CorrelationId>of(), JoinRelType.INNER);
bb.setRoot(join, false);
}
RexNode rex =
bb.register(converted.left,
outerJoin ? JoinRelType.LEFT : JoinRelType.INNER, leftKeys);
subQuery.expr = translateIn(subQuery, bb.root, rex);
if (isNotIn) {
subQuery.expr =
rexBuilder.makeCall(SqlStdOperatorTable.NOT, subQuery.expr);
}
return;
case EXISTS:
// "select from emp where exists (select a from T)"
//
// is converted to the following if the subquery is correlated:
//
// "select from emp left outer join (select AGG_TRUE() as indicator
// from T group by corr_var) q where q.indicator is true"
//
// If there is no correlation, the expression is replaced with a
// boolean indicating whether the subquery returned 0 or >= 1 row.
call = (SqlBasicCall) subQuery.node;
query = call.operand(0);
if (!expand) {
return;
}
converted = convertExists(query, RelOptUtil.SubqueryType.EXISTS,
subQuery.logic, true, null);
assert !converted.right;
if (convertNonCorrelatedSubQuery(subQuery, bb, converted.left, true)) {
return;
}
subQuery.expr = bb.register(converted.left, JoinRelType.LEFT);
return;
case SCALAR_QUERY:
// Convert the subquery. If it's non-correlated, convert it
// to a constant expression.
if (!expand) {
return;
}
call = (SqlBasicCall) subQuery.node;
query = call.operand(0);
converted = convertExists(query, RelOptUtil.SubqueryType.SCALAR,
subQuery.logic, true, null);
assert !converted.right;
if (convertNonCorrelatedSubQuery(subQuery, bb, converted.left, false)) {
return;
}
rel = convertToSingleValueSubq(query, converted.left);
subQuery.expr = bb.register(rel, JoinRelType.LEFT);
return;
case SELECT:
// This is used when converting multiset queries:
//
// select * from unnest(select multiset[deptno] from emps);
//
converted = convertExists(subQuery.node, RelOptUtil.SubqueryType.SCALAR,
subQuery.logic, true, null);
assert !converted.right;
subQuery.expr = bb.register(converted.left, JoinRelType.LEFT);
return;
default:
throw Util.newInternal("unexpected kind of subquery :" + subQuery.node);
}
}
private RexNode translateIn(SubQuery subQuery, RelNode root,
final RexNode rex) {
switch (subQuery.logic) {
case TRUE:
return rexBuilder.makeLiteral(true);
case UNKNOWN_AS_FALSE:
assert rex instanceof RexRangeRef;
final int fieldCount = rex.getType().getFieldCount();
RexNode rexNode = rexBuilder.makeFieldAccess(rex, fieldCount - 1);
rexNode = rexBuilder.makeCall(SqlStdOperatorTable.IS_TRUE, rexNode);
// Then append the IS NOT NULL(leftKeysForIn).
//
// RexRangeRef contains the following fields:
// leftKeysForIn,
// rightKeysForIn (the original subquery select list),
// nullIndicator
//
// The first two lists contain the same number of fields.
final int k = (fieldCount - 1) / 2;
for (int i = 0; i < k; i++) {
rexNode =
rexBuilder.makeCall(
SqlStdOperatorTable.AND,
rexNode,
rexBuilder.makeCall(
SqlStdOperatorTable.IS_NOT_NULL,
rexBuilder.makeFieldAccess(rex, i)));
}
return rexNode;
case TRUE_FALSE_UNKNOWN:
case UNKNOWN_AS_TRUE:
// select e.deptno,
// case
// when ct.c = 0 then false
// when dt.i is not null then true
// when e.deptno is null then null
// when ct.ck < ct.c then null
// else false
// end
// from e
// cross join (select count(*) as c, count(deptno) as ck from v) as ct
// left join (select distinct deptno, true as i from v) as dt
// on e.deptno = dt.deptno
final Join join = (Join) root;
final Project left = (Project) join.getLeft();
final RelNode leftLeft = ((Join) left.getInput()).getLeft();
final int leftLeftCount = leftLeft.getRowType().getFieldCount();
final RelDataType nullableBooleanType =
typeFactory.createTypeWithNullability(
typeFactory.createSqlType(SqlTypeName.BOOLEAN), true);
final RelDataType longType =
typeFactory.createSqlType(SqlTypeName.BIGINT);
final RexNode cRef = rexBuilder.makeInputRef(root, leftLeftCount);
final RexNode ckRef = rexBuilder.makeInputRef(root, leftLeftCount + 1);
final RexNode iRef =
rexBuilder.makeInputRef(root, root.getRowType().getFieldCount() - 1);
final RexLiteral zero =
rexBuilder.makeExactLiteral(BigDecimal.ZERO, longType);
final RexLiteral trueLiteral = rexBuilder.makeLiteral(true);
final RexLiteral falseLiteral = rexBuilder.makeLiteral(false);
final RexNode unknownLiteral =
rexBuilder.makeNullLiteral(SqlTypeName.BOOLEAN);
final ImmutableList.Builder<RexNode> args = ImmutableList.builder();
args.add(rexBuilder.makeCall(SqlStdOperatorTable.EQUALS, cRef, zero),
falseLiteral,
rexBuilder.makeCall(SqlStdOperatorTable.IS_NOT_NULL, iRef),
trueLiteral);
final JoinInfo joinInfo = join.analyzeCondition();
for (int leftKey : joinInfo.leftKeys) {
final RexNode kRef = rexBuilder.makeInputRef(root, leftKey);
args.add(rexBuilder.makeCall(SqlStdOperatorTable.IS_NULL, kRef),
unknownLiteral);
}
args.add(rexBuilder.makeCall(SqlStdOperatorTable.LESS_THAN, ckRef, cRef),
unknownLiteral,
falseLiteral);
return rexBuilder.makeCall(
nullableBooleanType,
SqlStdOperatorTable.CASE,
args.build());
default:
throw new AssertionError(subQuery.logic);
}
}
private static boolean containsNullLiteral(SqlNodeList valueList) {
for (SqlNode node : valueList.getList()) {
if (node instanceof SqlLiteral) {
SqlLiteral lit = (SqlLiteral) node;
if (lit.getValue() == null) {
return true;
}
}
}
return false;
}
/**
* Determines if a subquery is non-correlated and if so, converts it to a
* constant.
*
* @param subQuery the call that references the subquery
* @param bb blackboard used to convert the subquery
* @param converted RelNode tree corresponding to the subquery
* @param isExists true if the subquery is part of an EXISTS expression
* @return if the subquery can be converted to a constant
*/
private boolean convertNonCorrelatedSubQuery(
SubQuery subQuery,
Blackboard bb,
RelNode converted,
boolean isExists) {
SqlCall call = (SqlBasicCall) subQuery.node;
if (subqueryConverter.canConvertSubquery()
&& isSubQueryNonCorrelated(converted, bb)) {
// First check if the subquery has already been converted
// because it's a nested subquery. If so, don't re-evaluate
// it again.
RexNode constExpr = mapConvertedNonCorrSubqs.get(call);
if (constExpr == null) {
constExpr =
subqueryConverter.convertSubquery(
call,
this,
isExists,
isExplain);
}
if (constExpr != null) {
subQuery.expr = constExpr;
mapConvertedNonCorrSubqs.put(call, constExpr);
return true;
}
}
return false;
}
/**
* Converts the RelNode tree for a select statement to a select that
* produces a single value.
*
* @param query the query
* @param plan the original RelNode tree corresponding to the statement
* @return the converted RelNode tree
*/
public RelNode convertToSingleValueSubq(
SqlNode query,
RelNode plan) {
// Check whether query is guaranteed to produce a single value.
if (query instanceof SqlSelect) {
SqlSelect select = (SqlSelect) query;
SqlNodeList selectList = select.getSelectList();
SqlNodeList groupList = select.getGroup();
if ((selectList.size() == 1)
&& ((groupList == null) || (groupList.size() == 0))) {
SqlNode selectExpr = selectList.get(0);
if (selectExpr instanceof SqlCall) {
SqlCall selectExprCall = (SqlCall) selectExpr;
if (Util.isSingleValue(selectExprCall)) {
return plan;
}
}
// If there is a limit with 0 or 1,
// it is ensured to produce a single value
if (select.getFetch() != null
&& select.getFetch() instanceof SqlNumericLiteral) {
SqlNumericLiteral limitNum = (SqlNumericLiteral) select.getFetch();
if (((BigDecimal) limitNum.getValue()).intValue() < 2) {
return plan;
}
}
}
} else if (query instanceof SqlCall) {
// If the query is (values ...),
// it is necessary to look into the operands to determine
// whether SingleValueAgg is necessary
SqlCall exprCall = (SqlCall) query;
if (exprCall.getOperator()
instanceof SqlValuesOperator
&& Util.isSingleValue(exprCall)) {
return plan;
}
}
// If not, project SingleValueAgg
return RelOptUtil.createSingleValueAggRel(
cluster,
plan);
}
/**
* Converts "x IN (1, 2, ...)" to "x=1 OR x=2 OR ...".
*
* @param leftKeys LHS
* @param valuesList RHS
* @param isNotIn is this a NOT IN operator
* @return converted expression
*/
private RexNode convertInToOr(
final Blackboard bb,
final List<RexNode> leftKeys,
SqlNodeList valuesList,
boolean isNotIn) {
final List<RexNode> comparisons = new ArrayList<>();
for (SqlNode rightVals : valuesList) {
RexNode rexComparison;
if (leftKeys.size() == 1) {
rexComparison =
rexBuilder.makeCall(
SqlStdOperatorTable.EQUALS,
leftKeys.get(0),
rexBuilder.ensureType(leftKeys.get(0).getType(),
bb.convertExpression(rightVals), true));
} else {
assert rightVals instanceof SqlCall;
final SqlBasicCall call = (SqlBasicCall) rightVals;
assert (call.getOperator() instanceof SqlRowOperator)
&& call.operandCount() == leftKeys.size();
rexComparison =
RexUtil.composeConjunction(
rexBuilder,
Iterables.transform(
Pair.zip(leftKeys, call.getOperandList()),
new Function<Pair<RexNode, SqlNode>, RexNode>() {
public RexNode apply(Pair<RexNode, SqlNode> pair) {
return rexBuilder.makeCall(SqlStdOperatorTable.EQUALS,
pair.left,
rexBuilder.ensureType(pair.left.getType(),
bb.convertExpression(pair.right), true));
}
}),
false);
}
comparisons.add(rexComparison);
}
RexNode result =
RexUtil.composeDisjunction(rexBuilder, comparisons, true);
assert result != null;
if (isNotIn) {
result =
rexBuilder.makeCall(
SqlStdOperatorTable.NOT,
result);
}
return result;
}
/**
* Gets the list size threshold under which {@link #convertInToOr} is used.
* Lists of this size or greater will instead be converted to use a join
* against an inline table
* ({@link org.apache.calcite.rel.logical.LogicalValues}) rather than a
* predicate. A threshold of 0 forces usage of an inline table in all cases; a
* threshold of Integer.MAX_VALUE forces usage of OR in all cases
*
* @return threshold, default {@link #IN_SUBQUERY_THRESHOLD}
*/
protected int getInSubqueryThreshold() {
return IN_SUBQUERY_THRESHOLD;
}
/**
* Converts an EXISTS or IN predicate into a join. For EXISTS, the subquery
* produces an indicator variable, and the result is a relational expression
* which outer joins that indicator to the original query. After performing
* the outer join, the condition will be TRUE if the EXISTS condition holds,
* NULL otherwise.
*
* @param seek A query, for example 'select * from emp' or
* 'values (1,2,3)' or '('Foo', 34)'.
* @param subqueryType Whether sub-query is IN, EXISTS or scalar
* @param logic Whether the answer needs to be in full 3-valued logic (TRUE,
* FALSE, UNKNOWN) will be required, or whether we can accept an
* approximation (say representing UNKNOWN as FALSE)
* @param needsOuterJoin Whether an outer join is needed
* @return join expression
* @pre extraExpr == null || extraName != null
*/
private Pair<RelNode, Boolean> convertExists(
SqlNode seek,
RelOptUtil.SubqueryType subqueryType,
RelOptUtil.Logic logic,
boolean needsOuterJoin,
RelDataType targetDataType) {
final SqlValidatorScope seekScope =
(seek instanceof SqlSelect)
? validator.getSelectScope((SqlSelect) seek)
: null;
final Blackboard seekBb = createBlackboard(seekScope, null, false);
RelNode seekRel = convertQueryOrInList(seekBb, seek, targetDataType);
return RelOptUtil.createExistsPlan(seekRel, subqueryType, logic,
needsOuterJoin);
}
private RelNode convertQueryOrInList(
Blackboard bb,
SqlNode seek,
RelDataType targetRowType) {
// NOTE: Once we start accepting single-row queries as row constructors,
// there will be an ambiguity here for a case like X IN ((SELECT Y FROM
// Z)). The SQL standard resolves the ambiguity by saying that a lone
// select should be interpreted as a table expression, not a row
// expression. The semantic difference is that a table expression can
// return multiple rows.
if (seek instanceof SqlNodeList) {
return convertRowValues(
bb,
seek,
((SqlNodeList) seek).getList(),
false,
targetRowType);
} else {
return convertQueryRecursive(seek, false, null).project();
}
}
private RelNode convertRowValues(
Blackboard bb,
SqlNode rowList,
Collection<SqlNode> rows,
boolean allowLiteralsOnly,
RelDataType targetRowType) {
// NOTE jvs 30-Apr-2006: We combine all rows consisting entirely of
// literals into a single LogicalValues; this gives the optimizer a smaller
// input tree. For everything else (computed expressions, row
// subqueries), we union each row in as a projection on top of a
// LogicalOneRow.
final ImmutableList.Builder<ImmutableList<RexLiteral>> tupleList =
ImmutableList.builder();
final RelDataType rowType;
if (targetRowType != null) {
rowType = targetRowType;
} else {
rowType =
SqlTypeUtil.promoteToRowType(
typeFactory,
validator.getValidatedNodeType(rowList),
null);
}
final List<RelNode> unionInputs = new ArrayList<>();
for (SqlNode node : rows) {
SqlBasicCall call;
if (isRowConstructor(node)) {
call = (SqlBasicCall) node;
ImmutableList.Builder<RexLiteral> tuple = ImmutableList.builder();
for (Ord<SqlNode> operand : Ord.zip(call.operands)) {
RexLiteral rexLiteral =
convertLiteralInValuesList(
operand.e,
bb,
rowType,
operand.i);
if ((rexLiteral == null) && allowLiteralsOnly) {
return null;
}
if ((rexLiteral == null) || !shouldCreateValuesRel) {
// fallback to convertRowConstructor
tuple = null;
break;
}
tuple.add(rexLiteral);
}
if (tuple != null) {
tupleList.add(tuple.build());
continue;
}
} else {
RexLiteral rexLiteral =
convertLiteralInValuesList(
node,
bb,
rowType,
0);
if ((rexLiteral != null) && shouldCreateValuesRel) {
tupleList.add(ImmutableList.of(rexLiteral));
continue;
} else {
if ((rexLiteral == null) && allowLiteralsOnly) {
return null;
}
}
// convert "1" to "row(1)"
call =
(SqlBasicCall) SqlStdOperatorTable.ROW.createCall(
SqlParserPos.ZERO,
node);
}
unionInputs.add(convertRowConstructor(bb, call));
}
LogicalValues values =
LogicalValues.create(cluster, rowType, tupleList.build());
RelNode resultRel;
if (unionInputs.isEmpty()) {
resultRel = values;
} else {
if (!values.getTuples().isEmpty()) {
unionInputs.add(values);
}
resultRel = LogicalUnion.create(unionInputs, true);
}
leaves.add(resultRel);
return resultRel;
}
private RexLiteral convertLiteralInValuesList(
SqlNode sqlNode,
Blackboard bb,
RelDataType rowType,
int iField) {
if (!(sqlNode instanceof SqlLiteral)) {
return null;
}
RelDataTypeField field = rowType.getFieldList().get(iField);
RelDataType type = field.getType();
if (type.isStruct()) {
// null literals for weird stuff like UDT's need
// special handling during type flattening, so
// don't use LogicalValues for those
return null;
}
RexNode literalExpr =
exprConverter.convertLiteral(
bb,
(SqlLiteral) sqlNode);
if (!(literalExpr instanceof RexLiteral)) {
assert literalExpr.isA(SqlKind.CAST);
RexNode child = ((RexCall) literalExpr).getOperands().get(0);
assert RexLiteral.isNullLiteral(child);
// NOTE jvs 22-Nov-2006: we preserve type info
// in LogicalValues digest, so it's OK to lose it here
return (RexLiteral) child;
}
RexLiteral literal = (RexLiteral) literalExpr;
Comparable value = literal.getValue();
if (SqlTypeUtil.isExactNumeric(type) && SqlTypeUtil.hasScale(type)) {
BigDecimal roundedValue =
NumberUtil.rescaleBigDecimal(
(BigDecimal) value,
type.getScale());
return rexBuilder.makeExactLiteral(
roundedValue,
type);
}
if ((value instanceof NlsString)
&& (type.getSqlTypeName() == SqlTypeName.CHAR)) {
// pad fixed character type
NlsString unpadded = (NlsString) value;
return rexBuilder.makeCharLiteral(
new NlsString(
Spaces.padRight(unpadded.getValue(), type.getPrecision()),
unpadded.getCharsetName(),
unpadded.getCollation()));
}
return literal;
}
private boolean isRowConstructor(SqlNode node) {
if (!(node.getKind() == SqlKind.ROW)) {
return false;
}
SqlCall call = (SqlCall) node;
return call.getOperator().getName().equalsIgnoreCase("row");
}
/**
* Builds a list of all <code>IN</code> or <code>EXISTS</code> operators
* inside SQL parse tree. Does not traverse inside queries.
*
* @param bb blackboard
* @param node the SQL parse tree
* @param logic Whether the answer needs to be in full 3-valued logic (TRUE,
* FALSE, UNKNOWN) will be required, or whether we can accept
* an approximation (say representing UNKNOWN as FALSE)
* @param registerOnlyScalarSubqueries if set to true and the parse tree
* corresponds to a variation of a select
* node, only register it if it's a scalar
* subquery
*/
private void findSubqueries(
Blackboard bb,
SqlNode node,
RelOptUtil.Logic logic,
boolean registerOnlyScalarSubqueries) {
final SqlKind kind = node.getKind();
switch (kind) {
case EXISTS:
case SELECT:
case MULTISET_QUERY_CONSTRUCTOR:
case MULTISET_VALUE_CONSTRUCTOR:
case ARRAY_QUERY_CONSTRUCTOR:
case CURSOR:
case SCALAR_QUERY:
if (!registerOnlyScalarSubqueries
|| (kind == SqlKind.SCALAR_QUERY)) {
bb.registerSubquery(node, RelOptUtil.Logic.TRUE_FALSE);
}
return;
case IN:
if (((SqlCall) node).getOperator() == SqlStdOperatorTable.NOT_IN) {
logic = logic.negate();
}
break;
case NOT:
logic = logic.negate();
break;
}
if (node instanceof SqlCall) {
if (kind == SqlKind.OR
|| kind == SqlKind.NOT) {
// It's always correct to outer join subquery with
// containing query; however, when predicates involve Or
// or NOT, outer join might be necessary.
bb.subqueryNeedsOuterJoin = true;
}
for (SqlNode operand : ((SqlCall) node).getOperandList()) {
if (operand != null) {
// In the case of an IN expression, locate scalar
// subqueries so we can convert them to constants
findSubqueries(
bb,
operand,
logic,
kind == SqlKind.IN || registerOnlyScalarSubqueries);
}
}
} else if (node instanceof SqlNodeList) {
for (SqlNode child : (SqlNodeList) node) {
findSubqueries(
bb,
child,
logic,
kind == SqlKind.IN || registerOnlyScalarSubqueries);
}
}
// Now that we've located any scalar subqueries inside the IN
// expression, register the IN expression itself. We need to
// register the scalar subqueries first so they can be converted
// before the IN expression is converted.
if (kind == SqlKind.IN) {
if (logic == RelOptUtil.Logic.TRUE_FALSE_UNKNOWN
&& !validator.getValidatedNodeType(node).isNullable()) {
logic = RelOptUtil.Logic.UNKNOWN_AS_FALSE;
}
// TODO: This conversion is only valid in the WHERE clause
if (logic == RelOptUtil.Logic.UNKNOWN_AS_FALSE
&& !bb.subqueryNeedsOuterJoin) {
logic = RelOptUtil.Logic.TRUE;
}
bb.registerSubquery(node, logic);
}
}
/**
* Converts an expression from {@link SqlNode} to {@link RexNode} format.
*
* @param node Expression to translate
* @return Converted expression
*/
public RexNode convertExpression(
SqlNode node) {
Map<String, RelDataType> nameToTypeMap = Collections.emptyMap();
final ParameterScope scope =
new ParameterScope((SqlValidatorImpl) validator, nameToTypeMap);
final Blackboard bb = createBlackboard(scope, null, false);
return bb.convertExpression(node);
}
/**
* Converts an expression from {@link SqlNode} to {@link RexNode} format,
* mapping identifier references to predefined expressions.
*
* @param node Expression to translate
* @param nameToNodeMap map from String to {@link RexNode}; when an
* {@link SqlIdentifier} is encountered, it is used as a
* key and translated to the corresponding value from
* this map
* @return Converted expression
*/
public RexNode convertExpression(
SqlNode node,
Map<String, RexNode> nameToNodeMap) {
final Map<String, RelDataType> nameToTypeMap = new HashMap<>();
for (Map.Entry<String, RexNode> entry : nameToNodeMap.entrySet()) {
nameToTypeMap.put(entry.getKey(), entry.getValue().getType());
}
final ParameterScope scope =
new ParameterScope((SqlValidatorImpl) validator, nameToTypeMap);
final Blackboard bb = createBlackboard(scope, nameToNodeMap, false);
return bb.convertExpression(node);
}
/**
* Converts a non-standard expression.
*
* <p>This method is an extension-point that derived classes can override. If
* this method returns a null result, the normal expression translation
* process will proceed. The default implementation always returns null.
*
* @param node Expression
* @param bb Blackboard
* @return null to proceed with the usual expression translation process
*/
protected RexNode convertExtendedExpression(
SqlNode node,
Blackboard bb) {
return null;
}
private RexNode convertOver(Blackboard bb, SqlNode node) {
SqlCall call = (SqlCall) node;
SqlCall aggCall = call.operand(0);
SqlNode windowOrRef = call.operand(1);
final SqlWindow window =
validator.resolveWindow(windowOrRef, bb.scope, true);
// ROW_NUMBER() expects specific kind of framing.
if (aggCall.getKind() == SqlKind.ROW_NUMBER) {
window.setLowerBound(SqlWindow.createUnboundedPreceding(SqlParserPos.ZERO));
window.setUpperBound(SqlWindow.createCurrentRow(SqlParserPos.ZERO));
window.setRows(SqlLiteral.createBoolean(true, SqlParserPos.ZERO));
}
final SqlNodeList partitionList = window.getPartitionList();
final ImmutableList.Builder<RexNode> partitionKeys =
ImmutableList.builder();
for (SqlNode partition : partitionList) {
partitionKeys.add(bb.convertExpression(partition));
}
RexNode lowerBound = bb.convertExpression(window.getLowerBound());
RexNode upperBound = bb.convertExpression(window.getUpperBound());
SqlNodeList orderList = window.getOrderList();
if ((orderList.size() == 0) && !window.isRows()) {
// A logical range requires an ORDER BY clause. Use the implicit
// ordering of this relation. There must be one, otherwise it would
// have failed validation.
orderList = bb.scope.getOrderList();
if (orderList == null) {
throw new AssertionError(
"Relation should have sort key for implicit ORDER BY");
}
}
final ImmutableList.Builder<RexFieldCollation> orderKeys =
ImmutableList.builder();
final Set<SqlKind> flags = EnumSet.noneOf(SqlKind.class);
for (SqlNode order : orderList) {
flags.clear();
RexNode e = bb.convertSortExpression(order, flags);
orderKeys.add(new RexFieldCollation(e, flags));
}
try {
Util.permAssert(bb.window == null, "already in window agg mode");
bb.window = window;
RexNode rexAgg = exprConverter.convertCall(bb, aggCall);
rexAgg =
rexBuilder.ensureType(
validator.getValidatedNodeType(call), rexAgg, false);
// Walk over the tree and apply 'over' to all agg functions. This is
// necessary because the returned expression is not necessarily a call
// to an agg function. For example, AVG(x) becomes SUM(x) / COUNT(x).
final RexShuttle visitor =
new HistogramShuttle(
partitionKeys.build(), orderKeys.build(),
RexWindowBound.create(window.getLowerBound(), lowerBound),
RexWindowBound.create(window.getUpperBound(), upperBound),
window);
return rexAgg.accept(visitor);
} finally {
bb.window = null;
}
}
/**
* Converts a FROM clause into a relational expression.
*
* @param bb Scope within which to resolve identifiers
* @param from FROM clause of a query. Examples include:
*
* <ul>
* <li>a single table ("SALES.EMP"),
* <li>an aliased table ("EMP AS E"),
* <li>a list of tables ("EMP, DEPT"),
* <li>an ANSI Join expression ("EMP JOIN DEPT ON EMP.DEPTNO =
* DEPT.DEPTNO"),
* <li>a VALUES clause ("VALUES ('Fred', 20)"),
* <li>a query ("(SELECT * FROM EMP WHERE GENDER = 'F')"),
* <li>or any combination of the above.
* </ul>
*/
protected void convertFrom(
Blackboard bb,
SqlNode from) {
if (from == null) {
bb.setRoot(LogicalValues.createOneRow(cluster), false);
return;
}
final SqlCall call;
final SqlNode[] operands;
switch (from.getKind()) {
case AS:
convertFrom(bb, ((SqlCall) from).operand(0));
return;
case WITH_ITEM:
convertFrom(bb, ((SqlWithItem) from).query);
return;
case WITH:
convertFrom(bb, ((SqlWith) from).body);
return;
case TABLESAMPLE:
operands = ((SqlBasicCall) from).getOperands();
SqlSampleSpec sampleSpec = SqlLiteral.sampleValue(operands[1]);
if (sampleSpec instanceof SqlSampleSpec.SqlSubstitutionSampleSpec) {
String sampleName =
((SqlSampleSpec.SqlSubstitutionSampleSpec) sampleSpec)
.getName();
datasetStack.push(sampleName);
convertFrom(bb, operands[0]);
datasetStack.pop();
} else if (sampleSpec instanceof SqlSampleSpec.SqlTableSampleSpec) {
SqlSampleSpec.SqlTableSampleSpec tableSampleSpec =
(SqlSampleSpec.SqlTableSampleSpec) sampleSpec;
convertFrom(bb, operands[0]);
RelOptSamplingParameters params =
new RelOptSamplingParameters(
tableSampleSpec.isBernoulli(),
tableSampleSpec.getSamplePercentage(),
tableSampleSpec.isRepeatable(),
tableSampleSpec.getRepeatableSeed());
bb.setRoot(new Sample(cluster, bb.root, params), false);
} else {
throw Util.newInternal(
"unknown TABLESAMPLE type: " + sampleSpec);
}
return;
case IDENTIFIER:
final SqlValidatorNamespace fromNamespace =
validator.getNamespace(from).resolve();
if (fromNamespace.getNode() != null) {
convertFrom(bb, fromNamespace.getNode());
return;
}
final String datasetName =
datasetStack.isEmpty() ? null : datasetStack.peek();
boolean[] usedDataset = {false};
RelOptTable table =
SqlValidatorUtil.getRelOptTable(
fromNamespace,
catalogReader,
datasetName,
usedDataset);
final RelNode tableRel;
if (shouldConvertTableAccess) {
tableRel = toRel(table);
} else {
tableRel = LogicalTableScan.create(cluster, table);
}
bb.setRoot(tableRel, true);
if (usedDataset[0]) {
bb.setDataset(datasetName);
}
return;
case JOIN:
final SqlJoin join = (SqlJoin) from;
final SqlValidatorScope scope = validator.getJoinScope(from);
final Blackboard fromBlackboard = createBlackboard(scope, null, false);
SqlNode left = join.getLeft();
SqlNode right = join.getRight();
final boolean isNatural = join.isNatural();
final JoinType joinType = join.getJoinType();
final SqlValidatorScope leftScope =
Util.first(validator.getJoinScope(left),
((DelegatingScope) bb.scope).getParent());
final Blackboard leftBlackboard =
createBlackboard(leftScope, null, false);
final SqlValidatorScope rightScope =
Util.first(validator.getJoinScope(right),
((DelegatingScope) bb.scope).getParent());
final Blackboard rightBlackboard =
createBlackboard(rightScope, null, false);
convertFrom(leftBlackboard, left);
RelNode leftRel = leftBlackboard.root;
convertFrom(rightBlackboard, right);
RelNode rightRel = rightBlackboard.root;
JoinRelType convertedJoinType = convertJoinType(joinType);
RexNode conditionExp;
final SqlValidatorNamespace leftNamespace = validator.getNamespace(left);
final SqlValidatorNamespace rightNamespace = validator.getNamespace(right);
if (isNatural) {
final RelDataType leftRowType = leftNamespace.getRowType();
final RelDataType rightRowType = rightNamespace.getRowType();
final List<String> columnList =
SqlValidatorUtil.deriveNaturalJoinColumnList(leftRowType,
rightRowType);
conditionExp = convertUsing(leftNamespace, rightNamespace,
columnList);
} else {
conditionExp =
convertJoinCondition(
fromBlackboard,
leftNamespace,
rightNamespace,
join.getCondition(),
join.getConditionType(),
leftRel,
rightRel);
}
final RelNode joinRel =
createJoin(
fromBlackboard,
leftRel,
rightRel,
conditionExp,
convertedJoinType);
bb.setRoot(joinRel, false);
return;
case SELECT:
case INTERSECT:
case EXCEPT:
case UNION:
final RelNode rel = convertQueryRecursive(from, false, null).project();
bb.setRoot(rel, true);
return;
case VALUES:
convertValuesImpl(bb, (SqlCall) from, null);
return;
case UNNEST:
call = (SqlCall) from;
final List<SqlNode> nodes = call.getOperandList();
final SqlUnnestOperator operator = (SqlUnnestOperator) call.getOperator();
for (SqlNode node : nodes) {
replaceSubqueries(bb, node, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
}
final List<RexNode> exprs = new ArrayList<>();
final List<String> fieldNames = new ArrayList<>();
for (Ord<SqlNode> node : Ord.zip(nodes)) {
exprs.add(bb.convertExpression(node.e));
fieldNames.add(validator.deriveAlias(node.e, node.i));
}
final RelNode input =
RelOptUtil.createProject(
(null != bb.root) ? bb.root : LogicalValues.createOneRow(cluster),
exprs, fieldNames, true);
Uncollect uncollect =
new Uncollect(cluster, cluster.traitSetOf(Convention.NONE),
input, operator.withOrdinality);
bb.setRoot(uncollect, true);
return;
case COLLECTION_TABLE:
call = (SqlCall) from;
// Dig out real call; TABLE() wrapper is just syntactic.
assert call.getOperandList().size() == 1;
final SqlCall call2 = call.operand(0);
convertCollectionTable(bb, call2);
return;
default:
throw Util.newInternal("not a join operator " + from);
}
}
protected void convertCollectionTable(
Blackboard bb,
SqlCall call) {
final SqlOperator operator = call.getOperator();
if (operator == SqlStdOperatorTable.TABLESAMPLE) {
final String sampleName = (String) SqlLiteral.value(call.operand(0));
datasetStack.push(sampleName);
SqlCall cursorCall = call.operand(1);
SqlNode query = cursorCall.operand(0);
RelNode converted = convertQuery(query, false, false).rel;
bb.setRoot(converted, false);
datasetStack.pop();
return;
}
replaceSubqueries(bb, call, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
// Expand table macro if possible. It's more efficient than
// LogicalTableFunctionScan.
final SqlCallBinding callBinding =
new SqlCallBinding(bb.scope.getValidator(), bb.scope, call);
if (operator instanceof SqlUserDefinedTableMacro) {
final SqlUserDefinedTableMacro udf =
(SqlUserDefinedTableMacro) operator;
final TranslatableTable table =
udf.getTable(typeFactory, callBinding.operands());
final RelDataType rowType = table.getRowType(typeFactory);
RelOptTable relOptTable = RelOptTableImpl.create(null, rowType, table,
udf.getNameAsId().names);
RelNode converted = toRel(relOptTable);
bb.setRoot(converted, true);
return;
}
Type elementType;
if (operator instanceof SqlUserDefinedTableFunction) {
SqlUserDefinedTableFunction udtf = (SqlUserDefinedTableFunction) operator;
elementType = udtf.getElementType(typeFactory, callBinding.operands());
} else {
elementType = null;
}
RexNode rexCall = bb.convertExpression(call);
final List<RelNode> inputs = bb.retrieveCursors();
Set<RelColumnMapping> columnMappings =
getColumnMappings(operator);
LogicalTableFunctionScan callRel =
LogicalTableFunctionScan.create(
cluster,
inputs,
rexCall,
elementType,
validator.getValidatedNodeType(call),
columnMappings);
bb.setRoot(callRel, true);
afterTableFunction(bb, call, callRel);
}
protected void afterTableFunction(
SqlToRelConverter.Blackboard bb,
SqlCall call,
LogicalTableFunctionScan callRel) {
}
private Set<RelColumnMapping> getColumnMappings(SqlOperator op) {
SqlReturnTypeInference rti = op.getReturnTypeInference();
if (rti == null) {
return null;
}
if (rti instanceof TableFunctionReturnTypeInference) {
TableFunctionReturnTypeInference tfrti =
(TableFunctionReturnTypeInference) rti;
return tfrti.getColumnMappings();
} else {
return null;
}
}
protected RelNode createJoin(
Blackboard bb,
RelNode leftRel,
RelNode rightRel,
RexNode joinCond,
JoinRelType joinType) {
assert joinCond != null;
final CorrelationUse p = getCorrelationUse(bb, rightRel);
if (p != null) {
LogicalCorrelate corr = LogicalCorrelate.create(leftRel, p.r,
p.id, p.requiredColumns, SemiJoinType.of(joinType));
if (!joinCond.isAlwaysTrue()) {
return RelOptUtil.createFilter(corr, joinCond);
}
return corr;
}
final Join originalJoin =
(Join) RelFactories.DEFAULT_JOIN_FACTORY.createJoin(leftRel, rightRel,
joinCond, ImmutableSet.<CorrelationId>of(), joinType, false);
return RelOptUtil.pushDownJoinConditions(originalJoin);
}
private CorrelationUse getCorrelationUse(Blackboard bb, final RelNode r0) {
final Set<CorrelationId> correlatedVariables =
RelOptUtil.getVariablesUsed(r0);
if (correlatedVariables.isEmpty()) {
return null;
}
final ImmutableBitSet.Builder requiredColumns = ImmutableBitSet.builder();
final List<CorrelationId> correlNames = Lists.newArrayList();
// All correlations must refer the same namespace since correlation
// produces exactly one correlation source.
// The same source might be referenced by different variables since
// DeferredLookups are not de-duplicated at create time.
SqlValidatorNamespace prevNs = null;
for (CorrelationId correlName : correlatedVariables) {
DeferredLookup lookup =
mapCorrelToDeferred.get(correlName);
RexFieldAccess fieldAccess = lookup.getFieldAccess(correlName);
String originalRelName = lookup.getOriginalRelName();
String originalFieldName = fieldAccess.getField().getName();
int[] nsIndexes = {-1};
final SqlValidatorScope[] ancestorScopes = {null};
SqlValidatorNamespace foundNs =
lookup.bb.scope.resolve(
ImmutableList.of(originalRelName),
ancestorScopes,
nsIndexes);
assert foundNs != null;
assert nsIndexes.length == 1;
int childNamespaceIndex = nsIndexes[0];
SqlValidatorScope ancestorScope = ancestorScopes[0];
boolean correlInCurrentScope = ancestorScope == bb.scope;
if (!correlInCurrentScope) {
continue;
}
if (prevNs == null) {
prevNs = foundNs;
} else {
assert prevNs == foundNs : "All correlation variables should resolve"
+ " to the same namespace."
+ " Prev ns=" + prevNs
+ ", new ns=" + foundNs;
}
int namespaceOffset = 0;
if (childNamespaceIndex > 0) {
// If not the first child, need to figure out the width
// of output types from all the preceding namespaces
assert ancestorScope instanceof ListScope;
List<SqlValidatorNamespace> children =
((ListScope) ancestorScope).getChildren();
for (int i = 0; i < childNamespaceIndex; i++) {
SqlValidatorNamespace child = children.get(i);
namespaceOffset +=
child.getRowType().getFieldCount();
}
}
final RelDataTypeField field = foundNs.getRowType().getFieldList()
.get(fieldAccess.getField().getIndex() - namespaceOffset);
int pos = namespaceOffset + field.getIndex();
assert field.getType()
== lookup.getFieldAccess(correlName).getField().getType();
assert pos != -1;
if (bb.mapRootRelToFieldProjection.containsKey(bb.root)) {
// bb.root is an aggregate and only projects group by
// keys.
Map<Integer, Integer> exprProjection =
bb.mapRootRelToFieldProjection.get(bb.root);
// subquery can reference group by keys projected from
// the root of the outer relation.
if (exprProjection.containsKey(pos)) {
pos = exprProjection.get(pos);
} else {
// correl not grouped
throw new AssertionError("Identifier '" + originalRelName + "."
+ originalFieldName + "' is not a group expr");
}
}
requiredColumns.set(pos);
correlNames.add(correlName);
}
if (correlNames.isEmpty()) {
// None of the correlating variables originated in this scope.
return null;
}
RelNode r = r0;
if (correlNames.size() > 1) {
// The same table was referenced more than once.
// So we deduplicate
r = DeduplicateCorrelateVariables.go(rexBuilder, correlNames.get(0),
Util.skip(correlNames), r0);
}
return new CorrelationUse(correlNames.get(0), requiredColumns.build(), r);
}
/**
* Determines whether a subquery is non-correlated. Note that a
* non-correlated subquery can contain correlated references, provided those
* references do not reference select statements that are parents of the
* subquery.
*
* @param subq the subquery
* @param bb blackboard used while converting the subquery, i.e., the
* blackboard of the parent query of this subquery
* @return true if the subquery is non-correlated.
*/
private boolean isSubQueryNonCorrelated(RelNode subq, Blackboard bb) {
Set<CorrelationId> correlatedVariables = RelOptUtil.getVariablesUsed(subq);
for (CorrelationId correlName : correlatedVariables) {
DeferredLookup lookup = mapCorrelToDeferred.get(correlName);
String originalRelName = lookup.getOriginalRelName();
int[] nsIndexes = {-1};
final SqlValidatorScope[] ancestorScopes = {null};
SqlValidatorNamespace foundNs =
lookup.bb.scope.resolve(
ImmutableList.of(originalRelName),
ancestorScopes,
nsIndexes);
assert foundNs != null;
assert nsIndexes.length == 1;
SqlValidatorScope ancestorScope = ancestorScopes[0];
// If the correlated reference is in a scope that's "above" the
// subquery, then this is a correlated subquery.
SqlValidatorScope parentScope = bb.scope;
do {
if (ancestorScope == parentScope) {
return false;
}
if (parentScope instanceof DelegatingScope) {
parentScope = ((DelegatingScope) parentScope).getParent();
} else {
break;
}
} while (parentScope != null);
}
return true;
}
/**
* Returns a list of fields to be prefixed to each relational expression.
*
* @return List of system fields
*/
protected List<RelDataTypeField> getSystemFields() {
return Collections.emptyList();
}
private RexNode convertJoinCondition(Blackboard bb,
SqlValidatorNamespace leftNamespace,
SqlValidatorNamespace rightNamespace,
SqlNode condition,
JoinConditionType conditionType,
RelNode leftRel,
RelNode rightRel) {
if (condition == null) {
return rexBuilder.makeLiteral(true);
}
bb.setRoot(ImmutableList.of(leftRel, rightRel));
replaceSubqueries(bb, condition, RelOptUtil.Logic.UNKNOWN_AS_FALSE);
switch (conditionType) {
case ON:
bb.setRoot(ImmutableList.of(leftRel, rightRel));
return bb.convertExpression(condition);
case USING:
final SqlNodeList list = (SqlNodeList) condition;
final List<String> nameList = new ArrayList<>();
for (SqlNode columnName : list) {
final SqlIdentifier id = (SqlIdentifier) columnName;
String name = id.getSimple();
nameList.add(name);
}
return convertUsing(leftNamespace, rightNamespace, nameList);
default:
throw Util.unexpected(conditionType);
}
}
/**
* Returns an expression for matching columns of a USING clause or inferred
* from NATURAL JOIN. "a JOIN b USING (x, y)" becomes "a.x = b.x AND a.y =
* b.y". Returns null if the column list is empty.
*
* @param leftNamespace Namespace of left input to join
* @param rightNamespace Namespace of right input to join
* @param nameList List of column names to join on
* @return Expression to match columns from name list, or true if name list
* is empty
*/
private RexNode convertUsing(SqlValidatorNamespace leftNamespace,
SqlValidatorNamespace rightNamespace,
List<String> nameList) {
final List<RexNode> list = Lists.newArrayList();
for (String name : nameList) {
List<RexNode> operands = new ArrayList<>();
int offset = 0;
for (SqlValidatorNamespace n : ImmutableList.of(leftNamespace,
rightNamespace)) {
final RelDataType rowType = n.getRowType();
final RelDataTypeField field = catalogReader.field(rowType, name);
operands.add(
rexBuilder.makeInputRef(field.getType(),
offset + field.getIndex()));
offset += rowType.getFieldList().size();
}
list.add(rexBuilder.makeCall(SqlStdOperatorTable.EQUALS, operands));
}
return RexUtil.composeConjunction(rexBuilder, list, false);
}
private static JoinRelType convertJoinType(JoinType joinType) {
switch (joinType) {
case COMMA:
case INNER:
case CROSS:
return JoinRelType.INNER;
case FULL:
return JoinRelType.FULL;
case LEFT:
return JoinRelType.LEFT;
case RIGHT:
return JoinRelType.RIGHT;
default:
throw Util.unexpected(joinType);
}
}
/**
* Converts the SELECT, GROUP BY and HAVING clauses of an aggregate query.
*
* <p>This method extracts SELECT, GROUP BY and HAVING clauses, and creates
* an {@link AggConverter}, then delegates to {@link #createAggImpl}.
* Derived class may override this method to change any of those clauses or
* specify a different {@link AggConverter}.
*
* @param bb Scope within which to resolve identifiers
* @param select Query
* @param orderExprList Additional expressions needed to implement ORDER BY
*/
protected void convertAgg(
Blackboard bb,
SqlSelect select,
List<SqlNode> orderExprList) {
assert bb.root != null : "precondition: child != null";
SqlNodeList groupList = select.getGroup();
SqlNodeList selectList = select.getSelectList();
SqlNode having = select.getHaving();
final AggConverter aggConverter = new AggConverter(bb, select);
createAggImpl(
bb,
aggConverter,
selectList,
groupList,
having,
orderExprList);
}
protected final void createAggImpl(
Blackboard bb,
final AggConverter aggConverter,
SqlNodeList selectList,
SqlNodeList groupList,
SqlNode having,
List<SqlNode> orderExprList) {
// Find aggregate functions in SELECT and HAVING clause
final AggregateFinder aggregateFinder = new AggregateFinder();
selectList.accept(aggregateFinder);
if (having != null) {
having.accept(aggregateFinder);
}
// first replace the subqueries inside the aggregates
// because they will provide input rows to the aggregates.
replaceSubqueries(bb, aggregateFinder.list, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
// If group-by clause is missing, pretend that it has zero elements.
if (groupList == null) {
groupList = SqlNodeList.EMPTY;
}
replaceSubqueries(bb, groupList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
// register the group exprs
// build a map to remember the projections from the top scope to the
// output of the current root.
//
// Calcite allows expressions, not just column references in
// group by list. This is not SQL 2003 compliant, but hey.
final AggregatingSelectScope scope = aggConverter.aggregatingSelectScope;
final AggregatingSelectScope.Resolved r = scope.resolved.get();
for (SqlNode groupExpr : r.groupExprList) {
aggConverter.addGroupExpr(groupExpr);
}
RexNode havingExpr = null;
final List<Pair<RexNode, String>> projects = Lists.newArrayList();
try {
Util.permAssert(bb.agg == null, "already in agg mode");
bb.agg = aggConverter;
// convert the select and having expressions, so that the
// agg converter knows which aggregations are required
selectList.accept(aggConverter);
// Assert we don't have dangling items left in the stack
assert !aggConverter.inOver;
for (SqlNode expr : orderExprList) {
expr.accept(aggConverter);
assert !aggConverter.inOver;
}
if (having != null) {
having.accept(aggConverter);
assert !aggConverter.inOver;
}
// compute inputs to the aggregator
List<RexNode> preExprs = aggConverter.getPreExprs();
List<String> preNames = aggConverter.getPreNames();
if (preExprs.size() == 0) {
// Special case for COUNT(*), where we can end up with no inputs
// at all. The rest of the system doesn't like 0-tuples, so we
// select a dummy constant here.
preExprs =
ImmutableList.<RexNode>of(
rexBuilder.makeExactLiteral(BigDecimal.ZERO));
preNames = Collections.singletonList(null);
}
final RelNode inputRel = bb.root;
// Project the expressions required by agg and having.
bb.setRoot(
RelOptUtil.createProject(
inputRel,
preExprs,
preNames,
true),
false);
bb.mapRootRelToFieldProjection.put(bb.root, r.groupExprProjection);
// REVIEW jvs 31-Oct-2007: doesn't the declaration of
// monotonicity here assume sort-based aggregation at
// the physical level?
// Tell bb which of group columns are sorted.
bb.columnMonotonicities.clear();
for (SqlNode groupItem : groupList) {
bb.columnMonotonicities.add(
bb.scope.getMonotonicity(groupItem));
}
// Add the aggregator
bb.setRoot(
createAggregate(bb, r.indicator, r.groupSet, r.groupSets,
aggConverter.getAggCalls()),
false);
// Generate NULL values for rolled-up not-null fields.
final Aggregate aggregate = (Aggregate) bb.root;
if (aggregate.getGroupType() != Aggregate.Group.SIMPLE) {
assert aggregate.indicator;
List<Pair<RexNode, String>> projects2 = Lists.newArrayList();
int converted = 0;
final int groupCount = aggregate.getGroupSet().cardinality();
for (RelDataTypeField field : aggregate.getRowType().getFieldList()) {
final int i = field.getIndex();
final RexNode rex;
if (i < groupCount && r.isNullable(i)) {
++converted;
rex = rexBuilder.makeCall(SqlStdOperatorTable.CASE,
rexBuilder.makeInputRef(aggregate, groupCount + i),
rexBuilder.makeCast(
typeFactory.createTypeWithNullability(
field.getType(), true),
rexBuilder.constantNull()),
rexBuilder.makeInputRef(aggregate, i));
} else {
rex = rexBuilder.makeInputRef(aggregate, i);
}
projects2.add(Pair.of(rex, field.getName()));
}
if (converted > 0) {
bb.setRoot(
RelOptUtil.createProject(bb.root, projects2, true),
false);
}
}
bb.mapRootRelToFieldProjection.put(bb.root, r.groupExprProjection);
// Replace subqueries in having here and modify having to use
// the replaced expressions
if (having != null) {
SqlNode newHaving = pushDownNotForIn(having);
replaceSubqueries(bb, newHaving, RelOptUtil.Logic.UNKNOWN_AS_FALSE);
havingExpr = bb.convertExpression(newHaving);
if (havingExpr.isAlwaysTrue()) {
havingExpr = null;
}
}
// Now convert the other subqueries in the select list.
// This needs to be done separately from the subquery inside
// any aggregate in the select list, and after the aggregate rel
// is allocated.
replaceSubqueries(bb, selectList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
// Now subqueries in the entire select list have been converted.
// Convert the select expressions to get the final list to be
// projected.
int k = 0;
// For select expressions, use the field names previously assigned
// by the validator. If we derive afresh, we might generate names
// like "EXPR$2" that don't match the names generated by the
// validator. This is especially the case when there are system
// fields; system fields appear in the relnode's rowtype but do not
// (yet) appear in the validator type.
final SelectScope selectScope =
SqlValidatorUtil.getEnclosingSelectScope(bb.scope);
assert selectScope != null;
final SqlValidatorNamespace selectNamespace =
validator.getNamespace(selectScope.getNode());
final List<String> names =
selectNamespace.getRowType().getFieldNames();
int sysFieldCount = selectList.size() - names.size();
for (SqlNode expr : selectList) {
projects.add(
Pair.of(bb.convertExpression(expr),
k < sysFieldCount
? validator.deriveAlias(expr, k++)
: names.get(k++ - sysFieldCount)));
}
for (SqlNode expr : orderExprList) {
projects.add(
Pair.of(bb.convertExpression(expr),
validator.deriveAlias(expr, k++)));
}
} finally {
bb.agg = null;
}
// implement HAVING (we have already checked that it is non-trivial)
if (havingExpr != null) {
bb.setRoot(RelOptUtil.createFilter(bb.root, havingExpr), false);
}
// implement the SELECT list
bb.setRoot(
RelOptUtil.createProject(
bb.root,
projects,
true),
false);
// Tell bb which of group columns are sorted.
bb.columnMonotonicities.clear();
for (SqlNode selectItem : selectList) {
bb.columnMonotonicities.add(
bb.scope.getMonotonicity(selectItem));
}
}
/**
* Creates an Aggregate.
*
* <p>In case the aggregate rel changes the order in which it projects
* fields, the <code>groupExprProjection</code> parameter is provided, and
* the implementation of this method may modify it.
*
* <p>The <code>sortedCount</code> parameter is the number of expressions
* known to be monotonic. These expressions must be on the leading edge of
* the grouping keys. The default implementation of this method ignores this
* parameter.
*
* @param bb Blackboard
* @param indicator Whether to output fields indicating grouping sets
* @param groupSet Bit set of ordinals of grouping columns
* @param groupSets Grouping sets
* @param aggCalls Array of calls to aggregate functions
* @return LogicalAggregate
*/
protected RelNode createAggregate(Blackboard bb, boolean indicator,
ImmutableBitSet groupSet, ImmutableList<ImmutableBitSet> groupSets,
List<AggregateCall> aggCalls) {
return LogicalAggregate.create(
bb.root, indicator, groupSet, groupSets, aggCalls);
}
public RexDynamicParam convertDynamicParam(
final SqlDynamicParam dynamicParam) {
// REVIEW jvs 8-Jan-2005: dynamic params may be encountered out of
// order. Should probably cross-check with the count from the parser
// at the end and make sure they all got filled in. Why doesn't List
// have a resize() method?!? Make this a utility.
while (dynamicParam.getIndex() >= dynamicParamSqlNodes.size()) {
dynamicParamSqlNodes.add(null);
}
dynamicParamSqlNodes.set(
dynamicParam.getIndex(),
dynamicParam);
return rexBuilder.makeDynamicParam(
getDynamicParamType(dynamicParam.getIndex()),
dynamicParam.getIndex());
}
/**
* Creates a list of collations required to implement the ORDER BY clause,
* if there is one. Populates <code>extraOrderExprs</code> with any sort
* expressions which are not in the select clause.
*
* @param bb Scope within which to resolve identifiers
* @param select Select clause. Never null, because we invent a
* dummy SELECT if ORDER BY is applied to a set
* operation (UNION etc.)
* @param orderList Order by clause, may be null
* @param extraOrderExprs Sort expressions which are not in the select
* clause (output)
* @param collationList List of collations (output)
*/
protected void gatherOrderExprs(
Blackboard bb,
SqlSelect select,
SqlNodeList orderList,
List<SqlNode> extraOrderExprs,
List<RelFieldCollation> collationList) {
// TODO: add validation rules to SqlValidator also
assert bb.root != null : "precondition: child != null";
assert select != null;
if (orderList == null) {
return;
}
for (SqlNode orderItem : orderList) {
collationList.add(
convertOrderItem(
select,
orderItem,
extraOrderExprs,
RelFieldCollation.Direction.ASCENDING,
RelFieldCollation.NullDirection.UNSPECIFIED));
}
}
protected RelFieldCollation convertOrderItem(
SqlSelect select,
SqlNode orderItem, List<SqlNode> extraExprs,
RelFieldCollation.Direction direction,
RelFieldCollation.NullDirection nullDirection) {
assert select != null;
// Handle DESC keyword, e.g. 'select a, b from t order by a desc'.
switch (orderItem.getKind()) {
case DESCENDING:
return convertOrderItem(
select,
((SqlCall) orderItem).operand(0),
extraExprs,
RelFieldCollation.Direction.DESCENDING,
nullDirection);
case NULLS_FIRST:
return convertOrderItem(
select,
((SqlCall) orderItem).operand(0),
extraExprs,
direction,
RelFieldCollation.NullDirection.FIRST);
case NULLS_LAST:
return convertOrderItem(
select,
((SqlCall) orderItem).operand(0),
extraExprs,
direction,
RelFieldCollation.NullDirection.LAST);
}
SqlNode converted = validator.expandOrderExpr(select, orderItem);
switch (nullDirection) {
case UNSPECIFIED:
nullDirection = validator.getDefaultNullCollation().last(desc(direction))
? RelFieldCollation.NullDirection.LAST
: RelFieldCollation.NullDirection.FIRST;
}
// Scan the select list and order exprs for an identical expression.
final SelectScope selectScope = validator.getRawSelectScope(select);
int ordinal = -1;
for (SqlNode selectItem : selectScope.getExpandedSelectList()) {
++ordinal;
if (converted.equalsDeep(stripAs(selectItem), Litmus.IGNORE)) {
return new RelFieldCollation(ordinal, direction, nullDirection);
}
}
for (SqlNode extraExpr : extraExprs) {
++ordinal;
if (converted.equalsDeep(extraExpr, Litmus.IGNORE)) {
return new RelFieldCollation(ordinal, direction, nullDirection);
}
}
// TODO: handle collation sequence
// TODO: flag expressions as non-standard
extraExprs.add(converted);
return new RelFieldCollation(ordinal + 1, direction, nullDirection);
}
private static boolean desc(RelFieldCollation.Direction direction) {
switch (direction) {
case DESCENDING:
case STRICTLY_DESCENDING:
return true;
default:
return false;
}
}
protected boolean enableDecorrelation() {
// disable subquery decorrelation when needed.
// e.g. if outer joins are not supported.
return decorrelationEnabled;
}
protected RelNode decorrelateQuery(RelNode rootRel) {
return RelDecorrelator.decorrelateQuery(rootRel);
}
/**
* Sets whether to trim unused fields as part of the conversion process.
*
* @param trim Whether to trim unused fields
*/
public void setTrimUnusedFields(boolean trim) {
this.trimUnusedFields = trim;
}
/**
* Returns whether to trim unused fields as part of the conversion process.
*
* @return Whether to trim unused fields
*/
public boolean isTrimUnusedFields() {
return trimUnusedFields;
}
public void setExpand(boolean expand) {
this.expand = expand;
}
/**
* Recursively converts a query to a relational expression.
*
* @param query Query
* @param top Whether this query is the top-level query of the
* statement
* @param targetRowType Target row type, or null
* @return Relational expression
*/
protected RelRoot convertQueryRecursive(SqlNode query, boolean top,
RelDataType targetRowType) {
final SqlKind kind = query.getKind();
switch (kind) {
case SELECT:
return RelRoot.of(convertSelect((SqlSelect) query, top), kind);
case INSERT:
return RelRoot.of(convertInsert((SqlInsert) query), kind);
case DELETE:
return RelRoot.of(convertDelete((SqlDelete) query), kind);
case UPDATE:
return RelRoot.of(convertUpdate((SqlUpdate) query), kind);
case MERGE:
return RelRoot.of(convertMerge((SqlMerge) query), kind);
case UNION:
case INTERSECT:
case EXCEPT:
return RelRoot.of(convertSetOp((SqlCall) query), kind);
case WITH:
return convertWith((SqlWith) query, top);
case VALUES:
return RelRoot.of(convertValues((SqlCall) query, targetRowType), kind);
default:
throw Util.newInternal("not a query: " + query);
}
}
/**
* Converts a set operation (UNION, INTERSECT, MINUS) into relational
* expressions.
*
* @param call Call to set operator
* @return Relational expression
*/
protected RelNode convertSetOp(SqlCall call) {
final RelNode left =
convertQueryRecursive(call.operand(0), false, null).project();
final RelNode right =
convertQueryRecursive(call.operand(1), false, null).project();
boolean all = false;
if (call.getOperator() instanceof SqlSetOperator) {
all = ((SqlSetOperator) (call.getOperator())).isAll();
}
switch (call.getKind()) {
case UNION:
return LogicalUnion.create(ImmutableList.of(left, right), all);
case INTERSECT:
// TODO: all
if (!all) {
return LogicalIntersect.create(ImmutableList.of(left, right), all);
} else {
throw Util.newInternal(
"set operator INTERSECT ALL not suported");
}
case EXCEPT:
// TODO: all
if (!all) {
return LogicalMinus.create(ImmutableList.of(left, right), all);
} else {
throw Util.newInternal(
"set operator EXCEPT ALL not suported");
}
default:
throw Util.unexpected(call.getKind());
}
}
protected RelNode convertInsert(SqlInsert call) {
RelOptTable targetTable = getTargetTable(call);
final RelDataType targetRowType =
validator.getValidatedNodeType(call);
assert targetRowType != null;
RelNode sourceRel =
convertQueryRecursive(call.getSource(), false, targetRowType).project();
RelNode massagedRel = convertColumnList(call, sourceRel);
return createModify(targetTable, massagedRel);
}
/** Creates a relational expression to modify a table or modifiable view. */
private RelNode createModify(RelOptTable targetTable, RelNode source) {
final ModifiableTable modifiableTable =
targetTable.unwrap(ModifiableTable.class);
if (modifiableTable != null) {
return modifiableTable.toModificationRel(cluster, targetTable,
catalogReader, source, LogicalTableModify.Operation.INSERT, null,
false);
}
final ModifiableView modifiableView =
targetTable.unwrap(ModifiableView.class);
if (modifiableView != null) {
final Table delegateTable = modifiableView.getTable();
final RelDataType delegateRowType = delegateTable.getRowType(typeFactory);
final RelOptTable delegateRelOptTable =
RelOptTableImpl.create(null, delegateRowType, delegateTable,
modifiableView.getTablePath());
final RelNode newSource =
createSource(targetTable, source, modifiableView, delegateRowType);
return createModify(delegateRelOptTable, newSource);
}
return LogicalTableModify.create(targetTable, catalogReader, source,
LogicalTableModify.Operation.INSERT, null, false);
}
/** Wraps a relational expression in the projects and filters implied by
* a {@link ModifiableView}.
*
* <p>The input relational expression is suitable for inserting into the view,
* and the returned relational expression is suitable for inserting into its
* delegate table.
*
* <p>In principle, the delegate table of a view might be another modifiable
* view, and if so, the process can be repeated. */
private RelNode createSource(RelOptTable targetTable, RelNode source,
ModifiableView modifiableView, RelDataType delegateRowType) {
final ImmutableIntList mapping = modifiableView.getColumnMapping();
assert mapping.size() == targetTable.getRowType().getFieldCount();
// For columns represented in the mapping, the expression is just a field
// reference.
final Map<Integer, RexNode> projectMap = new HashMap<>();
final List<RexNode> filters = new ArrayList<>();
for (int i = 0; i < mapping.size(); i++) {
int target = mapping.get(i);
if (target >= 0) {
projectMap.put(target, RexInputRef.of(i, source.getRowType()));
}
}
// For columns that are not in the mapping, and have a constraint of the
// form "column = value", the expression is the literal "value".
//
// If a column has multiple constraints, the extra ones will become a
// filter.
final RexNode constraint =
modifiableView.getConstraint(rexBuilder, delegateRowType);
RelOptUtil.inferViewPredicates(projectMap, filters, constraint);
final List<Pair<RexNode, String>> projects = new ArrayList<>();
for (RelDataTypeField field : delegateRowType.getFieldList()) {
RexNode node = projectMap.get(field.getIndex());
if (node == null) {
node = rexBuilder.makeNullLiteral(field.getType().getSqlTypeName());
}
projects.add(
Pair.of(rexBuilder.ensureType(field.getType(), node, false),
field.getName()));
}
source = RelOptUtil.createProject(source, projects, true);
if (filters.size() > 0) {
source = RelOptUtil.createFilter(source, filters);
}
return source;
}
private RelOptTable.ToRelContext createToRelContext() {
return new RelOptTable.ToRelContext() {
public RelOptCluster getCluster() {
return cluster;
}
public RelRoot expandView(RelDataType rowType, String queryString,
List<String> schemaPath) {
return viewExpander.expandView(rowType, queryString, schemaPath);
}
};
}
public RelNode toRel(RelOptTable table) {
return table.toRel(createToRelContext());
}
protected RelOptTable getTargetTable(SqlNode call) {
SqlValidatorNamespace targetNs = validator.getNamespace(call).resolve();
return SqlValidatorUtil.getRelOptTable(targetNs, catalogReader, null, null);
}
/**
* Creates a source for an INSERT statement.
*
* <p>If the column list is not specified, source expressions match target
* columns in order.
*
* <p>If the column list is specified, Source expressions are mapped to
* target columns by name via targetColumnList, and may not cover the entire
* target table. So, we'll make up a full row, using a combination of
* default values and the source expressions provided.
*
* @param call Insert expression
* @param sourceRel Source relational expression
* @return Converted INSERT statement
*/
protected RelNode convertColumnList(
SqlInsert call,
RelNode sourceRel) {
RelDataType sourceRowType = sourceRel.getRowType();
final RexNode sourceRef =
rexBuilder.makeRangeReference(sourceRowType, 0, false);
final List<String> targetColumnNames = new ArrayList<>();
final List<RexNode> columnExprs = new ArrayList<>();
collectInsertTargets(call, sourceRef, targetColumnNames, columnExprs);
final RelOptTable targetTable = getTargetTable(call);
final RelDataType targetRowType = targetTable.getRowType();
final List<RelDataTypeField> targetFields =
targetRowType.getFieldList();
final List<RexNode> sourceExps =
new ArrayList<>(
Collections.<RexNode>nCopies(targetFields.size(), null));
final List<String> fieldNames =
new ArrayList<>(
Collections.<String>nCopies(targetFields.size(), null));
// Walk the name list and place the associated value in the
// expression list according to the ordinal value returned from
// the table construct, leaving nulls in the list for columns
// that are not referenced.
for (Pair<String, RexNode> p : Pair.zip(targetColumnNames, columnExprs)) {
RelDataTypeField field = catalogReader.field(targetRowType, p.left);
assert field != null : "column " + p.left + " not found";
sourceExps.set(field.getIndex(), p.right);
}
// Walk the expression list and get default values for any columns
// that were not supplied in the statement. Get field names too.
for (int i = 0; i < targetFields.size(); ++i) {
final RelDataTypeField field = targetFields.get(i);
final String fieldName = field.getName();
fieldNames.set(i, fieldName);
if (sourceExps.get(i) != null) {
if (defaultValueFactory.isGeneratedAlways(targetTable, i)) {
throw RESOURCE.insertIntoAlwaysGenerated(fieldName).ex();
}
continue;
}
sourceExps.set(
i, defaultValueFactory.newColumnDefaultValue(targetTable, i));
// bare nulls are dangerous in the wrong hands
sourceExps.set(
i,
castNullLiteralIfNeeded(
sourceExps.get(i), field.getType()));
}
return RelOptUtil.createProject(sourceRel, sourceExps, fieldNames, true);
}
private RexNode castNullLiteralIfNeeded(RexNode node, RelDataType type) {
if (!RexLiteral.isNullLiteral(node)) {
return node;
}
return rexBuilder.makeCast(type, node);
}
/**
* Given an INSERT statement, collects the list of names to be populated and
* the expressions to put in them.
*
* @param call Insert statement
* @param sourceRef Expression representing a row from the source
* relational expression
* @param targetColumnNames List of target column names, to be populated
* @param columnExprs List of expressions, to be populated
*/
protected void collectInsertTargets(
SqlInsert call,
final RexNode sourceRef,
final List<String> targetColumnNames,
List<RexNode> columnExprs) {
final RelOptTable targetTable = getTargetTable(call);
final RelDataType targetRowType = targetTable.getRowType();
SqlNodeList targetColumnList = call.getTargetColumnList();
if (targetColumnList == null) {
targetColumnNames.addAll(targetRowType.getFieldNames());
} else {
for (int i = 0; i < targetColumnList.size(); i++) {
SqlIdentifier id = (SqlIdentifier) targetColumnList.get(i);
targetColumnNames.add(id.getSimple());
}
}
for (int i = 0; i < targetColumnNames.size(); i++) {
final RexNode expr = rexBuilder.makeFieldAccess(sourceRef, i);
columnExprs.add(expr);
}
}
private RelNode convertDelete(SqlDelete call) {
RelOptTable targetTable = getTargetTable(call);
RelNode sourceRel = convertSelect(call.getSourceSelect(), false);
return LogicalTableModify.create(targetTable, catalogReader, sourceRel,
LogicalTableModify.Operation.DELETE, null, false);
}
private RelNode convertUpdate(SqlUpdate call) {
RelOptTable targetTable = getTargetTable(call);
// convert update column list from SqlIdentifier to String
final List<String> targetColumnNameList = new ArrayList<>();
for (SqlNode node : call.getTargetColumnList()) {
SqlIdentifier id = (SqlIdentifier) node;
String name = id.getSimple();
targetColumnNameList.add(name);
}
RelNode sourceRel = convertSelect(call.getSourceSelect(), false);
return LogicalTableModify.create(targetTable, catalogReader, sourceRel,
LogicalTableModify.Operation.UPDATE, targetColumnNameList, false);
}
private RelNode convertMerge(SqlMerge call) {
RelOptTable targetTable = getTargetTable(call);
// convert update column list from SqlIdentifier to String
final List<String> targetColumnNameList = new ArrayList<>();
SqlUpdate updateCall = call.getUpdateCall();
if (updateCall != null) {
for (SqlNode targetColumn : updateCall.getTargetColumnList()) {
SqlIdentifier id = (SqlIdentifier) targetColumn;
String name = id.getSimple();
targetColumnNameList.add(name);
}
}
// replace the projection of the source select with a
// projection that contains the following:
// 1) the expressions corresponding to the new insert row (if there is
// an insert)
// 2) all columns from the target table (if there is an update)
// 3) the set expressions in the update call (if there is an update)
// first, convert the merge's source select to construct the columns
// from the target table and the set expressions in the update call
RelNode mergeSourceRel = convertSelect(call.getSourceSelect(), false);
// then, convert the insert statement so we can get the insert
// values expressions
SqlInsert insertCall = call.getInsertCall();
int nLevel1Exprs = 0;
List<RexNode> level1InsertExprs = null;
List<RexNode> level2InsertExprs = null;
if (insertCall != null) {
RelNode insertRel = convertInsert(insertCall);
// if there are 2 level of projections in the insert source, combine
// them into a single project; level1 refers to the topmost project;
// the level1 projection contains references to the level2
// expressions, except in the case where no target expression was
// provided, in which case, the expression is the default value for
// the column; or if the expressions directly map to the source
// table
level1InsertExprs =
((LogicalProject) insertRel.getInput(0)).getProjects();
if (insertRel.getInput(0).getInput(0) instanceof LogicalProject) {
level2InsertExprs =
((LogicalProject) insertRel.getInput(0).getInput(0))
.getProjects();
}
nLevel1Exprs = level1InsertExprs.size();
}
LogicalJoin join = (LogicalJoin) mergeSourceRel.getInput(0);
int nSourceFields = join.getLeft().getRowType().getFieldCount();
final List<RexNode> projects = new ArrayList<>();
for (int level1Idx = 0; level1Idx < nLevel1Exprs; level1Idx++) {
if ((level2InsertExprs != null)
&& (level1InsertExprs.get(level1Idx) instanceof RexInputRef)) {
int level2Idx =
((RexInputRef) level1InsertExprs.get(level1Idx)).getIndex();
projects.add(level2InsertExprs.get(level2Idx));
} else {
projects.add(level1InsertExprs.get(level1Idx));
}
}
if (updateCall != null) {
final LogicalProject project = (LogicalProject) mergeSourceRel;
projects.addAll(
Util.skip(project.getProjects(), nSourceFields));
}
RelNode massagedRel =
RelOptUtil.createProject(join, projects, null, true);
return LogicalTableModify.create(targetTable, catalogReader, massagedRel,
LogicalTableModify.Operation.MERGE, targetColumnNameList, false);
}
/**
* Converts an identifier into an expression in a given scope. For example,
* the "empno" in "select empno from emp join dept" becomes "emp.empno".
*/
private RexNode convertIdentifier(
Blackboard bb,
SqlIdentifier identifier) {
// first check for reserved identifiers like CURRENT_USER
final SqlCall call = SqlUtil.makeCall(opTab, identifier);
if (call != null) {
return bb.convertExpression(call);
}
final SqlQualified qualified;
if (bb.scope != null) {
qualified = bb.scope.fullyQualify(identifier);
} else {
qualified = SqlQualified.create(null, 1, null, identifier);
}
final Pair<RexNode, Map<String, Integer>> e0 = bb.lookupExp(qualified);
RexNode e = e0.left;
for (String name : qualified.suffixTranslated()) {
if (e == e0.left && e0.right != null) {
int i = e0.right.get(name);
e = rexBuilder.makeFieldAccess(e, i);
} else {
final boolean caseSensitive = true; // name already fully-qualified
e = rexBuilder.makeFieldAccess(e, name, caseSensitive);
}
}
if (e instanceof RexInputRef) {
// adjust the type to account for nulls introduced by outer joins
e = adjustInputRef(bb, (RexInputRef) e);
}
if (e0.left instanceof RexCorrelVariable) {
assert e instanceof RexFieldAccess;
final RexNode prev =
bb.mapCorrelateToRex.put(((RexCorrelVariable) e0.left).id,
(RexFieldAccess) e);
assert prev == null;
}
return e;
}
/**
* Adjusts the type of a reference to an input field to account for nulls
* introduced by outer joins; and adjusts the offset to match the physical
* implementation.
*
* @param bb Blackboard
* @param inputRef Input ref
* @return Adjusted input ref
*/
protected RexNode adjustInputRef(
Blackboard bb,
RexInputRef inputRef) {
RelDataTypeField field = bb.getRootField(inputRef);
if (field != null) {
return rexBuilder.makeInputRef(
field.getType(),
inputRef.getIndex());
}
return inputRef;
}
/**
* Converts a row constructor into a relational expression.
*
* @param bb Blackboard
* @param rowConstructor Row constructor expression
* @return Relational expression which returns a single row.
* @pre isRowConstructor(rowConstructor)
*/
private RelNode convertRowConstructor(
Blackboard bb,
SqlCall rowConstructor) {
assert isRowConstructor(rowConstructor) : rowConstructor;
final List<SqlNode> operands = rowConstructor.getOperandList();
return convertMultisets(operands, bb);
}
private RelNode convertCursor(Blackboard bb, SubQuery subQuery) {
final SqlCall cursorCall = (SqlCall) subQuery.node;
assert cursorCall.operandCount() == 1;
SqlNode query = cursorCall.operand(0);
RelNode converted = convertQuery(query, false, false).rel;
int iCursor = bb.cursors.size();
bb.cursors.add(converted);
subQuery.expr =
new RexInputRef(
iCursor,
converted.getRowType());
return converted;
}
private RelNode convertMultisets(final List<SqlNode> operands,
Blackboard bb) {
// NOTE: Wael 2/04/05: this implementation is not the most efficient in
// terms of planning since it generates XOs that can be reduced.
final List<Object> joinList = new ArrayList<>();
List<SqlNode> lastList = new ArrayList<>();
for (int i = 0; i < operands.size(); i++) {
SqlNode operand = operands.get(i);
if (!(operand instanceof SqlCall)) {
lastList.add(operand);
continue;
}
final SqlCall call = (SqlCall) operand;
final RelNode input;
switch (call.getKind()) {
case MULTISET_VALUE_CONSTRUCTOR:
case ARRAY_VALUE_CONSTRUCTOR:
final SqlNodeList list =
new SqlNodeList(call.getOperandList(), call.getParserPosition());
CollectNamespace nss =
(CollectNamespace) validator.getNamespace(call);
Blackboard usedBb;
if (null != nss) {
usedBb = createBlackboard(nss.getScope(), null, false);
} else {
usedBb =
createBlackboard(new ListScope(bb.scope) {
public SqlNode getNode() {
return call;
}
}, null, false);
}
RelDataType multisetType = validator.getValidatedNodeType(call);
validator.setValidatedNodeType(
list,
multisetType.getComponentType());
input = convertQueryOrInList(usedBb, list, null);
break;
case MULTISET_QUERY_CONSTRUCTOR:
case ARRAY_QUERY_CONSTRUCTOR:
final RelRoot root = convertQuery(call.operand(0), false, true);
input = root.rel;
break;
default:
lastList.add(operand);
continue;
}
if (lastList.size() > 0) {
joinList.add(lastList);
}
lastList = new ArrayList<>();
Collect collect =
new Collect(
cluster,
cluster.traitSetOf(Convention.NONE),
input,
validator.deriveAlias(call, i));
joinList.add(collect);
}
if (joinList.size() == 0) {
joinList.add(lastList);
}
for (int i = 0; i < joinList.size(); i++) {
Object o = joinList.get(i);
if (o instanceof List) {
@SuppressWarnings("unchecked")
List<SqlNode> projectList = (List<SqlNode>) o;
final List<RexNode> selectList = new ArrayList<>();
final List<String> fieldNameList = new ArrayList<>();
for (int j = 0; j < projectList.size(); j++) {
SqlNode operand = projectList.get(j);
selectList.add(bb.convertExpression(operand));
// REVIEW angel 5-June-2005: Use deriveAliasFromOrdinal
// instead of deriveAlias to match field names from
// SqlRowOperator. Otherwise, get error Type
// 'RecordType(INTEGER EMPNO)' has no field 'EXPR$0' when
// doing select * from unnest( select multiset[empno]
// from sales.emps);
fieldNameList.add(SqlUtil.deriveAliasFromOrdinal(j));
}
RelNode projRel =
RelOptUtil.createProject(
LogicalValues.createOneRow(cluster),
selectList,
fieldNameList);
joinList.set(i, projRel);
}
}
RelNode ret = (RelNode) joinList.get(0);
for (int i = 1; i < joinList.size(); i++) {
RelNode relNode = (RelNode) joinList.get(i);
ret =
RelFactories.DEFAULT_JOIN_FACTORY.createJoin(
ret,
relNode,
rexBuilder.makeLiteral(true),
ImmutableSet.<CorrelationId>of(),
JoinRelType.INNER,
false);
}
return ret;
}
private void convertSelectList(
Blackboard bb,
SqlSelect select,
List<SqlNode> orderList) {
SqlNodeList selectList = select.getSelectList();
selectList = validator.expandStar(selectList, select, false);
replaceSubqueries(bb, selectList, RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
List<String> fieldNames = new ArrayList<>();
final List<RexNode> exprs = new ArrayList<>();
final Collection<String> aliases = new TreeSet<>();
// Project any system fields. (Must be done before regular select items,
// because offsets may be affected.)
final List<SqlMonotonicity> columnMonotonicityList = new ArrayList<>();
extraSelectItems(
bb,
select,
exprs,
fieldNames,
aliases,
columnMonotonicityList);
// Project select clause.
int i = -1;
for (SqlNode expr : selectList) {
++i;
exprs.add(bb.convertExpression(expr));
fieldNames.add(deriveAlias(expr, aliases, i));
}
// Project extra fields for sorting.
for (SqlNode expr : orderList) {
++i;
SqlNode expr2 = validator.expandOrderExpr(select, expr);
exprs.add(bb.convertExpression(expr2));
fieldNames.add(deriveAlias(expr, aliases, i));
}
fieldNames = SqlValidatorUtil.uniquify(fieldNames, catalogReader.isCaseSensitive());
bb.setRoot(
RelOptUtil.createProject(bb.root, exprs, fieldNames),
false);
assert bb.columnMonotonicities.isEmpty();
bb.columnMonotonicities.addAll(columnMonotonicityList);
for (SqlNode selectItem : selectList) {
bb.columnMonotonicities.add(
selectItem.getMonotonicity(bb.scope));
}
}
/**
* Adds extra select items. The default implementation adds nothing; derived
* classes may add columns to exprList, nameList, aliasList and
* columnMonotonicityList.
*
* @param bb Blackboard
* @param select Select statement being translated
* @param exprList List of expressions in select clause
* @param nameList List of names, one per column
* @param aliasList Collection of aliases that have been used
* already
* @param columnMonotonicityList List of monotonicity, one per column
*/
protected void extraSelectItems(
Blackboard bb,
SqlSelect select,
List<RexNode> exprList,
List<String> nameList,
Collection<String> aliasList,
List<SqlMonotonicity> columnMonotonicityList) {
}
private String deriveAlias(
final SqlNode node,
Collection<String> aliases,
final int ordinal) {
String alias = validator.deriveAlias(node, ordinal);
if ((alias == null) || aliases.contains(alias)) {
String aliasBase = (alias == null) ? "EXPR$" : alias;
for (int j = 0;; j++) {
alias = aliasBase + j;
if (!aliases.contains(alias)) {
break;
}
}
}
aliases.add(alias);
return alias;
}
/**
* Converts a WITH sub-query into a relational expression.
*/
public RelRoot convertWith(SqlWith with, boolean top) {
return convertQuery(with.body, false, top);
}
/**
* Converts a SELECT statement's parse tree into a relational expression.
*/
public RelNode convertValues(
SqlCall values,
RelDataType targetRowType) {
final SqlValidatorScope scope = validator.getOverScope(values);
assert scope != null;
final Blackboard bb = createBlackboard(scope, null, false);
convertValuesImpl(bb, values, targetRowType);
return bb.root;
}
/**
* Converts a values clause (as in "INSERT INTO T(x,y) VALUES (1,2)") into a
* relational expression.
*
* @param bb Blackboard
* @param values Call to SQL VALUES operator
* @param targetRowType Target row type
*/
private void convertValuesImpl(
Blackboard bb,
SqlCall values,
RelDataType targetRowType) {
// Attempt direct conversion to LogicalValues; if that fails, deal with
// fancy stuff like subqueries below.
RelNode valuesRel =
convertRowValues(
bb,
values,
values.getOperandList(),
true,
targetRowType);
if (valuesRel != null) {
bb.setRoot(valuesRel, true);
return;
}
final List<RelNode> unionRels = new ArrayList<>();
for (SqlNode rowConstructor1 : values.getOperandList()) {
SqlCall rowConstructor = (SqlCall) rowConstructor1;
Blackboard tmpBb = createBlackboard(bb.scope, null, false);
replaceSubqueries(tmpBb, rowConstructor,
RelOptUtil.Logic.TRUE_FALSE_UNKNOWN);
final List<Pair<RexNode, String>> exps = new ArrayList<>();
for (Ord<SqlNode> operand : Ord.zip(rowConstructor.getOperandList())) {
exps.add(
Pair.of(
tmpBb.convertExpression(operand.e),
validator.deriveAlias(operand.e, operand.i)));
}
RelNode in =
(null == tmpBb.root)
? LogicalValues.createOneRow(cluster)
: tmpBb.root;
unionRels.add(
RelOptUtil.createProject(
in,
Pair.left(exps),
Pair.right(exps),
true));
}
if (unionRels.size() == 0) {
throw Util.newInternal("empty values clause");
} else if (unionRels.size() == 1) {
bb.setRoot(
unionRels.get(0),
true);
} else {
bb.setRoot(
LogicalUnion.create(unionRels, true),
true);
}
// REVIEW jvs 22-Jan-2004: should I add
// mapScopeToLux.put(validator.getScope(values),bb.root);
// ?
}
//~ Inner Classes ----------------------------------------------------------
/**
* Workspace for translating an individual SELECT statement (or sub-SELECT).
*/
protected class Blackboard implements SqlRexContext, SqlVisitor<RexNode> {
/**
* Collection of {@link RelNode} objects which correspond to a SELECT
* statement.
*/
public final SqlValidatorScope scope;
private final Map<String, RexNode> nameToNodeMap;
public RelNode root;
private List<RelNode> inputs;
private final Map<CorrelationId, RexFieldAccess> mapCorrelateToRex =
new HashMap<>();
final List<RelNode> cursors = new ArrayList<>();
/**
* List of <code>IN</code> and <code>EXISTS</code> nodes inside this
* <code>SELECT</code> statement (but not inside sub-queries).
*/
private final Set<SubQuery> subqueryList = Sets.newLinkedHashSet();
private boolean subqueryNeedsOuterJoin;
/**
* Workspace for building aggregates.
*/
AggConverter agg;
/**
* When converting window aggregate, we need to know if the window is
* guaranteed to be non-empty.
*/
SqlWindow window;
/**
* Project the groupby expressions out of the root of this sub-select.
* Subqueries can reference group by expressions projected from the
* "right" to the subquery.
*/
private final Map<RelNode, Map<Integer, Integer>>
mapRootRelToFieldProjection = new HashMap<>();
private final List<SqlMonotonicity> columnMonotonicities =
new ArrayList<>();
private final List<RelDataTypeField> systemFieldList = new ArrayList<>();
final boolean top;
/**
* Creates a Blackboard.
*
* @param scope Name-resolution scope for expressions validated
* within this query. Can be null if this Blackboard is
* for a leaf node, say
* @param nameToNodeMap Map which translates the expression to map a
* given parameter into, if translating expressions;
* null otherwise
* @param top Whether this is the root of the query
*/
protected Blackboard(SqlValidatorScope scope,
Map<String, RexNode> nameToNodeMap, boolean top) {
this.scope = scope;
this.nameToNodeMap = nameToNodeMap;
this.top = top;
subqueryNeedsOuterJoin = false;
}
public RexNode register(
RelNode rel,
JoinRelType joinType) {
return register(rel, joinType, null);
}
/**
* Registers a relational expression.
*
* @param rel Relational expression
* @param joinType Join type
* @param leftKeys LHS of IN clause, or null for expressions
* other than IN
* @return Expression with which to refer to the row (or partial row)
* coming from this relational expression's side of the join
*/
public RexNode register(
RelNode rel,
JoinRelType joinType,
List<RexNode> leftKeys) {
assert joinType != null;
if (root == null) {
assert leftKeys == null;
setRoot(rel, false);
return rexBuilder.makeRangeReference(
root.getRowType(),
0,
false);
}
final RexNode joinCond;
final int origLeftInputCount = root.getRowType().getFieldCount();
if (leftKeys != null) {
List<RexNode> newLeftInputExpr = Lists.newArrayList();
for (int i = 0; i < origLeftInputCount; i++) {
newLeftInputExpr.add(rexBuilder.makeInputRef(root, i));
}
final List<Integer> leftJoinKeys = Lists.newArrayList();
for (RexNode leftKey : leftKeys) {
int index = newLeftInputExpr.indexOf(leftKey);
if (index < 0 || joinType == JoinRelType.LEFT) {
index = newLeftInputExpr.size();
newLeftInputExpr.add(leftKey);
}
leftJoinKeys.add(index);
}
RelNode newLeftInput =
RelOptUtil.createProject(
root,
newLeftInputExpr,
null,
true);
// maintain the group by mapping in the new LogicalProject
if (mapRootRelToFieldProjection.containsKey(root)) {
mapRootRelToFieldProjection.put(
newLeftInput,
mapRootRelToFieldProjection.get(root));
}
setRoot(newLeftInput, false);
// right fields appear after the LHS fields.
final int rightOffset = root.getRowType().getFieldCount()
- newLeftInput.getRowType().getFieldCount();
final List<Integer> rightKeys =
Util.range(rightOffset, rightOffset + leftKeys.size());
joinCond =
RelOptUtil.createEquiJoinCondition(newLeftInput, leftJoinKeys,
rel, rightKeys, rexBuilder);
} else {
joinCond = rexBuilder.makeLiteral(true);
}
int leftFieldCount = root.getRowType().getFieldCount();
final RelNode join =
createJoin(
this,
root,
rel,
joinCond,
joinType);
setRoot(join, false);
if (leftKeys != null
&& joinType == JoinRelType.LEFT) {
final int leftKeyCount = leftKeys.size();
int rightFieldLength = rel.getRowType().getFieldCount();
assert leftKeyCount == rightFieldLength - 1;
final int rexRangeRefLength = leftKeyCount + rightFieldLength;
RelDataType returnType =
typeFactory.createStructType(
new AbstractList<Map.Entry<String, RelDataType>>() {
public Map.Entry<String, RelDataType> get(
int index) {
return join.getRowType().getFieldList()
.get(origLeftInputCount + index);
}
public int size() {
return rexRangeRefLength;
}
});
return rexBuilder.makeRangeReference(
returnType,
origLeftInputCount,
false);
} else {
return rexBuilder.makeRangeReference(
rel.getRowType(),
leftFieldCount,
joinType.generatesNullsOnRight());
}
}
/**
* Sets a new root relational expression, as the translation process
* backs its way further up the tree.
*
* @param root New root relational expression
* @param leaf Whether the relational expression is a leaf, that is,
* derived from an atomic relational expression such as a table
* name in the from clause, or the projection on top of a
* select-subquery. In particular, relational expressions
* derived from JOIN operators are not leaves, but set
* expressions are.
*/
public void setRoot(RelNode root, boolean leaf) {
setRoot(
Collections.singletonList(root), root, root instanceof LogicalJoin);
if (leaf) {
leaves.add(root);
}
this.columnMonotonicities.clear();
}
private void setRoot(
List<RelNode> inputs,
RelNode root,
boolean hasSystemFields) {
this.inputs = inputs;
this.root = root;
this.systemFieldList.clear();
if (hasSystemFields) {
this.systemFieldList.addAll(getSystemFields());
}
}
/**
* Notifies this Blackboard that the root just set using
* {@link #setRoot(RelNode, boolean)} was derived using dataset
* substitution.
*
* <p>The default implementation is not interested in such
* notifications, and does nothing.
*
* @param datasetName Dataset name
*/
public void setDataset(String datasetName) {
}
void setRoot(List<RelNode> inputs) {
setRoot(inputs, null, false);
}
/**
* Returns an expression with which to reference a from-list item.
*
* @param qualified the alias of the from item
* @return a {@link RexFieldAccess} or {@link RexRangeRef}, or null if
* not found
*/
Pair<RexNode, Map<String, Integer>> lookupExp(SqlQualified qualified) {
if (nameToNodeMap != null && qualified.prefixLength == 1) {
RexNode node = nameToNodeMap.get(qualified.identifier.names.get(0));
if (node == null) {
throw Util.newInternal("Unknown identifier '" + qualified.identifier
+ "' encountered while expanding expression");
}
return Pair.of(node, null);
}
int[] offsets = {-1};
final SqlValidatorScope[] ancestorScopes = {null};
SqlValidatorNamespace foundNs =
scope.resolve(qualified.prefix(), ancestorScopes, offsets);
if (foundNs == null) {
return null;
}
// Found in current query's from list. Find which from item.
// We assume that the order of the from clause items has been
// preserved.
SqlValidatorScope ancestorScope = ancestorScopes[0];
boolean isParent = ancestorScope != scope;
if ((inputs != null) && !isParent) {
int offset = offsets[0];
final LookupContext rels =
new LookupContext(this, inputs, systemFieldList.size());
final RexNode node = lookup(offset, rels);
if (node == null) {
return null;
} else {
return Pair.of(node, null);
}
} else {
// We're referencing a relational expression which has not been
// converted yet. This occurs when from items are correlated,
// e.g. "select from emp as emp join emp.getDepts() as dept".
// Create a temporary expression.
DeferredLookup lookup =
new DeferredLookup(this, qualified.identifier.names.get(0));
final CorrelationId correlId = cluster.createCorrel();
mapCorrelToDeferred.put(correlId, lookup);
if (offsets[0] < 0) {
return Pair.of(rexBuilder.makeCorrel(foundNs.getRowType(), correlId),
null);
} else {
final RelDataTypeFactory.FieldInfoBuilder builder =
typeFactory.builder();
final ListScope ancestorScope1 = (ListScope) ancestorScopes[0];
final ImmutableMap.Builder<String, Integer> fields =
ImmutableMap.builder();
int i = 0;
int offset = 0;
for (SqlValidatorNamespace c : ancestorScope1.getChildren()) {
builder.addAll(c.getRowType().getFieldList());
if (i == offsets[0]) {
for (RelDataTypeField field : c.getRowType().getFieldList()) {
fields.put(field.getName(), field.getIndex() + offset);
}
}
++i;
offset += c.getRowType().getFieldCount();
}
final RexNode c =
rexBuilder.makeCorrel(builder.uniquify().build(), correlId);
return Pair.<RexNode, Map<String, Integer>>of(c, fields.build());
}
}
}
/**
* Creates an expression with which to reference the expression whose
* offset in its from-list is {@code offset}.
*/
RexNode lookup(
int offset,
LookupContext lookupContext) {
Pair<RelNode, Integer> pair = lookupContext.findRel(offset);
return rexBuilder.makeRangeReference(
pair.left.getRowType(),
pair.right,
false);
}
RelDataTypeField getRootField(RexInputRef inputRef) {
int fieldOffset = inputRef.getIndex();
for (RelNode input : inputs) {
RelDataType rowType = input.getRowType();
if (rowType == null) {
// TODO: remove this once leastRestrictive
// is correctly implemented
return null;
}
if (fieldOffset < rowType.getFieldCount()) {
return rowType.getFieldList().get(fieldOffset);
}
fieldOffset -= rowType.getFieldCount();
}
throw new AssertionError();
}
public void flatten(
List<RelNode> rels,
int systemFieldCount,
int[] start,
List<Pair<RelNode, Integer>> relOffsetList) {
for (RelNode rel : rels) {
if (leaves.contains(rel)) {
relOffsetList.add(
Pair.of(rel, start[0]));
start[0] += rel.getRowType().getFieldCount();
} else {
if (rel instanceof LogicalJoin
|| rel instanceof LogicalAggregate) {
start[0] += systemFieldCount;
}
flatten(
rel.getInputs(),
systemFieldCount,
start,
relOffsetList);
}
}
}
void registerSubquery(SqlNode node, RelOptUtil.Logic logic) {
for (SubQuery subQuery : subqueryList) {
if (node.equalsDeep(subQuery.node, Litmus.IGNORE)) {
return;
}
}
subqueryList.add(new SubQuery(node, logic));
}
SubQuery getSubquery(SqlNode expr) {
for (SubQuery subQuery : subqueryList) {
if (expr.equalsDeep(subQuery.node, Litmus.IGNORE)) {
return subQuery;
}
}
return null;
}
ImmutableList<RelNode> retrieveCursors() {
try {
return ImmutableList.copyOf(cursors);
} finally {
cursors.clear();
}
}
public RexNode convertExpression(SqlNode expr) {
// If we're in aggregation mode and this is an expression in the
// GROUP BY clause, return a reference to the field.
if (agg != null) {
final SqlNode expandedGroupExpr = validator.expand(expr, scope);
final int ref = agg.lookupGroupExpr(expandedGroupExpr);
if (ref >= 0) {
return rexBuilder.makeInputRef(root, ref);
}
if (expr instanceof SqlCall) {
final RexNode rex = agg.lookupAggregates((SqlCall) expr);
if (rex != null) {
return rex;
}
}
}
// Allow the derived class chance to override the standard
// behavior for special kinds of expressions.
RexNode rex = convertExtendedExpression(expr, this);
if (rex != null) {
return rex;
}
// Sub-queries and OVER expressions are not like ordinary
// expressions.
final SqlKind kind = expr.getKind();
final SubQuery subQuery;
if (!expand) {
final SqlCall call;
final SqlNode query;
final RelRoot root;
switch (kind) {
case IN:
call = (SqlCall) expr;
query = call.operand(1);
if (!(query instanceof SqlNodeList)) {
final SqlInOperator op = (SqlInOperator) call.getOperator();
root = convertQueryRecursive(query, false, null);
final SqlNode operand = call.operand(0);
List<SqlNode> nodes;
switch (operand.getKind()) {
case ROW:
nodes = ((SqlCall) operand).getOperandList();
break;
default:
nodes = ImmutableList.of(operand);
}
final ImmutableList.Builder<RexNode> builder =
ImmutableList.builder();
for (SqlNode node : nodes) {
builder.add(convertExpression(node));
}
final RexSubQuery in = RexSubQuery.in(root.rel, builder.build());
return op.isNotIn()
? rexBuilder.makeCall(SqlStdOperatorTable.NOT, in)
: in;
}
break;
case EXISTS:
call = (SqlCall) expr;
query = Iterables.getOnlyElement(call.getOperandList());
root = convertQueryRecursive(query, false, null);
RelNode rel = root.rel;
while (rel instanceof Project
|| rel instanceof Sort
&& ((Sort) rel).fetch == null
&& ((Sort) rel).offset == null) {
rel = ((SingleRel) rel).getInput();
}
return RexSubQuery.exists(rel);
case SCALAR_QUERY:
call = (SqlCall) expr;
query = Iterables.getOnlyElement(call.getOperandList());
root = convertQueryRecursive(query, false, null);
return RexSubQuery.scalar(root.rel);
}
}
switch (kind) {
case CURSOR:
case IN:
subQuery = getSubquery(expr);
assert subQuery != null;
rex = subQuery.expr;
assert rex != null : "rex != null";
return rex;
case SELECT:
case EXISTS:
case SCALAR_QUERY:
subQuery = getSubquery(expr);
assert subQuery != null;
rex = subQuery.expr;
assert rex != null : "rex != null";
if (((kind == SqlKind.SCALAR_QUERY)
|| (kind == SqlKind.EXISTS))
&& isConvertedSubq(rex)) {
// scalar subquery or EXISTS has been converted to a
// constant
return rex;
}
// The indicator column is the last field of the subquery.
RexNode fieldAccess =
rexBuilder.makeFieldAccess(
rex,
rex.getType().getFieldCount() - 1);
// The indicator column will be nullable if it comes from
// the null-generating side of the join. For EXISTS, add an
// "IS TRUE" check so that the result is "BOOLEAN NOT NULL".
if (fieldAccess.getType().isNullable()
&& kind == SqlKind.EXISTS) {
fieldAccess =
rexBuilder.makeCall(
SqlStdOperatorTable.IS_NOT_NULL,
fieldAccess);
}
return fieldAccess;
case OVER:
return convertOver(this, expr);
default:
// fall through
}
// Apply standard conversions.
rex = expr.accept(this);
Util.permAssert(rex != null, "conversion result not null");
return rex;
}
/**
* Converts an item in an ORDER BY clause, extracting DESC, NULLS LAST
* and NULLS FIRST flags first.
*/
public RexNode convertSortExpression(SqlNode expr, Set<SqlKind> flags) {
switch (expr.getKind()) {
case DESCENDING:
case NULLS_LAST:
case NULLS_FIRST:
flags.add(expr.getKind());
final SqlNode operand = ((SqlCall) expr).operand(0);
return convertSortExpression(operand, flags);
default:
return convertExpression(expr);
}
}
/**
* Determines whether a RexNode corresponds to a subquery that's been
* converted to a constant.
*
* @param rex the expression to be examined
* @return true if the expression is a dynamic parameter, a literal, or
* a literal that is being cast
*/
private boolean isConvertedSubq(RexNode rex) {
if ((rex instanceof RexLiteral)
|| (rex instanceof RexDynamicParam)) {
return true;
}
if (rex instanceof RexCall) {
RexCall call = (RexCall) rex;
if (call.getOperator() == SqlStdOperatorTable.CAST) {
RexNode operand = call.getOperands().get(0);
if (operand instanceof RexLiteral) {
return true;
}
}
}
return false;
}
// implement SqlRexContext
public int getGroupCount() {
if (agg != null) {
return agg.groupExprs.size();
}
if (window != null) {
return window.isAlwaysNonEmpty() ? 1 : 0;
}
return -1;
}
// implement SqlRexContext
public RexBuilder getRexBuilder() {
return rexBuilder;
}
// implement SqlRexContext
public RexRangeRef getSubqueryExpr(SqlCall call) {
final SubQuery subQuery = getSubquery(call);
assert subQuery != null;
return (RexRangeRef) subQuery.expr;
}
// implement SqlRexContext
public RelDataTypeFactory getTypeFactory() {
return typeFactory;
}
// implement SqlRexContext
public DefaultValueFactory getDefaultValueFactory() {
return defaultValueFactory;
}
// implement SqlRexContext
public SqlValidator getValidator() {
return validator;
}
// implement SqlRexContext
public RexNode convertLiteral(SqlLiteral literal) {
return exprConverter.convertLiteral(this, literal);
}
public RexNode convertInterval(SqlIntervalQualifier intervalQualifier) {
return exprConverter.convertInterval(this, intervalQualifier);
}
// implement SqlVisitor
public RexNode visit(SqlLiteral literal) {
return exprConverter.convertLiteral(this, literal);
}
// implement SqlVisitor
public RexNode visit(SqlCall call) {
if (agg != null) {
final SqlOperator op = call.getOperator();
if (window == null
&& (op.isAggregator() || op.getKind() == SqlKind.FILTER)) {
return agg.lookupAggregates(call);
}
}
return exprConverter.convertCall(this,
new SqlCallBinding(validator, scope, call).permutedCall());
}
// implement SqlVisitor
public RexNode visit(SqlNodeList nodeList) {
throw new UnsupportedOperationException();
}
// implement SqlVisitor
public RexNode visit(SqlIdentifier id) {
return convertIdentifier(this, id);
}
// implement SqlVisitor
public RexNode visit(SqlDataTypeSpec type) {
throw new UnsupportedOperationException();
}
// implement SqlVisitor
public RexNode visit(SqlDynamicParam param) {
return convertDynamicParam(param);
}
// implement SqlVisitor
public RexNode visit(SqlIntervalQualifier intervalQualifier) {
return convertInterval(intervalQualifier);
}
public List<SqlMonotonicity> getColumnMonotonicities() {
return columnMonotonicities;
}
}
/** Deferred lookup. */
private static class DeferredLookup {
Blackboard bb;
String originalRelName;
DeferredLookup(
Blackboard bb,
String originalRelName) {
this.bb = bb;
this.originalRelName = originalRelName;
}
public RexFieldAccess getFieldAccess(CorrelationId name) {
return (RexFieldAccess) bb.mapCorrelateToRex.get(name);
}
public String getOriginalRelName() {
return originalRelName;
}
}
/**
* An implementation of DefaultValueFactory which always supplies NULL.
*/
class NullDefaultValueFactory implements DefaultValueFactory {
public boolean isGeneratedAlways(
RelOptTable table,
int iColumn) {
return false;
}
public RexNode newColumnDefaultValue(
RelOptTable table,
int iColumn) {
return rexBuilder.constantNull();
}
public RexNode newAttributeInitializer(
RelDataType type,
SqlFunction constructor,
int iAttribute,
List<RexNode> constructorArgs) {
return rexBuilder.constantNull();
}
}
/**
* A default implementation of SubqueryConverter that does no conversion.
*/
private class NoOpSubqueryConverter implements SubqueryConverter {
// implement SubqueryConverter
public boolean canConvertSubquery() {
return false;
}
// implement SubqueryConverter
public RexNode convertSubquery(
SqlCall subquery,
SqlToRelConverter parentConverter,
boolean isExists,
boolean isExplain) {
throw new IllegalArgumentException();
}
}
/**
* Converts expressions to aggregates.
*
* <p>Consider the expression
*
* <blockquote>
* {@code SELECT deptno, SUM(2 * sal) FROM emp GROUP BY deptno}
* </blockquote>
*
* <p>Then:
*
* <ul>
* <li>groupExprs = {SqlIdentifier(deptno)}</li>
* <li>convertedInputExprs = {RexInputRef(deptno), 2 *
* RefInputRef(sal)}</li>
* <li>inputRefs = {RefInputRef(#0), RexInputRef(#1)}</li>
* <li>aggCalls = {AggCall(SUM, {1})}</li>
* </ul>
*/
protected class AggConverter implements SqlVisitor<Void> {
private final Blackboard bb;
public final AggregatingSelectScope aggregatingSelectScope;
private final Map<String, String> nameMap = Maps.newHashMap();
/**
* The group-by expressions, in {@link SqlNode} format.
*/
private final SqlNodeList groupExprs =
new SqlNodeList(SqlParserPos.ZERO);
/**
* Input expressions for the group columns and aggregates, in
* {@link RexNode} format. The first elements of the list correspond to the
* elements in {@link #groupExprs}; the remaining elements are for
* aggregates.
*/
private final List<RexNode> convertedInputExprs = Lists.newArrayList();
/**
* Names of {@link #convertedInputExprs}, where the expressions are
* simple mappings to input fields.
*/
private final List<String> convertedInputExprNames = Lists.newArrayList();
private final List<AggregateCall> aggCalls = Lists.newArrayList();
private final Map<SqlNode, RexNode> aggMapping = Maps.newHashMap();
private final Map<AggregateCall, RexNode> aggCallMapping =
Maps.newHashMap();
/** Are we directly inside a windowed aggregate? */
private boolean inOver = false;
/**
* Creates an AggConverter.
*
* <p>The <code>select</code> parameter provides enough context to name
* aggregate calls which are top-level select list items.
*
* @param bb Blackboard
* @param select Query being translated; provides context to give
*/
public AggConverter(Blackboard bb, SqlSelect select) {
this.bb = bb;
this.aggregatingSelectScope =
(AggregatingSelectScope) bb.getValidator().getSelectScope(select);
// Collect all expressions used in the select list so that aggregate
// calls can be named correctly.
final SqlNodeList selectList = select.getSelectList();
for (int i = 0; i < selectList.size(); i++) {
SqlNode selectItem = selectList.get(i);
String name = null;
if (SqlUtil.isCallTo(
selectItem,
SqlStdOperatorTable.AS)) {
final SqlCall call = (SqlCall) selectItem;
selectItem = call.operand(0);
name = call.operand(1).toString();
}
if (name == null) {
name = validator.deriveAlias(selectItem, i);
}
nameMap.put(selectItem.toString(), name);
}
}
public int addGroupExpr(SqlNode expr) {
RexNode convExpr = bb.convertExpression(expr);
int ref = lookupGroupExpr(expr);
if (ref >= 0) {
return ref;
}
final int index = groupExprs.size();
groupExprs.add(expr);
String name = nameMap.get(expr.toString());
addExpr(convExpr, name);
return index;
}
/**
* Adds an expression, deducing an appropriate name if possible.
*
* @param expr Expression
* @param name Suggested name
*/
private void addExpr(RexNode expr, String name) {
convertedInputExprs.add(expr);
if ((name == null) && (expr instanceof RexInputRef)) {
final int i = ((RexInputRef) expr).getIndex();
name = bb.root.getRowType().getFieldList().get(i).getName();
}
if (convertedInputExprNames.contains(name)) {
// In case like 'SELECT ... GROUP BY x, y, x', don't add
// name 'x' twice.
name = null;
}
convertedInputExprNames.add(name);
}
public Void visit(SqlIdentifier id) {
return null;
}
public Void visit(SqlNodeList nodeList) {
for (int i = 0; i < nodeList.size(); i++) {
nodeList.get(i).accept(this);
}
return null;
}
public Void visit(SqlLiteral lit) {
return null;
}
public Void visit(SqlDataTypeSpec type) {
return null;
}
public Void visit(SqlDynamicParam param) {
return null;
}
public Void visit(SqlIntervalQualifier intervalQualifier) {
return null;
}
public Void visit(SqlCall call) {
switch (call.getKind()) {
case FILTER:
translateAgg((SqlCall) call.operand(0), call.operand(1), call);
return null;
case SELECT:
// rchen 2006-10-17:
// for now do not detect aggregates in subqueries.
return null;
}
final boolean prevInOver = inOver;
// Ignore window aggregates and ranking functions (associated with OVER
// operator). However, do not ignore nested window aggregates.
if (call.getOperator().getKind() == SqlKind.OVER) {
if (call.operand(0).getKind() == SqlKind.RANK) {
return null;
}
// Track aggregate nesting levels only within an OVER operator.
inOver = true;
}
// Do not translate the top level window aggregate. Only do so for
// nested aggregates, if present
if (call.getOperator().isAggregator()) {
if (inOver) {
// Add the parent aggregate level before visiting its children
inOver = false;
} else {
// We're beyond the one ignored level
translateAgg(call, null, call);
return null;
}
}
for (SqlNode operand : call.getOperandList()) {
// Operands are occasionally null, e.g. switched CASE arg 0.
if (operand != null) {
operand.accept(this);
}
}
// Remove the parent aggregate level after visiting its children
inOver = prevInOver;
return null;
}
private void translateAgg(SqlCall call, SqlNode filter, SqlCall outerCall) {
assert bb.agg == this;
final List<Integer> args = new ArrayList<>();
int filterArg = -1;
final List<RelDataType> argTypes =
call.getOperator() instanceof SqlCountAggFunction
? new ArrayList<RelDataType>(call.getOperandList().size())
: null;
try {
// switch out of agg mode
bb.agg = null;
for (SqlNode operand : call.getOperandList()) {
// special case for COUNT(*): delete the *
if (operand instanceof SqlIdentifier) {
SqlIdentifier id = (SqlIdentifier) operand;
if (id.isStar()) {
assert call.operandCount() == 1;
assert args.isEmpty();
break;
}
}
RexNode convertedExpr = bb.convertExpression(operand);
assert convertedExpr != null;
if (argTypes != null) {
argTypes.add(convertedExpr.getType());
}
args.add(lookupOrCreateGroupExpr(convertedExpr));
}
if (filter != null) {
RexNode convertedExpr = bb.convertExpression(filter);
assert convertedExpr != null;
if (convertedExpr.getType().isNullable()) {
convertedExpr =
rexBuilder.makeCall(SqlStdOperatorTable.IS_TRUE, convertedExpr);
}
filterArg = lookupOrCreateGroupExpr(convertedExpr);
}
} finally {
// switch back into agg mode
bb.agg = this;
}
final SqlAggFunction aggFunction =
(SqlAggFunction) call.getOperator();
RelDataType type = validator.deriveType(bb.scope, call);
boolean distinct = false;
SqlLiteral quantifier = call.getFunctionQuantifier();
if ((null != quantifier)
&& (quantifier.getValue() == SqlSelectKeyword.DISTINCT)) {
distinct = true;
}
final AggregateCall aggCall =
AggregateCall.create(
aggFunction,
distinct,
args,
filterArg,
type,
nameMap.get(outerCall.toString()));
final AggregatingSelectScope.Resolved r =
aggregatingSelectScope.resolved.get();
RexNode rex =
rexBuilder.addAggCall(
aggCall,
groupExprs.size(),
r.indicator,
aggCalls,
aggCallMapping,
argTypes);
aggMapping.put(outerCall, rex);
}
private int lookupOrCreateGroupExpr(RexNode expr) {
for (int i = 0; i < convertedInputExprs.size(); i++) {
RexNode convertedInputExpr = convertedInputExprs.get(i);
if (expr.toString().equals(convertedInputExpr.toString())) {
return i;
}
}
// not found -- add it
int index = convertedInputExprs.size();
addExpr(expr, null);
return index;
}
/**
* If an expression is structurally identical to one of the group-by
* expressions, returns a reference to the expression, otherwise returns
* null.
*/
public int lookupGroupExpr(SqlNode expr) {
for (int i = 0; i < groupExprs.size(); i++) {
SqlNode groupExpr = groupExprs.get(i);
if (expr.equalsDeep(groupExpr, Litmus.IGNORE)) {
return i;
}
}
return -1;
}
public RexNode lookupAggregates(SqlCall call) {
// assert call.getOperator().isAggregator();
assert bb.agg == this;
switch (call.getKind()) {
case GROUPING:
case GROUPING_ID:
case GROUP_ID:
final RelDataType type = validator.getValidatedNodeType(call);
if (!aggregatingSelectScope.resolved.get().indicator) {
return rexBuilder.makeExactLiteral(
TWO.pow(effectiveArgCount(call)).subtract(BigDecimal.ONE), type);
} else {
final List<Integer> operands;
switch (call.getKind()) {
case GROUP_ID:
operands = ImmutableIntList.range(0, groupExprs.size());
break;
default:
operands = Lists.newArrayList();
for (SqlNode operand : call.getOperandList()) {
final int x = lookupGroupExpr(operand);
assert x >= 0;
operands.add(x);
}
}
RexNode node = null;
int shift = operands.size();
for (int operand : operands) {
node = bitValue(node, type, operand, --shift);
}
return node;
}
}
return aggMapping.get(call);
}
private int effectiveArgCount(SqlCall call) {
switch (call.getKind()) {
case GROUPING:
return 1;
case GROUPING_ID:
return call.operandCount();
case GROUP_ID:
return groupExprs.size();
default:
throw new AssertionError(call.getKind());
}
}
private RexNode bitValue(RexNode previous, RelDataType type, int x,
int shift) {
final AggregatingSelectScope.Resolved r =
aggregatingSelectScope.resolved.get();
RexNode node = rexBuilder.makeCall(SqlStdOperatorTable.CASE,
rexBuilder.makeInputRef(bb.root, r.groupExprList.size() + x),
rexBuilder.makeExactLiteral(BigDecimal.ONE, type),
rexBuilder.makeExactLiteral(BigDecimal.ZERO, type));
if (shift > 0) {
node = rexBuilder.makeCall(SqlStdOperatorTable.MULTIPLY, node,
rexBuilder.makeExactLiteral(TWO.pow(shift), type));
}
if (previous != null) {
node = rexBuilder.makeCall(SqlStdOperatorTable.PLUS, previous, node);
}
return node;
}
public List<RexNode> getPreExprs() {
return convertedInputExprs;
}
public List<String> getPreNames() {
return convertedInputExprNames;
}
public List<AggregateCall> getAggCalls() {
return aggCalls;
}
public RelDataTypeFactory getTypeFactory() {
return typeFactory;
}
}
/**
* Context to find a relational expression to a field offset.
*/
private static class LookupContext {
private final List<Pair<RelNode, Integer>> relOffsetList =
new ArrayList<>();
/**
* Creates a LookupContext with multiple input relational expressions.
*
* @param bb Context for translating this subquery
* @param rels Relational expressions
* @param systemFieldCount Number of system fields
*/
LookupContext(Blackboard bb, List<RelNode> rels, int systemFieldCount) {
bb.flatten(rels, systemFieldCount, new int[]{0}, relOffsetList);
}
/**
* Returns the relational expression with a given offset, and the
* ordinal in the combined row of its first field.
*
* <p>For example, in {@code Emp JOIN Dept}, findRel(1) returns the
* relational expression for {@code Dept} and offset 6 (because
* {@code Emp} has 6 fields, therefore the first field of {@code Dept}
* is field 6.
*
* @param offset Offset of relational expression in FROM clause
* @return Relational expression and the ordinal of its first field
*/
Pair<RelNode, Integer> findRel(int offset) {
return relOffsetList.get(offset);
}
}
/**
* Shuttle which walks over a tree of {@link RexNode}s and applies 'over' to
* all agg functions.
*
* <p>This is necessary because the returned expression is not necessarily a
* call to an agg function. For example,
*
* <blockquote><code>AVG(x)</code></blockquote>
*
* becomes
*
* <blockquote><code>SUM(x) / COUNT(x)</code></blockquote>
*
* <p>Any aggregate functions are converted to calls to the internal <code>
* $Histogram</code> aggregation function and accessors such as <code>
* $HistogramMin</code>; for example,
*
* <blockquote><code>MIN(x), MAX(x)</code></blockquote>
*
* are converted to
*
* <blockquote><code>$HistogramMin($Histogram(x)),
* $HistogramMax($Histogram(x))</code></blockquote>
*
* Common sub-expression elmination will ensure that only one histogram is
* computed.
*/
private class HistogramShuttle extends RexShuttle {
/**
* Whether to convert calls to MIN(x) to HISTOGRAM_MIN(HISTOGRAM(x)).
* Histograms allow rolling computation, but require more space.
*/
static final boolean ENABLE_HISTOGRAM_AGG = false;
private final List<RexNode> partitionKeys;
private final ImmutableList<RexFieldCollation> orderKeys;
private final RexWindowBound lowerBound;
private final RexWindowBound upperBound;
private final SqlWindow window;
HistogramShuttle(
List<RexNode> partitionKeys,
ImmutableList<RexFieldCollation> orderKeys,
RexWindowBound lowerBound, RexWindowBound upperBound,
SqlWindow window) {
this.partitionKeys = partitionKeys;
this.orderKeys = orderKeys;
this.lowerBound = lowerBound;
this.upperBound = upperBound;
this.window = window;
}
public RexNode visitCall(RexCall call) {
final SqlOperator op = call.getOperator();
if (!(op instanceof SqlAggFunction)) {
return super.visitCall(call);
}
final SqlAggFunction aggOp = (SqlAggFunction) op;
final RelDataType type = call.getType();
List<RexNode> exprs = call.getOperands();
SqlFunction histogramOp = !ENABLE_HISTOGRAM_AGG
? null
: getHistogramOp(aggOp);
if (histogramOp != null) {
final RelDataType histogramType = computeHistogramType(type);
// For DECIMAL, since it's already represented as a bigint we
// want to do a reinterpretCast instead of a cast to avoid
// losing any precision.
boolean reinterpretCast =
type.getSqlTypeName() == SqlTypeName.DECIMAL;
// Replace original expression with CAST of not one
// of the supported types
if (histogramType != type) {
exprs = new ArrayList<>(exprs);
exprs.set(
0,
reinterpretCast
? rexBuilder.makeReinterpretCast(histogramType, exprs.get(0),
rexBuilder.makeLiteral(false))
: rexBuilder.makeCast(histogramType, exprs.get(0)));
}
RexCallBinding bind =
new RexCallBinding(
rexBuilder.getTypeFactory(),
SqlStdOperatorTable.HISTOGRAM_AGG,
exprs,
ImmutableList.<RelCollation>of());
RexNode over =
rexBuilder.makeOver(
SqlStdOperatorTable.HISTOGRAM_AGG
.inferReturnType(bind),
SqlStdOperatorTable.HISTOGRAM_AGG,
exprs,
partitionKeys,
orderKeys,
lowerBound,
upperBound,
window.isRows(),
window.isAllowPartial(),
false);
RexNode histogramCall =
rexBuilder.makeCall(
histogramType,
histogramOp,
ImmutableList.of(over));
// If needed, post Cast result back to original
// type.
if (histogramType != type) {
if (reinterpretCast) {
histogramCall =
rexBuilder.makeReinterpretCast(
type,
histogramCall,
rexBuilder.makeLiteral(false));
} else {
histogramCall =
rexBuilder.makeCast(type, histogramCall);
}
}
return histogramCall;
} else {
boolean needSum0 = aggOp == SqlStdOperatorTable.SUM
&& type.isNullable();
SqlAggFunction aggOpToUse =
needSum0 ? SqlStdOperatorTable.SUM0
: aggOp;
return rexBuilder.makeOver(
type,
aggOpToUse,
exprs,
partitionKeys,
orderKeys,
lowerBound,
upperBound,
window.isRows(),
window.isAllowPartial(),
needSum0);
}
}
/**
* Returns the histogram operator corresponding to a given aggregate
* function.
*
* <p>For example, <code>getHistogramOp
*({@link SqlStdOperatorTable#MIN}}</code> returns
* {@link SqlStdOperatorTable#HISTOGRAM_MIN}.
*
* @param aggFunction An aggregate function
* @return Its histogram function, or null
*/
SqlFunction getHistogramOp(SqlAggFunction aggFunction) {
if (aggFunction == SqlStdOperatorTable.MIN) {
return SqlStdOperatorTable.HISTOGRAM_MIN;
} else if (aggFunction == SqlStdOperatorTable.MAX) {
return SqlStdOperatorTable.HISTOGRAM_MAX;
} else if (aggFunction == SqlStdOperatorTable.FIRST_VALUE) {
return SqlStdOperatorTable.HISTOGRAM_FIRST_VALUE;
} else if (aggFunction == SqlStdOperatorTable.LAST_VALUE) {
return SqlStdOperatorTable.HISTOGRAM_LAST_VALUE;
} else {
return null;
}
}
/**
* Returns the type for a histogram function. It is either the actual
* type or an an approximation to it.
*/
private RelDataType computeHistogramType(RelDataType type) {
if (SqlTypeUtil.isExactNumeric(type)
&& type.getSqlTypeName() != SqlTypeName.BIGINT) {
return typeFactory.createSqlType(SqlTypeName.BIGINT);
} else if (SqlTypeUtil.isApproximateNumeric(type)
&& type.getSqlTypeName() != SqlTypeName.DOUBLE) {
return typeFactory.createSqlType(SqlTypeName.DOUBLE);
} else {
return type;
}
}
}
/** A sub-query, whether it needs to be translated using 2- or 3-valued
* logic. */
private static class SubQuery {
final SqlNode node;
final RelOptUtil.Logic logic;
RexNode expr;
private SubQuery(SqlNode node, RelOptUtil.Logic logic) {
this.node = node;
this.logic = logic;
}
}
/**
* Visitor that collects all aggregate functions in a {@link SqlNode} tree.
*/
private static class AggregateFinder extends SqlBasicVisitor<Void> {
final SqlNodeList list = new SqlNodeList(SqlParserPos.ZERO);
@Override public Void visit(SqlCall call) {
// ignore window aggregates and ranking functions (associated with OVER operator)
if (call.getOperator().getKind() == SqlKind.OVER) {
return null;
}
if (call.getOperator().isAggregator()) {
list.add(call);
return null;
}
// Don't traverse into sub-queries, even if they contain aggregate
// functions.
if (call instanceof SqlSelect) {
return null;
}
return call.getOperator().acceptCall(this, call);
}
}
/** Use of a row as a correlating variable by a given relational
* expression. */
private static class CorrelationUse {
private final CorrelationId id;
private final ImmutableBitSet requiredColumns;
private final RelNode r;
CorrelationUse(CorrelationId id, ImmutableBitSet requiredColumns,
RelNode r) {
this.id = id;
this.requiredColumns = requiredColumns;
this.r = r;
}
}
}
// End SqlToRelConverter.java