blob: 07654c8a496c5fb86a03f0b365ea47011ab02d39 [file] [log] [blame]
// Copyright (c) 2023 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file is an internal atomic implementation, use butil/atomicops.h instead.
#ifndef BUTIL_ATOMICOPS_INTERNALS_LOONGARCH64_GCC_H_
#define BUTIL_ATOMICOPS_INTERNALS_LOONGARCH64_GCC_H_
#include "butil/atomicops.h"
#include "butil/atomicops_internals_loongarch64_gcc.h"
namespace butil {
namespace subtle {
// 32bit
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 ret;
__asm__ __volatile__("1:\n"
"ll.w %0, %1\n"
"or $t0, %3, $zero\n"
"bne %0, %2, 2f\n"
"sc.w $t0, %1\n"
"beqz $t0, 1b\n"
"2:\n"
"dbar 0\n"
: "=&r" (ret), "+ZB"(*ptr)
: "r" (old_value), "r" (new_value)
: "t0", "memory");
return ret;
}
// Atomically store new_value into *ptr, returning the previous value held in
// *ptr. This routine implies no memory barriers.
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
Atomic32 new_value) {
Atomic32 ret;
__asm__ __volatile__("amswap_db.w %0, %2, %1\n"
: "=&r"(ret), "+ZB"(*ptr)
: "r"(new_value)
: "memory");
return ret;
}
// Atomically increment *ptr by "increment". Returns the new value of
// *ptr with the increment applied. This routine implies no memory barriers.
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
Atomic32 tmp;
__asm__ __volatile__("amadd_db.w %1, %2, %0\n"
: "+ZB"(*ptr), "=&r"(tmp)
: "r"(increment)
: "memory");
return tmp+increment;
}
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
MemoryBarrier();
Atomic32 res = NoBarrier_AtomicIncrement(ptr, increment);
MemoryBarrier();
return res;
}
// "Acquire" operations
// ensure that no later memory access can be reordered ahead of the operation.
// "Release" operations ensure that no previous memory access can be reordered
// after the operation. "Barrier" operations have both "Acquire" and "Release"
// semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory
// access.
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
MemoryBarrier();
return res;
}
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
MemoryBarrier();
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
}
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
MemoryBarrier();
}
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
MemoryBarrier();
*ptr = value;
}
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
return *ptr;
}
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
Atomic32 value = *ptr;
MemoryBarrier();
return value;
}
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
MemoryBarrier();
return *ptr;
}
// 64bit
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 ret;
__asm__ __volatile__("1:\n"
"ll.d %0, %1\n"
"or $t0, %3, $zero\n"
"bne %0, %2, 2f\n"
"sc.d $t0, %1\n"
"beqz $t0, 1b\n"
"2:\n"
"dbar 0\n"
: "=&r" (ret), "+ZB"(*ptr)
: "r" (old_value), "r" (new_value)
: "t0", "memory");
return ret;
}
// Atomically store new_value into *ptr, returning the previous value held in
// *ptr. This routine implies no memory barriers.
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_value) {
Atomic64 ret;
__asm__ __volatile__("amswap_db.d %0, %2, %1\n"
: "=&r"(ret), "+ZB"(*ptr)
: "r"(new_value)
: "memory");
return ret;
}
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 tmp;
__asm__ __volatile__("amadd_db.d %1, %2, %0\n"
: "+ZB"(*ptr), "=&r"(tmp)
: "r"(increment)
: "memory");
return tmp+increment;
}
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
MemoryBarrier();
Atomic64 res = NoBarrier_AtomicIncrement(ptr, increment);
MemoryBarrier();
return res;
}
// "Acquire" operations
// ensure that no later memory access can be reordered ahead of the operation.
// "Release" operations ensure that no previous memory access can be reordered
// after the operation. "Barrier" operations have both "Acquire" and "Release"
// semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory
// access.
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 res = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
MemoryBarrier();
return res;
}
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
MemoryBarrier();
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
}
inline void MemoryBarrier() {
__asm__ __volatile__("dbar 0x0" : : : "memory");
}
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
MemoryBarrier();
}
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
MemoryBarrier();
*ptr = value;
}
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
return *ptr;
}
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
Atomic64 value = *ptr;
MemoryBarrier();
return value;
}
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
MemoryBarrier();
return *ptr;
}
} // namespace butil::subtle
} // namespace butil
#endif // BUTIL_ATOMICOPS_INTERNALS_LOONGARCH64_GCC_H_