| #!/usr/bin/env python |
| # -*- coding: utf-8 -*- |
| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """Integration tests for Dataframe sources and sinks.""" |
| # pytype: skip-file |
| |
| import logging |
| import unittest |
| |
| import pytest |
| |
| import apache_beam.io.gcp.bigquery |
| from apache_beam.testing.test_pipeline import TestPipeline |
| from apache_beam.testing.util import assert_that |
| from apache_beam.testing.util import equal_to |
| |
| _LOGGER = logging.getLogger(__name__) |
| |
| try: |
| from apitools.base.py.exceptions import HttpError |
| except ImportError: |
| HttpError = None |
| |
| |
| @unittest.skipIf(HttpError is None, 'GCP dependencies are not installed') |
| class ReadUsingReadGbqTests(unittest.TestCase): |
| @pytest.mark.it_postcommit |
| def test_ReadGbq(self): |
| from apache_beam.dataframe import convert |
| with TestPipeline(is_integration_test=True) as p: |
| actual_df = p | apache_beam.dataframe.io.read_gbq( |
| table="apache-beam-testing:beam_bigquery_io_test." |
| "dfsqltable_3c7d6fd5_16e0460dfd0", |
| use_bqstorage_api=False) |
| assert_that( |
| convert.to_pcollection(actual_df), |
| equal_to([(3, 'customer1', 'test'), (1, 'customer1', 'test'), |
| (2, 'customer2', 'test'), (4, 'customer2', 'test')])) |
| |
| @pytest.mark.it_postcommit |
| def test_ReadGbq_export_with_project(self): |
| from apache_beam.dataframe import convert |
| with TestPipeline(is_integration_test=True) as p: |
| actual_df = p | apache_beam.dataframe.io.read_gbq( |
| table="dfsqltable_3c7d6fd5_16e0460dfd0", |
| dataset="beam_bigquery_io_test", |
| project_id="apache-beam-testing", |
| use_bqstorage_api=False) |
| assert_that( |
| convert.to_pcollection(actual_df), |
| equal_to([(3, 'customer1', 'test'), (1, 'customer1', 'test'), |
| (2, 'customer2', 'test'), (4, 'customer2', 'test')])) |
| |
| @pytest.mark.it_postcommit |
| def test_ReadGbq_direct_read(self): |
| from apache_beam.dataframe import convert |
| with TestPipeline(is_integration_test=True) as p: |
| actual_df = p | apache_beam.dataframe.io.\ |
| read_gbq( |
| table= |
| "apache-beam-testing:beam_bigquery_io_test." |
| "dfsqltable_3c7d6fd5_16e0460dfd0", |
| use_bqstorage_api=True) |
| assert_that( |
| convert.to_pcollection(actual_df), |
| equal_to([(3, 'customer1', 'test'), (1, 'customer1', 'test'), |
| (2, 'customer2', 'test'), (4, 'customer2', 'test')])) |
| |
| @pytest.mark.it_postcommit |
| def test_ReadGbq_direct_read_with_project(self): |
| from apache_beam.dataframe import convert |
| with TestPipeline(is_integration_test=True) as p: |
| actual_df = p | apache_beam.dataframe.io.read_gbq( |
| table="dfsqltable_3c7d6fd5_16e0460dfd0", |
| dataset="beam_bigquery_io_test", |
| project_id="apache-beam-testing", |
| use_bqstorage_api=True) |
| assert_that( |
| convert.to_pcollection(actual_df), |
| equal_to([(3, 'customer1', 'test'), (1, 'customer1', 'test'), |
| (2, 'customer2', 'test'), (4, 'customer2', 'test')])) |
| |
| @pytest.mark.it_postcommit |
| def test_ReadGbq_with_computation(self): |
| from apache_beam.dataframe import convert |
| with TestPipeline(is_integration_test=True) as p: |
| beam_df = p | apache_beam.dataframe.io.read_gbq( |
| table="dfsqltable_3c7d6fd5_16e0460dfd0", |
| dataset="beam_bigquery_io_test", |
| project_id="apache-beam-testing") |
| actual_df = beam_df.groupby('id').count() |
| assert_that( |
| convert.to_pcollection(actual_df, include_indexes=True), |
| equal_to([(1, 1, 1), (2, 1, 1), (3, 1, 1), (4, 1, 1)])) |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.INFO) |
| unittest.main() |