blob: 986c741a010216ba4ca049c0f4dd53a6e36e5ac0 [file] [log] [blame]
/**
*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*
*/
package org.apache.bookkeeper.bookie.storage.ldb;
import static org.apache.bookkeeper.bookie.storage.ldb.WriteCache.align64;
import io.netty.buffer.ByteBuf;
import io.netty.buffer.ByteBufAllocator;
import io.netty.buffer.Unpooled;
import java.io.Closeable;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import org.apache.bookkeeper.util.collections.ConcurrentLongLongPairHashMap;
import org.apache.bookkeeper.util.collections.ConcurrentLongLongPairHashMap.LongPair;
/**
* Read cache implementation.
*
* <p>Uses the specified amount of memory and pairs it with a hashmap.
*
* <p>The memory is splitted in multiple segments that are used in a
* ring-buffer fashion. When the read cache is full, the oldest segment
* is cleared and rotated to make space for new entries to be added to
* the read cache.
*/
public class ReadCache implements Closeable {
private static final int DEFAULT_MAX_SEGMENT_SIZE = 1 * 1024 * 1024 * 1024;
private final List<ByteBuf> cacheSegments;
private final List<ConcurrentLongLongPairHashMap> cacheIndexes;
private int currentSegmentIdx;
private final AtomicInteger currentSegmentOffset = new AtomicInteger(0);
private final int segmentSize;
private ByteBufAllocator allocator;
private final ReentrantReadWriteLock lock = new ReentrantReadWriteLock();
public ReadCache(ByteBufAllocator allocator, long maxCacheSize) {
this(allocator, maxCacheSize, DEFAULT_MAX_SEGMENT_SIZE);
}
public ReadCache(ByteBufAllocator allocator, long maxCacheSize, int maxSegmentSize) {
this.allocator = allocator;
int segmentsCount = Math.max(2, (int) (maxCacheSize / maxSegmentSize));
segmentSize = (int) (maxCacheSize / segmentsCount);
cacheSegments = new ArrayList<>();
cacheIndexes = new ArrayList<>();
for (int i = 0; i < segmentsCount; i++) {
cacheSegments.add(Unpooled.directBuffer(segmentSize, segmentSize));
cacheIndexes.add(new ConcurrentLongLongPairHashMap(4096, 2 * Runtime.getRuntime().availableProcessors()));
}
}
@Override
public void close() {
cacheSegments.forEach(ByteBuf::release);
}
public void put(long ledgerId, long entryId, ByteBuf entry) {
int entrySize = entry.readableBytes();
int alignedSize = align64(entrySize);
lock.readLock().lock();
try {
int offset = currentSegmentOffset.getAndAdd(alignedSize);
if (offset + entrySize > segmentSize) {
// Roll-over the segment (outside the read-lock)
} else {
// Copy entry into read cache segment
cacheSegments.get(currentSegmentIdx).setBytes(offset, entry, entry.readerIndex(),
entry.readableBytes());
cacheIndexes.get(currentSegmentIdx).put(ledgerId, entryId, offset, entrySize);
return;
}
} finally {
lock.readLock().unlock();
}
// We could not insert in segment, we to get the write lock and roll-over to
// next segment
lock.writeLock().lock();
try {
int offset = currentSegmentOffset.getAndAdd(entrySize);
if (offset + entrySize > segmentSize) {
// Rollover to next segment
currentSegmentIdx = (currentSegmentIdx + 1) % cacheSegments.size();
currentSegmentOffset.set(alignedSize);
cacheIndexes.get(currentSegmentIdx).clear();
offset = 0;
}
// Copy entry into read cache segment
cacheSegments.get(currentSegmentIdx).setBytes(offset, entry, entry.readerIndex(), entry.readableBytes());
cacheIndexes.get(currentSegmentIdx).put(ledgerId, entryId, offset, entrySize);
} finally {
lock.writeLock().unlock();
}
}
public ByteBuf get(long ledgerId, long entryId) {
lock.readLock().lock();
try {
// We need to check all the segments, starting from the current one and looking
// backward to minimize the
// checks for recently inserted entries
int size = cacheSegments.size();
for (int i = 0; i < size; i++) {
int segmentIdx = (currentSegmentIdx + (size - i)) % size;
LongPair res = cacheIndexes.get(segmentIdx).get(ledgerId, entryId);
if (res != null) {
int entryOffset = (int) res.first;
int entryLen = (int) res.second;
ByteBuf entry = allocator.directBuffer(entryLen, entryLen);
entry.writeBytes(cacheSegments.get(segmentIdx), entryOffset, entryLen);
return entry;
}
}
} finally {
lock.readLock().unlock();
}
// Entry not found in any segment
return null;
}
/**
* @return the total size of cached entries
*/
public long size() {
lock.readLock().lock();
try {
long size = 0;
for (int i = 0; i < cacheIndexes.size(); i++) {
if (i == currentSegmentIdx) {
size += currentSegmentOffset.get();
} else if (!cacheIndexes.get(i).isEmpty()) {
size += segmentSize;
} else {
// the segment is empty
}
}
return size;
} finally {
lock.readLock().unlock();
}
}
/**
* @return the total number of cached entries
*/
public long count() {
lock.readLock().lock();
try {
long count = 0;
for (int i = 0; i < cacheIndexes.size(); i++) {
count += cacheIndexes.get(i).size();
}
return count;
} finally {
lock.readLock().unlock();
}
}
}