| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import logging |
| import unittest |
| |
| from apache_beam.ml.anomaly import aggregations |
| from apache_beam.ml.anomaly.base import AnomalyPrediction |
| |
| |
| class LabelAggTestWithMissingOrError(unittest.TestCase): |
| def test_default(self): |
| normal = AnomalyPrediction(label=0) |
| outlier = AnomalyPrediction(label=1) |
| missing = AnomalyPrediction(label=-2) |
| error = AnomalyPrediction(label=None) |
| |
| vote = aggregations.MajorityVote().apply |
| |
| # missing and error labels are ignored if there is any normal/outlier |
| self.assertEqual(vote([normal, missing, error]), normal) |
| self.assertEqual(vote([outlier, missing, error]), outlier) |
| |
| # if there is any missing among errors, return missing |
| self.assertEqual(vote([error, missing, error]), missing) |
| |
| # return error only when all are errors |
| self.assertEqual(vote([error, error, error]), error) |
| |
| |
| class MajorityVoteTest(unittest.TestCase): |
| def test_default(self): |
| normal = AnomalyPrediction(label=0) |
| outlier = AnomalyPrediction(label=1) |
| vote = aggregations.MajorityVote().apply |
| |
| self.assertEqual(vote([]), AnomalyPrediction()) |
| |
| self.assertEqual(vote([normal]), normal) |
| |
| self.assertEqual(vote([outlier]), outlier) |
| |
| self.assertEqual(vote([outlier, normal, normal]), normal) |
| |
| self.assertEqual(vote([outlier, normal, outlier]), outlier) |
| |
| # use normal to break ties by default |
| self.assertEqual(vote([outlier, normal]), normal) |
| |
| def test_tie_breaker(self): |
| normal = AnomalyPrediction(label=0) |
| outlier = AnomalyPrediction(label=1) |
| vote = aggregations.MajorityVote(tie_breaker=1).apply |
| |
| self.assertEqual(vote([outlier, normal]), outlier) |
| |
| |
| class AllVoteTest(unittest.TestCase): |
| def test_default(self): |
| normal = AnomalyPrediction(label=0) |
| outlier = AnomalyPrediction(label=1) |
| vote = aggregations.AllVote().apply |
| |
| self.assertEqual(vote([]), AnomalyPrediction()) |
| |
| self.assertEqual(vote([normal]), normal) |
| |
| self.assertEqual(vote([outlier]), outlier) |
| |
| # outlier is only labeled when everyone is outlier |
| self.assertEqual(vote([normal, normal, normal]), normal) |
| self.assertEqual(vote([outlier, normal, normal]), normal) |
| self.assertEqual(vote([outlier, normal, outlier]), normal) |
| self.assertEqual(vote([outlier, outlier, outlier]), outlier) |
| |
| |
| class AnyVoteTest(unittest.TestCase): |
| def test_default(self): |
| normal = AnomalyPrediction(label=0) |
| outlier = AnomalyPrediction(label=1) |
| vote = aggregations.AnyVote().apply |
| |
| self.assertEqual(vote([]), AnomalyPrediction()) |
| |
| self.assertEqual(vote([normal]), normal) |
| |
| self.assertEqual(vote([outlier]), outlier) |
| |
| # outlier is labeled when at least one is outlier |
| self.assertEqual(vote([normal, normal, normal]), normal) |
| self.assertEqual(vote([outlier, normal, normal]), outlier) |
| self.assertEqual(vote([outlier, normal, outlier]), outlier) |
| self.assertEqual(vote([outlier, outlier, outlier]), outlier) |
| |
| |
| class ScoreAggTestWithMissingOrError(unittest.TestCase): |
| def test_default(self): |
| normal = AnomalyPrediction(score=1.0) |
| missing = AnomalyPrediction(score=float("NaN")) |
| error = AnomalyPrediction(score=None) |
| |
| avg = aggregations.AverageScore().apply |
| |
| # missing and error scores are ignored if there is any normal/outlier |
| self.assertEqual(avg([normal, missing, error]), normal) |
| |
| # if there is any missing among errors, return missing. |
| # note that NaN != NaN, so we cannot use `assertEqual` here. |
| self.assertTrue(avg([error, missing, error]).score) |
| |
| # return error only when all are errors |
| self.assertEqual(avg([error, error, error]), error) |
| |
| |
| class AverageScoreTest(unittest.TestCase): |
| def test_default(self): |
| avg = aggregations.AverageScore().apply |
| |
| self.assertEqual(avg([]), AnomalyPrediction()) |
| |
| self.assertEqual( |
| avg([AnomalyPrediction(score=1)]), AnomalyPrediction(score=1)) |
| |
| self.assertEqual( |
| avg([AnomalyPrediction(score=1), AnomalyPrediction(score=2)]), |
| AnomalyPrediction(score=1.5)) |
| |
| |
| class MaxScoreTest(unittest.TestCase): |
| def test_default(self): |
| avg = aggregations.MaxScore().apply |
| |
| self.assertEqual(avg([]), AnomalyPrediction()) |
| |
| self.assertEqual( |
| avg([AnomalyPrediction(score=1)]), AnomalyPrediction(score=1)) |
| |
| self.assertEqual( |
| avg([AnomalyPrediction(score=1), AnomalyPrediction(score=2)]), |
| AnomalyPrediction(score=2)) |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.INFO) |
| unittest.main() |