blob: bf85bb1aef168bfa6af3310eadef6c17214851b2 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import logging
from collections.abc import Iterable
import numpy
import apache_beam as beam
from apache_beam.ml.inference.base import KeyedModelHandler
from apache_beam.ml.inference.base import PredictionResult
from apache_beam.ml.inference.base import RunInference
from apache_beam.ml.inference.tensorflow_inference import ModelType
from apache_beam.ml.inference.tensorflow_inference import TFModelHandlerNumpy
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
from apache_beam.runners.runner import PipelineResult
def process_input(row: str) -> tuple[int, numpy.ndarray]:
data = row.split(',')
label, pixels = int(data[0]), data[1:]
pixels = [int(pixel) for pixel in pixels]
# the trained model accepts the input of shape 28x28
pixels = numpy.array(pixels).reshape((28, 28, 1))
return label, pixels
class PostProcessor(beam.DoFn):
"""Process the PredictionResult to get the predicted label.
Returns a comma separated string with true label and predicted label.
"""
def process(self, element: tuple[int, PredictionResult]) -> Iterable[str]:
label, prediction_result = element
prediction = numpy.argmax(prediction_result.inference, axis=0)
yield '{},{}'.format(label, prediction)
def parse_known_args(argv):
"""Parses args for the workflow."""
parser = argparse.ArgumentParser()
parser.add_argument(
'--input',
dest='input',
required=True,
help='text file with comma separated int values.')
parser.add_argument(
'--output',
dest='output',
required=True,
help='Path to save output predictions.')
parser.add_argument(
'--model_path',
dest='model_path',
required=True,
help='Path to load the Tensorflow model for Inference.')
parser.add_argument(
'--large_model',
action='store_true',
dest='large_model',
default=False,
help='Set to true if your model is large enough to run into memory '
'pressure if you load multiple copies.')
return parser.parse_known_args(argv)
def run(
argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult:
"""
Args:
argv: Command line arguments defined for this example.
save_main_session: Used for internal testing.
test_pipeline: Used for internal testing.
"""
known_args, pipeline_args = parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = save_main_session
# In this example we pass keyed inputs to RunInference transform.
# Therefore, we use KeyedModelHandler wrapper over TFModelHandlerNumpy.
model_loader = KeyedModelHandler(
TFModelHandlerNumpy(
model_uri=known_args.model_path,
model_type=ModelType.SAVED_MODEL,
large_model=known_args.large_model))
pipeline = test_pipeline
if not test_pipeline:
pipeline = beam.Pipeline(options=pipeline_options)
label_pixel_tuple = (
pipeline
| "ReadFromInput" >> beam.io.ReadFromText(known_args.input)
| "PreProcessInputs" >> beam.Map(process_input))
predictions = (
label_pixel_tuple
| "RunInference" >> RunInference(model_loader)
| "PostProcessOutputs" >> beam.ParDo(PostProcessor()))
_ = predictions | "WriteOutput" >> beam.io.WriteToText(
known_args.output, shard_name_template='', append_trailing_newlines=True)
result = pipeline.run()
result.wait_until_finish()
return result
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()