| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """End-to-End test for Onnx Inference""" |
| |
| import logging |
| import os |
| import unittest |
| import uuid |
| |
| import pytest |
| |
| from apache_beam.io.filesystems import FileSystems |
| from apache_beam.testing.test_pipeline import TestPipeline |
| |
| # pylint: disable=ungrouped-imports |
| try: |
| import onnx |
| |
| from apache_beam.examples.inference import onnx_sentiment_classification |
| except ImportError as e: |
| onnx = None |
| |
| |
| def process_outputs(filepath): |
| with FileSystems().open(filepath) as f: |
| lines = f.readlines() |
| lines = [l.decode('utf-8').strip('\n') for l in lines] |
| return lines |
| |
| |
| @unittest.skipIf( |
| os.getenv('FORCE_ONNX_IT') is None and onnx is None, |
| 'Missing dependencies. ' |
| 'Test depends on onnx and transformers') |
| class OnnxInference(unittest.TestCase): |
| @pytest.mark.uses_onnx |
| @pytest.mark.it_postcommit |
| def test_onnx_run_inference_roberta_sentiment_classification(self): |
| test_pipeline = TestPipeline(is_integration_test=True) |
| # Path to text file containing some sentences |
| file_of_sentences = ( |
| 'gs://apache-beam-ml/testing/inputs/onnx/' |
| 'sentiment_classification_input.txt') |
| output_file_dir = 'local/sentiment_classification/output' |
| output_file = '/'.join([output_file_dir, str(uuid.uuid4()), 'result.txt']) |
| |
| model_uri = ( |
| 'gs://apache-beam-ml/models/' |
| 'roberta_sentiment_classification.onnx') |
| extra_opts = { |
| 'input': file_of_sentences, |
| 'output': output_file, |
| 'model_uri': model_uri, |
| } |
| onnx_sentiment_classification.run( |
| test_pipeline.get_full_options_as_args(**extra_opts), |
| save_main_session=False) |
| |
| self.assertEqual(FileSystems().exists(output_file), True) |
| predictions = process_outputs(filepath=output_file) |
| actuals_file = ( |
| 'gs://apache-beam-ml/testing/expected_outputs/' |
| 'test_onnx_run_inference_roberta_sentiment' |
| '_classification_actuals.txt') |
| actuals = process_outputs(filepath=actuals_file) |
| |
| predictions_dict = {} |
| for prediction in predictions: |
| text, predicted_text = prediction.split(';') |
| predictions_dict[text] = predicted_text |
| |
| for actual in actuals: |
| text, actual_predicted_text = actual.split(';') |
| predicted_predicted_text = predictions_dict[text] |
| self.assertEqual(actual_predicted_text, predicted_predicted_text) |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.DEBUG) |
| unittest.main() |