blob: 569633f4167202bb29945d295ff6885610a04c92 [file] [log] [blame] [view]
Prompt:
What does this code do?
```java
public class ReadGenericAvroIO {
private static final Logger LOG = LoggerFactory.getLogger(ReadGenericAvroIO.class);
public interface ReadAvroOptions extends PipelineOptions {
@Description("Path to the Avro file to read from")
@Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro")
String getInput();
void setInput(String value);
}
public static void main(String[] args) {
ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class);
Pipeline p = Pipeline.create(options);
String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]";
String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}";
Schema avroSchema = Schema.parse(schema);
p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput()))
.apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() {
@ProcessElement
public void processElement(ProcessContext c) {
GenericRecord record = c.element();
String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount");
LOG.info(message);
c.output(message);
}
}));
p.run();
}
}
```
Response:
This code reads data from an Apache Avro file using the `ReadFromAvro` transform from the AvroIO connector provided by Apache Beam.
```java
public interface ReadAvroOptions extends PipelineOptions {
@Description("Path to the Avro file to read from")
@Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro")
String getInput();
void setInput(String value);
}
```
The `ReadAvroOptions` interface defines the command-line argument `--input`, which specifies the path to the Avro file and sets the default value using the `@Default` annotation.
```java
ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class);
Pipeline p = Pipeline.create(options);
```
The `PipelineOptionsFactory` class parses the command-line arguments and creates a `ReadAvroOptions` instance. This instance is then used to create a pipeline with the provided pipeline options.
```java
String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]";
String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}";
Schema avroSchema = Schema.parse(schema);
```
The AvroIO connector requires a schema to read Avro files. Hence, the schema is defined as a string and parsed into a `Schema` object.
```java
p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput()))
.apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() {
@ProcessElement
public void processElement(ProcessContext c) {
GenericRecord record = c.element();
String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount");
LOG.info(message);
c.output(message);
}
}))
```
In this segment, the `ParDo` transform processes each `GenericRecord` object from the Avro file. Each `GenericRecord` object is then parsed into a string and logged accordingly.
```java
p.run();
```
Finally, the pipeline is executed to read the Avro file using the AvroIO connector, parse the `GenericRecord` objects, format them, and output the results.