| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| import glob |
| import importlib |
| import math |
| import os |
| import platform |
| import shutil |
| import tempfile |
| import typing |
| import unittest |
| from datetime import datetime |
| from io import BytesIO |
| from io import StringIO |
| |
| import mock |
| import pandas as pd |
| import pandas.testing |
| import pyarrow |
| import pytest |
| from pandas.testing import assert_frame_equal |
| from parameterized import parameterized |
| |
| import apache_beam as beam |
| import apache_beam.io.gcp.bigquery |
| from apache_beam.dataframe import convert |
| from apache_beam.dataframe import io |
| from apache_beam.io import fileio |
| from apache_beam.io import restriction_trackers |
| from apache_beam.io.gcp.bigquery_tools import BigQueryWrapper |
| from apache_beam.io.gcp.internal.clients import bigquery |
| from apache_beam.testing.util import assert_that |
| from apache_beam.testing.util import equal_to |
| |
| try: |
| from apitools.base.py.exceptions import HttpError |
| except ImportError: |
| HttpError = None |
| |
| # Get major, minor version |
| PD_VERSION = tuple(map(int, pd.__version__.split('.')[0:2])) |
| PYARROW_VERSION = tuple(map(int, pyarrow.__version__.split('.')[0:2])) |
| |
| |
| class SimpleRow(typing.NamedTuple): |
| value: int |
| |
| |
| class MyRow(typing.NamedTuple): |
| timestamp: int |
| value: int |
| |
| |
| @unittest.skipIf( |
| platform.system() == 'Windows', |
| 'https://github.com/apache/beam/issues/20642') |
| class IOTest(unittest.TestCase): |
| def setUp(self): |
| self._temp_roots = [] |
| |
| def tearDown(self): |
| for root in self._temp_roots: |
| shutil.rmtree(root) |
| |
| def temp_dir(self, files=None): |
| dir = tempfile.mkdtemp(prefix='beam-test') |
| self._temp_roots.append(dir) |
| if files: |
| for name, contents in files.items(): |
| with open(os.path.join(dir, name), 'w') as fout: |
| fout.write(contents) |
| return dir + os.path.sep |
| |
| def read_all_lines(self, pattern, delete=False): |
| for path in glob.glob(pattern): |
| with open(path) as fin: |
| # TODO(Py3): yield from |
| for line in fin: |
| yield line.rstrip('\n') |
| if delete: |
| os.remove(path) |
| |
| def test_read_fwf(self): |
| input = self.temp_dir( |
| {'all.fwf': ''' |
| A B |
| 11a 0 |
| 37a 1 |
| 389a 2 |
| '''.strip()}) |
| with beam.Pipeline() as p: |
| df = p | io.read_fwf(input + 'all.fwf') |
| rows = convert.to_pcollection(df) | beam.Map(tuple) |
| assert_that(rows, equal_to([('11a', 0), ('37a', 1), ('389a', 2)])) |
| |
| def test_read_write_csv(self): |
| input = self.temp_dir({'1.csv': 'a,b\n1,2\n', '2.csv': 'a,b\n3,4\n'}) |
| output = self.temp_dir() |
| with beam.Pipeline() as p: |
| df = p | io.read_csv(input + '*.csv') |
| df['c'] = df.a + df.b |
| df.to_csv(output + 'out.csv', index=False) |
| self.assertCountEqual(['a,b,c', '1,2,3', '3,4,7'], |
| set(self.read_all_lines(output + 'out.csv*'))) |
| |
| def test_wide_csv_with_dtypes(self): |
| # Verify https://github.com/apache/beam/issues/31152 is resolved. |
| cols = ','.join(f'col{ix}' for ix in range(123)) |
| data = ','.join(str(ix) for ix in range(123)) |
| input = self.temp_dir({'tmp.csv': f'{cols}\n{data}'}) |
| with beam.Pipeline() as p: |
| pcoll = p | beam.io.ReadFromCsv(f'{input}tmp.csv', dtype=str) |
| assert_that(pcoll | beam.Map(max), equal_to(['99'])) |
| |
| def test_sharding_parameters(self): |
| data = pd.DataFrame({'label': ['11a', '37a', '389a'], 'rank': [0, 1, 2]}) |
| output = self.temp_dir() |
| with beam.Pipeline() as p: |
| df = convert.to_dataframe(p | beam.Create([data]), proxy=data[:0]) |
| df.to_csv( |
| output, |
| num_shards=1, |
| file_naming=fileio.single_file_naming('out.csv')) |
| self.assertEqual(glob.glob(output + '*'), [output + 'out.csv']) |
| |
| @pytest.mark.uses_pyarrow |
| @unittest.skipIf( |
| PD_VERSION >= (1, 4) and PYARROW_VERSION < (1, 0), |
| "pandas 1.4 requires at least pyarrow 1.0.1") |
| def test_read_write_parquet(self): |
| self._run_read_write_test( |
| 'parquet', {}, {}, dict(check_index=False), ['pyarrow']) |
| |
| @parameterized.expand([ |
| ('csv', dict(index_col=0)), |
| ('csv', dict(index_col=0, splittable=True)), |
| ('json', dict(orient='index'), dict(orient='index')), |
| ('json', dict(orient='columns'), dict(orient='columns')), |
| ('json', dict(orient='split'), dict(orient='split')), |
| ( |
| 'json', |
| dict(orient='values'), |
| dict(orient='values'), |
| dict(check_index=False, check_names=False)), |
| ( |
| 'json', |
| dict(orient='records'), |
| dict(orient='records'), |
| dict(check_index=False)), |
| ( |
| 'json', |
| dict(orient='records', lines=True), |
| dict(orient='records', lines=True), |
| dict(check_index=False)), |
| ('html', dict(index_col=0), {}, {}, ['lxml']), |
| ('excel', dict(index_col=0), {}, {}, ['openpyxl', 'xlrd']), |
| ]) |
| # pylint: disable=dangerous-default-value |
| def test_read_write( |
| self, |
| format, |
| read_kwargs={}, |
| write_kwargs={}, |
| check_options={}, |
| requires=()): |
| self._run_read_write_test( |
| format, read_kwargs, write_kwargs, check_options, requires) |
| |
| # pylint: disable=dangerous-default-value |
| def _run_read_write_test( |
| self, |
| format, |
| read_kwargs={}, |
| write_kwargs={}, |
| check_options={}, |
| requires=()): |
| |
| for module in requires: |
| try: |
| importlib.import_module(module) |
| except ImportError: |
| raise unittest.SkipTest('Missing dependency: %s' % module) |
| small = pd.DataFrame({'label': ['11a', '37a', '389a'], 'rank': [0, 1, 2]}) |
| big = pd.DataFrame({'number': list(range(1000))}) |
| big['float'] = big.number.map(math.sqrt) |
| big['text'] = big.number.map(lambda n: 'f' + 'o' * n) |
| |
| def frame_equal_to(expected_, check_index=True, check_names=True): |
| def check(actual): |
| expected = expected_ |
| try: |
| actual = pd.concat(actual) |
| if not check_index: |
| expected = expected.sort_values(list( |
| expected.columns)).reset_index(drop=True) |
| actual = actual.sort_values(list( |
| actual.columns)).reset_index(drop=True) |
| if not check_names: |
| actual = actual.rename( |
| columns=dict(zip(actual.columns, expected.columns))) |
| return assert_frame_equal(expected, actual, check_like=True) |
| except: |
| print("EXPECTED") |
| print(expected) |
| print("ACTUAL") |
| print(actual) |
| raise |
| |
| return check |
| |
| for df in (small, big): |
| with tempfile.TemporaryDirectory() as dir: |
| dest = os.path.join(dir, 'out') |
| try: |
| with beam.Pipeline() as p: |
| deferred_df = convert.to_dataframe( |
| p | beam.Create([df[::3], df[1::3], df[2::3]]), proxy=df[:0]) |
| # This does the write. |
| getattr(deferred_df, 'to_%s' % format)(dest, **write_kwargs) |
| with beam.Pipeline() as p: |
| # Now do the read. |
| # TODO(robertwb): Allow reading from pcoll of paths to do it all in |
| # one pipeline. |
| |
| result = convert.to_pcollection( |
| p | getattr(io, 'read_%s' % format)(dest + '*', **read_kwargs), |
| yield_elements='pandas') |
| assert_that(result, frame_equal_to(df, **check_options)) |
| except: |
| os.system('head -n 100 ' + dest + '*') |
| raise |
| |
| def _run_truncating_file_handle_test( |
| self, s, splits, delim=' ', chunk_size=10): |
| split_results = [] |
| next_range = restriction_trackers.OffsetRange(0, len(s)) |
| for split in list(splits) + [None]: |
| tracker = restriction_trackers.OffsetRestrictionTracker(next_range) |
| handle = io._TruncatingFileHandle( |
| StringIO(s), tracker, splitter=io._DelimSplitter(delim, chunk_size)) |
| data = '' |
| chunk = handle.read(1) |
| if split is not None: |
| _, next_range = tracker.try_split(split) |
| while chunk: |
| data += chunk |
| chunk = handle.read(7) |
| split_results.append(data) |
| return split_results |
| |
| def test_truncating_filehandle(self): |
| self.assertEqual( |
| self._run_truncating_file_handle_test('a b c d e', [0.5]), |
| ['a b c ', 'd e']) |
| self.assertEqual( |
| self._run_truncating_file_handle_test('aaaaaaaaaaaaaaXaaa b', [0.5]), |
| ['aaaaaaaaaaaaaaXaaa ', 'b']) |
| self.assertEqual( |
| self._run_truncating_file_handle_test( |
| 'aa bbbbbbbbbbbbbbbbbbbbbbbbbb ccc ', [0.01, 0.5]), |
| ['aa ', 'bbbbbbbbbbbbbbbbbbbbbbbbbb ', 'ccc ']) |
| |
| numbers = 'x'.join(str(k) for k in range(1000)) |
| splits = self._run_truncating_file_handle_test( |
| numbers, [0.1] * 20, delim='x') |
| self.assertEqual(numbers, ''.join(splits)) |
| self.assertTrue(s.endswith('x') for s in splits[:-1]) |
| self.assertLess(max(len(s) for s in splits), len(numbers) * 0.9 + 10) |
| self.assertGreater( |
| min(len(s) for s in splits), len(numbers) * 0.9**20 * 0.1) |
| |
| def _run_truncating_file_handle_iter_test(self, s, delim=' ', chunk_size=10): |
| tracker = restriction_trackers.OffsetRestrictionTracker( |
| restriction_trackers.OffsetRange(0, len(s))) |
| handle = io._TruncatingFileHandle( |
| StringIO(s), tracker, splitter=io._DelimSplitter(delim, chunk_size)) |
| self.assertEqual(s, ''.join(list(handle))) |
| |
| def test_truncating_filehandle_iter(self): |
| self._run_truncating_file_handle_iter_test('a b c') |
| self._run_truncating_file_handle_iter_test('aaaaaaaaaaaaaaaaaaaa b ccc') |
| self._run_truncating_file_handle_iter_test('aaa b cccccccccccccccccccc') |
| self._run_truncating_file_handle_iter_test('aaa b ccccccccccccccccc ') |
| |
| @parameterized.expand([ |
| ('defaults', {}), |
| ('header', dict(header=1)), |
| ('multi_header', dict(header=[0, 1])), |
| ('multi_header', dict(header=[0, 1, 4])), |
| ('names', dict(names=('m', 'n', 'o'))), |
| ('names_and_header', dict(names=('m', 'n', 'o'), header=0)), |
| ('skip_blank_lines', dict(header=4, skip_blank_lines=True)), |
| ('skip_blank_lines', dict(header=4, skip_blank_lines=False)), |
| ('comment', dict(comment='X', header=4)), |
| ('comment', dict(comment='X', header=[0, 3])), |
| ('skiprows', dict(skiprows=0, header=[0, 1])), |
| ('skiprows', dict(skiprows=[1], header=[0, 3], skip_blank_lines=False)), |
| ('skiprows', dict(skiprows=[0, 1], header=[0, 1], comment='X')), |
| ]) |
| def test_csv_splitter(self, name, kwargs): |
| def assert_frame_equal(expected, actual): |
| try: |
| pandas.testing.assert_frame_equal(expected, actual) |
| except AssertionError: |
| print("Expected:\n", expected) |
| print("Actual:\n", actual) |
| raise |
| |
| def read_truncated_csv(start, stop): |
| return pd.read_csv( |
| io._TruncatingFileHandle( |
| BytesIO(contents.encode('ascii')), |
| restriction_trackers.OffsetRestrictionTracker( |
| restriction_trackers.OffsetRange(start, stop)), |
| splitter=io._TextFileSplitter((), kwargs, read_chunk_size=7)), |
| index_col=0, |
| **kwargs) |
| |
| contents = ''' |
| a0, a1, a2 |
| b0, b1, b2 |
| |
| X , c1, c2 |
| e0, e1, e2 |
| f0, f1, f2 |
| w, daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaata, w |
| x, daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaata, x |
| y, daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaata, y |
| z, daaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaata, z |
| '''.strip() |
| expected = pd.read_csv(StringIO(contents), index_col=0, **kwargs) |
| |
| one_shard = read_truncated_csv(0, len(contents)) |
| assert_frame_equal(expected, one_shard) |
| |
| equal_shards = pd.concat([ |
| read_truncated_csv(0, len(contents) // 2), |
| read_truncated_csv(len(contents) // 2, len(contents)), |
| ]) |
| assert_frame_equal(expected, equal_shards) |
| |
| three_shards = pd.concat([ |
| read_truncated_csv(0, len(contents) // 3), |
| read_truncated_csv(len(contents) // 3, len(contents) * 2 // 3), |
| read_truncated_csv(len(contents) * 2 // 3, len(contents)), |
| ]) |
| assert_frame_equal(expected, three_shards) |
| |
| # https://github.com/pandas-dev/pandas/issues/38292 |
| if not isinstance(kwargs.get('header'), list): |
| split_in_header = pd.concat([ |
| read_truncated_csv(0, 1), |
| read_truncated_csv(1, len(contents)), |
| ]) |
| assert_frame_equal(expected, split_in_header) |
| |
| if not kwargs: |
| # Make sure we're correct as we cross the header boundary. |
| # We don't need to do this for every permutation. |
| header_end = contents.index('a2') + 3 |
| for split in range(header_end - 2, header_end + 2): |
| split_at_header = pd.concat([ |
| read_truncated_csv(0, split), |
| read_truncated_csv(split, len(contents)), |
| ]) |
| assert_frame_equal(expected, split_at_header) |
| |
| def test_file_not_found(self): |
| with self.assertRaisesRegex(FileNotFoundError, r'/tmp/fake_dir/\*\*'): |
| with beam.Pipeline() as p: |
| _ = p | io.read_csv('/tmp/fake_dir/**') |
| |
| def test_windowed_write(self): |
| output = self.temp_dir() |
| with beam.Pipeline() as p: |
| pc = ( |
| p | beam.Create([MyRow(timestamp=i, value=i % 3) for i in range(20)]) |
| | beam.Map(lambda v: beam.window.TimestampedValue(v, v.timestamp)). |
| with_output_types(MyRow) |
| | beam.WindowInto( |
| beam.window.FixedWindows(10)).with_output_types(MyRow)) |
| |
| deferred_df = convert.to_dataframe(pc) |
| deferred_df.to_csv(output + 'out.csv', index=False) |
| |
| first_window_files = ( |
| f'{output}out.csv-' |
| f'{datetime.utcfromtimestamp(0).isoformat()}*') |
| self.assertCountEqual( |
| ['timestamp,value'] + [f'{i},{i % 3}' for i in range(10)], |
| set(self.read_all_lines(first_window_files, delete=True))) |
| |
| second_window_files = ( |
| f'{output}out.csv-' |
| f'{datetime.utcfromtimestamp(10).isoformat()}*') |
| self.assertCountEqual( |
| ['timestamp,value'] + [f'{i},{i%3}' for i in range(10, 20)], |
| set(self.read_all_lines(second_window_files, delete=True))) |
| |
| # Check that we've read (and removed) every output file |
| self.assertEqual(len(glob.glob(f'{output}out.csv*')), 0) |
| |
| def test_double_write(self): |
| output = self.temp_dir() |
| with beam.Pipeline() as p: |
| pc1 = p | 'create pc1' >> beam.Create( |
| [SimpleRow(value=i) for i in [1, 2]]) |
| pc2 = p | 'create pc2' >> beam.Create( |
| [SimpleRow(value=i) for i in [3, 4]]) |
| |
| deferred_df1 = convert.to_dataframe(pc1) |
| deferred_df2 = convert.to_dataframe(pc2) |
| |
| deferred_df1.to_csv( |
| f'{output}out1.csv', |
| transform_label="Writing to csv PC1", |
| index=False) |
| deferred_df2.to_csv( |
| f'{output}out2.csv', |
| transform_label="Writing to csv PC2", |
| index=False) |
| |
| self.assertCountEqual(['value', '1', '2'], |
| set(self.read_all_lines(output + 'out1.csv*'))) |
| self.assertCountEqual(['value', '3', '4'], |
| set(self.read_all_lines(output + 'out2.csv*'))) |
| |
| |
| @unittest.skipIf(HttpError is None, 'GCP dependencies are not installed') |
| class ReadGbqTransformTests(unittest.TestCase): |
| @mock.patch.object(BigQueryWrapper, 'get_table') |
| def test_bad_schema_public_api_direct_read(self, get_table): |
| try: |
| bigquery.TableFieldSchema |
| except AttributeError: |
| raise ValueError('Please install GCP Dependencies.') |
| fields = [ |
| bigquery.TableFieldSchema(name='stn', type='DOUBLE', mode="NULLABLE"), |
| bigquery.TableFieldSchema(name='temp', type='FLOAT64', mode="REPEATED"), |
| bigquery.TableFieldSchema(name='count', type='INTEGER', mode=None) |
| ] |
| schema = bigquery.TableSchema(fields=fields) |
| table = apache_beam.io.gcp.internal.clients.bigquery. \ |
| bigquery_v2_messages.Table( |
| schema=schema) |
| get_table.return_value = table |
| |
| with self.assertRaisesRegex(ValueError, |
| "Encountered an unsupported type: 'DOUBLE'"): |
| p = apache_beam.Pipeline() |
| _ = p | apache_beam.dataframe.io.read_gbq( |
| table="dataset.sample_table", use_bqstorage_api=True) |
| |
| def test_unsupported_callable(self): |
| def filterTable(table): |
| if table is not None: |
| return table |
| |
| res = filterTable |
| with self.assertRaisesRegex(TypeError, |
| 'ReadFromBigQuery: table must be of type string' |
| '; got a callable instead'): |
| p = beam.Pipeline() |
| _ = p | beam.dataframe.io.read_gbq(table=res) |
| |
| def test_ReadGbq_unsupported_param(self): |
| with self.assertRaisesRegex(ValueError, |
| r"""Encountered unsupported parameter\(s\) """ |
| r"""in read_gbq: dict_keys\(\['reauth']\)"""): |
| p = beam.Pipeline() |
| _ = p | beam.dataframe.io.read_gbq( |
| table="table", use_bqstorage_api=False, reauth="true_config") |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |