| # coding=utf-8 |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| # pytype: skip-file |
| # pylint: disable=reimported |
| |
| import torch |
| |
| |
| class LinearRegression(torch.nn.Module): |
| def __init__(self, input_dim=1, output_dim=1): |
| super().__init__() |
| self.linear = torch.nn.Linear(input_dim, output_dim) |
| |
| def forward(self, x): |
| out = self.linear(x) |
| return out |
| |
| |
| def torch_unkeyed_model_handler(test=None): |
| # [START torch_unkeyed_model_handler] |
| import apache_beam as beam |
| import numpy |
| import torch |
| from apache_beam.ml.inference.base import RunInference |
| from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor |
| |
| model_state_dict_path = 'gs://apache-beam-samples/run_inference/five_times_table_torch.pt' # pylint: disable=line-too-long |
| model_class = LinearRegression |
| model_params = {'input_dim': 1, 'output_dim': 1} |
| model_handler = PytorchModelHandlerTensor( |
| model_class=model_class, |
| model_params=model_params, |
| state_dict_path=model_state_dict_path) |
| |
| unkeyed_data = numpy.array([10, 40, 60, 90], |
| dtype=numpy.float32).reshape(-1, 1) |
| |
| with beam.Pipeline() as p: |
| predictions = ( |
| p |
| | 'InputData' >> beam.Create(unkeyed_data) |
| | 'ConvertNumpyToTensor' >> beam.Map(torch.Tensor) |
| | 'PytorchRunInference' >> RunInference(model_handler=model_handler) |
| | beam.Map(print)) |
| # [END torch_unkeyed_model_handler] |
| if test: |
| test(predictions) |
| |
| |
| def torch_keyed_model_handler(test=None): |
| # [START torch_keyed_model_handler] |
| import apache_beam as beam |
| import torch |
| from apache_beam.ml.inference.base import KeyedModelHandler |
| from apache_beam.ml.inference.base import RunInference |
| from apache_beam.ml.inference.pytorch_inference import PytorchModelHandlerTensor |
| |
| model_state_dict_path = 'gs://apache-beam-samples/run_inference/five_times_table_torch.pt' # pylint: disable=line-too-long |
| model_class = LinearRegression |
| model_params = {'input_dim': 1, 'output_dim': 1} |
| keyed_model_handler = KeyedModelHandler( |
| PytorchModelHandlerTensor( |
| model_class=model_class, |
| model_params=model_params, |
| state_dict_path=model_state_dict_path)) |
| |
| keyed_data = [("first_question", 105.00), ("second_question", 108.00), |
| ("third_question", 1000.00), ("fourth_question", 1013.00)] |
| |
| with beam.Pipeline() as p: |
| predictions = ( |
| p |
| | 'KeyedInputData' >> beam.Create(keyed_data) |
| | "ConvertIntToTensor" >> |
| beam.Map(lambda x: (x[0], torch.Tensor([x[1]]))) |
| | 'PytorchRunInference' >> |
| RunInference(model_handler=keyed_model_handler) |
| | beam.Map(print)) |
| # [END torch_keyed_model_handler] |
| if test: |
| test(predictions) |