blob: 00edd12850d11afc34b6acaeda54901777de8b60 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# beam-playground:
# name: multi-pipeline
# description: Multi pipeline example.
# multifile: false
# context_line: 35
# categories:
# - Quickstart
# complexity: ADVANCED
# never_run: true
# tags:
# - hellobeam
import logging
import re
import typing
import apache_beam as beam
from apache_beam.io import ReadFromText
from apache_beam.io import WriteToText
from apache_beam.transforms.external import ImplicitSchemaPayloadBuilder
from apache_beam.options.pipeline_options import PipelineOptions
class WordExtractingDoFn(beam.DoFn):
"""Parse each line of input text into words."""
def process(self, element):
"""Returns an iterator over the words of this element.
The element is a line of text. If the line is blank, note that, too.
Args:
element: the element being processed
Returns:
The processed element.
"""
return re.findall(r'[\w\']+', element, re.UNICODE)
def run(input_path, output_path, pipeline_args):
pipeline_options = PipelineOptions(pipeline_args)
with beam.Pipeline(options=pipeline_options) as p:
lines = p | 'Read' >> ReadFromText(input_path).with_output_types(str)
words = lines | 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(str))
java_output = (words
| 'JavaCount' >> beam.ExternalTransform(
'my.beam.transform.javacount',
None,
"localhost:12345"))
def format(kv):
key, value = kv
return '%s:%s' % (key, value)
output = java_output | 'Format' >> beam.Map(format)
output | 'Write' >> WriteToText(output_path)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
dest='input',
default='input.txt',
required=True,
help='Input file')
parser.add_argument(
'--output',
dest='output',
default='output.txt',
required=True,
help='Output file')
known_args, pipeline_args = parser.parse_known_args()
run(
known_args.input,
known_args.output,
pipeline_args)