| Prompt: |
| What does this code do? |
| |
| ```java |
| public class ReadGenericAvroIO { |
| |
| private static final Logger LOG = LoggerFactory.getLogger(ReadGenericAvroIO.class); |
| |
| public interface ReadAvroOptions extends PipelineOptions { |
| @Description("Path to the Avro file to read from") |
| @Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro") |
| String getInput(); |
| |
| void setInput(String value); |
| } |
| |
| public static void main(String[] args) { |
| ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class); |
| |
| Pipeline p = Pipeline.create(options); |
| |
| String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]"; |
| String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}"; |
| Schema avroSchema = Schema.parse(schema); |
| |
| p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput())) |
| .apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() { |
| @ProcessElement |
| public void processElement(ProcessContext c) { |
| GenericRecord record = c.element(); |
| String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount"); |
| LOG.info(message); |
| c.output(message); |
| } |
| })); |
| |
| p.run(); |
| } |
| } |
| ``` |
| |
| Response: |
| This code reads data from an Apache Avro file using the `ReadFromAvro` transform from the AvroIO connector provided by Apache Beam. |
| |
| ```java |
| public interface ReadAvroOptions extends PipelineOptions { |
| @Description("Path to the Avro file to read from") |
| @Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro") |
| String getInput(); |
| |
| void setInput(String value); |
| } |
| ``` |
| |
| The `ReadAvroOptions` interface defines the command-line argument `--input`, which specifies the path to the Avro file and sets the default value using the `@Default` annotation. |
| |
| ```java |
| ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class); |
| |
| Pipeline p = Pipeline.create(options); |
| ``` |
| |
| The `PipelineOptionsFactory` class parses the command-line arguments and creates a `ReadAvroOptions` instance. This instance is then used to create a pipeline with the provided pipeline options. |
| |
| ```java |
| String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]"; |
| String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}"; |
| Schema avroSchema = Schema.parse(schema); |
| ``` |
| |
| The AvroIO connector requires a schema to read Avro files. Hence, the schema is defined as a string and parsed into a `Schema` object. |
| |
| ```java |
| p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput())) |
| .apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() { |
| @ProcessElement |
| public void processElement(ProcessContext c) { |
| GenericRecord record = c.element(); |
| String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount"); |
| LOG.info(message); |
| c.output(message); |
| } |
| })) |
| ``` |
| |
| In this segment, the `ParDo` transform processes each `GenericRecord` object from the Avro file. Each `GenericRecord` object is then parsed into a string and logged accordingly. |
| |
| ```java |
| p.run(); |
| ``` |
| |
| Finally, the pipeline is executed to read the Avro file using the AvroIO connector, parse the `GenericRecord` objects, format them, and output the results. |