| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import argparse |
| import logging |
| from collections.abc import Iterable |
| from collections.abc import Iterator |
| |
| import numpy |
| |
| import apache_beam as beam |
| import tensorflow as tf |
| from apache_beam.ml.inference.base import PredictionResult |
| from apache_beam.ml.inference.base import RunInference |
| from apache_beam.ml.inference.tensorflow_inference import TFModelHandlerTensor |
| from apache_beam.options.pipeline_options import PipelineOptions |
| from apache_beam.options.pipeline_options import SetupOptions |
| from apache_beam.runners.runner import PipelineResult |
| from PIL import Image |
| |
| |
| class PostProcessor(beam.DoFn): |
| """Process the PredictionResult to get the predicted label. |
| Returns predicted label. |
| """ |
| def setup(self): |
| labels_path = tf.keras.utils.get_file( |
| 'ImageNetLabels.txt', |
| 'https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt' # pylint: disable=line-too-long |
| ) |
| self._imagenet_labels = numpy.array(open(labels_path).read().splitlines()) |
| |
| def process(self, element: PredictionResult) -> Iterable[str]: |
| predicted_class = numpy.argmax(element.inference, axis=-1) |
| predicted_class_name = self._imagenet_labels[predicted_class] |
| yield predicted_class_name.title() |
| |
| |
| def parse_known_args(argv): |
| """Parses args for the workflow.""" |
| parser = argparse.ArgumentParser() |
| parser.add_argument( |
| '--input', |
| dest='input', |
| required=True, |
| help='Path to the text file containing image names.') |
| parser.add_argument( |
| '--output', |
| dest='output', |
| required=True, |
| help='Path to save output predictions.') |
| parser.add_argument( |
| '--model_path', |
| dest='model_path', |
| required=True, |
| help='Path to load the Tensorflow model for Inference.') |
| parser.add_argument( |
| '--image_dir', help='Path to the directory where images are stored.') |
| return parser.parse_known_args(argv) |
| |
| |
| def filter_empty_lines(text: str) -> Iterator[str]: |
| if len(text.strip()) > 0: |
| yield text |
| |
| |
| def read_image(image_name, image_dir): |
| img = tf.keras.utils.get_file(image_name, image_dir + image_name) |
| img = Image.open(img).resize((224, 224)) |
| img = numpy.array(img) / 255.0 |
| img_tensor = tf.cast(tf.convert_to_tensor(img[...]), dtype=tf.float32) |
| return img_tensor |
| |
| |
| def run( |
| argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult: |
| """ |
| Args: |
| argv: Command line arguments defined for this example. |
| save_main_session: Used for internal testing. |
| test_pipeline: Used for internal testing. |
| """ |
| known_args, pipeline_args = parse_known_args(argv) |
| pipeline_options = PipelineOptions(pipeline_args) |
| pipeline_options.view_as(SetupOptions).save_main_session = save_main_session |
| |
| # In this example we will use the TensorflowHub model URL. |
| model_loader = TFModelHandlerTensor( |
| model_uri=known_args.model_path).with_preprocess_fn( |
| lambda image_name: read_image(image_name, known_args.image_dir)) |
| |
| pipeline = test_pipeline |
| if not test_pipeline: |
| pipeline = beam.Pipeline(options=pipeline_options) |
| |
| image = ( |
| pipeline |
| | 'ReadImageNames' >> beam.io.ReadFromText(known_args.input) |
| | 'FilterEmptyLines' >> beam.ParDo(filter_empty_lines)) |
| |
| predictions = ( |
| image |
| | "RunInference" >> RunInference(model_loader) |
| | "PostProcessOutputs" >> beam.ParDo(PostProcessor())) |
| |
| _ = predictions | "WriteOutput" >> beam.io.WriteToText( |
| known_args.output, shard_name_template='', append_trailing_newlines=True) |
| |
| result = pipeline.run() |
| result.wait_until_finish() |
| return result |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.INFO) |
| run() |