Prompt: What does this code do?
public class ReadGenericAvroIO { private static final Logger LOG = LoggerFactory.getLogger(ReadGenericAvroIO.class); public interface ReadAvroOptions extends PipelineOptions { @Description("Path to the Avro file to read from") @Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro") String getInput(); void setInput(String value); } public static void main(String[] args) { ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class); Pipeline p = Pipeline.create(options); String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]"; String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}"; Schema avroSchema = Schema.parse(schema); p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput())) .apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() { @ProcessElement public void processElement(ProcessContext c) { GenericRecord record = c.element(); String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount"); LOG.info(message); c.output(message); } })); p.run(); } }
Response: This code reads data from an Apache Avro file using the ReadFromAvro transform from the AvroIO connector provided by Apache Beam.
public interface ReadAvroOptions extends PipelineOptions { @Description("Path to the Avro file to read from") @Default.String("gs://<your-bucket-name]/[your-object-name]/filename.avro") String getInput(); void setInput(String value); }
The ReadAvroOptions interface defines the command-line argument --input, which specifies the path to the Avro file and sets the default value using the @Default annotation.
ReadAvroOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(ReadAvroOptions.class); Pipeline p = Pipeline.create(options);
The PipelineOptionsFactory class parses the command-line arguments and creates a ReadAvroOptions instance. This instance is then used to create a pipeline with the provided pipeline options.
String fields = "[{ \"name\": \"months\", \"type\": \"string\" }, { \"name\": \"amount\", \"type\": \"string\" }]"; String schema = "{\"type\": \"record\", \"name\": \"AvroRecord\",\"fields\":" + fields + "}"; Schema avroSchema = Schema.parse(schema);
The AvroIO connector requires a schema to read Avro files. Hence, the schema is defined as a string and parsed into a Schema object.
p.apply(AvroIO.readGenericRecords(avroSchema).from(options.getInput())) .apply("Parse and log", ParDo.of(new DoFn<GenericRecord, String>() { @ProcessElement public void processElement(ProcessContext c) { GenericRecord record = c.element(); String message = "Month: " + record.get("month") + ". Amount: " + record.get("amount"); LOG.info(message); c.output(message); } }))
In this segment, the ParDo transform processes each GenericRecord object from the Avro file. Each GenericRecord object is then parsed into a string and logged accordingly.
p.run();
Finally, the pipeline is executed to read the Avro file using the AvroIO connector, parse the GenericRecord objects, format them, and output the results.