| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| from __future__ import absolute_import |
| |
| import apache_beam as beam |
| import numpy as np |
| |
| from apache_beam.transforms import DoFn |
| from apache_beam.transforms import PTransform |
| from apache_beam.transforms import Reshuffle |
| |
| |
| import redis |
| from typing import Optional |
| |
| # Set the logging level to reduce verbose information |
| import logging |
| |
| logging.root.setLevel(logging.INFO) |
| logger = logging.getLogger(__name__) |
| |
| __all__ = ['InsertDocInRedis', 'InsertEmbeddingInRedis'] |
| |
| |
| |
| """This module implements IO classes to read write documents in Redis. |
| |
| |
| Insert Doc in Redis: |
| ----------------- |
| :class:`InsertDocInRedis` is a ``PTransform`` that writes key and values to a |
| configured sink, and the write is conducted through a redis pipeline. |
| |
| The ptransform works by getting the first and second elements from the input, |
| this means that inputs like `[k,v]` or `(k,v)` are valid. |
| |
| Example usage:: |
| |
| pipeline | InsertDocInRedis(host='localhost', |
| port=6379, |
| batch_size=100) |
| """ |
| |
| |
| class InsertDocInRedis(PTransform): |
| """InsertDocInRedis is a ``PTransform`` that writes a ``PCollection`` of |
| key, value tuple or 2-element array into a redis server. |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int, |
| command: Optional[str] = None, |
| batch_size: int = 100 |
| ): |
| |
| """ |
| |
| Args: |
| host (str): The redis host |
| port (int): The redis port |
| command (str): command to be executed with redis client |
| batch_size(int): Number of key, values pairs to write at once |
| |
| Returns: |
| :class:`~apache_beam.transforms.ptransform.PTransform` |
| |
| """ |
| |
| self._host = host |
| self._port = port |
| self._command = command |
| self._batch_size = batch_size |
| |
| def expand(self, pcoll): |
| return pcoll \ |
| | "Reshuffle for Redis Insert" >> Reshuffle() \ |
| | "Insert document into Redis" >> beam.ParDo(_InsertDocRedisFn(self._host, |
| self._port, |
| self._command, |
| self._batch_size) |
| ) |
| |
| |
| class _InsertDocRedisFn(DoFn): |
| """Abstract class that takes in redis |
| credentials to connect to redis DB |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int, |
| command: Optional[str] = None, |
| batch_size: int = 100 |
| ): |
| self.host = host |
| self.port = port |
| self.command = command |
| self.batch_size = batch_size |
| |
| self.batch_counter = 0 |
| self.batch = list() |
| |
| self.text_col = None |
| |
| def finish_bundle(self): |
| self._flush() |
| |
| def process(self, element, *args, **kwargs): |
| self.batch.append(element) |
| self.batch_counter += 1 |
| if self.batch_counter >= self.batch_size: |
| self._flush() |
| yield element |
| |
| def _flush(self): |
| if self.batch_counter == 0: |
| return |
| |
| with _InsertDocRedisSink(self.host, self.port) as sink: |
| |
| if not self.command: |
| sink.write(self.batch) |
| |
| else: |
| sink.execute_command(self.command, self.batch) |
| |
| self.batch_counter = 0 |
| self.batch = list() |
| |
| |
| class _InsertDocRedisSink(object): |
| """Class where we create redis client |
| and write insertion logic in redis |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int |
| ): |
| self.host = host |
| self.port = port |
| self.client = None |
| |
| def _create_client(self): |
| if self.client is None: |
| self.client = redis.Redis(host=self.host, |
| port=self.port) |
| |
| def write(self, elements): |
| self._create_client() |
| with self.client.pipeline() as pipe: |
| logger.info(f'Inserting documents in Redis. Total docs: {len(elements)}') |
| for element in elements: |
| doc_key = f"doc_{str(element['id'])}_section_{str(element['section_id'])}" |
| for k, v in element.items(): |
| logger.debug(f'Inserting doc_key={doc_key}, key={k}, value={v}') |
| pipe.hset(name=doc_key, key=k, value=v) |
| |
| pipe.execute() |
| logger.info(f'Inserting documents complete.') |
| |
| |
| def execute_command(self, command, elements): |
| self._create_client() |
| with self.client.pipeline() as pipe: |
| for element in elements: |
| k, v = element |
| pipe.execute_command(command, k, v) |
| pipe.execute() |
| |
| def __enter__(self): |
| self._create_client() |
| return self |
| |
| def __exit__(self, exc_type, exc_val, exc_tb): |
| if self.client is not None: |
| self.client.close() |
| |
| |
| """This module implements IO classes to read write text Embeddings in Redis. |
| |
| |
| Insert Embedding in Redis : |
| ----------------- |
| :class:`InsertEmbeddingInRedis` is a ``PTransform`` that writes key and values to a |
| configured sink, and the write is conducted through a redis pipeline. |
| |
| The ptransform works by getting the first and second elements from the input, |
| this means that inputs like `[k,v]` or `(k,v)` are valid. |
| |
| Example usage:: |
| |
| pipeline | InsertEmbeddingInRedis(host='localhost', |
| port=6379, |
| batch_size=100) |
| """ |
| |
| |
| class InsertEmbeddingInRedis(PTransform): |
| """WriteToRedis is a ``PTransform`` that writes a ``PCollection`` of |
| key, value tuple or 2-element array into a redis server. |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int, |
| command: Optional[str] = None, |
| batch_size: int = 100, |
| embedded_columns: list = [] |
| ): |
| |
| """ |
| |
| Args: |
| host (str): The redis host |
| port (int): The redis port |
| command (str): command to be executed with redis client |
| batch_size (int): Number of key, values pairs to write at once |
| embedded_columns (list): list of column whose embedding needs to be generated |
| |
| Returns: |
| :class:`~apache_beam.transforms.ptransform.PTransform` |
| |
| """ |
| |
| self._host = host |
| self._port = port |
| self._command = command |
| self._batch_size = batch_size |
| self.embedded_columns = embedded_columns |
| |
| def expand(self, pcoll): |
| return pcoll \ |
| | "Reshuffle for Embedding in Redis Insert" >> Reshuffle() \ |
| | "Write `Embeddings` to Redis" >> beam.ParDo(_WriteEmbeddingInRedisFn(self._host, |
| self._port, |
| self._command, |
| self._batch_size, |
| self.embedded_columns)) |
| |
| |
| class _WriteEmbeddingInRedisFn(DoFn): |
| """Abstract class that takes in redis credentials |
| to connect to redis DB |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int, |
| command: Optional[str] = None, |
| batch_size: int = 100, |
| embedded_columns: list = [] |
| ): |
| self.host = host |
| self.port = port |
| self.command = command |
| self.batch_size = batch_size |
| self.embedded_columns = embedded_columns |
| |
| self.batch_counter = 0 |
| self.batch = list() |
| |
| def finish_bundle(self): |
| self._flush() |
| |
| def process(self, element, *args, **kwargs): |
| self.batch.append(element) |
| self.batch_counter += 1 |
| if self.batch_counter >= self.batch_size: |
| self._flush() |
| |
| def _flush(self): |
| if self.batch_counter == 0: |
| return |
| |
| with _InsertEmbeddingInRedisSink(self.host, self.port, self.embedded_columns) as sink: |
| |
| if not self.command: |
| sink.write(self.batch) |
| |
| else: |
| sink.execute_command(self.command, self.batch) |
| |
| self.batch_counter = 0 |
| self.batch = list() |
| |
| |
| class _InsertEmbeddingInRedisSink(object): |
| """Class where we create redis client |
| and write text embedding in redis DB |
| """ |
| |
| def __init__(self, |
| host: str, |
| port: int, |
| embedded_columns: list = [] |
| ): |
| self.host = host |
| self.port = port |
| self.client = None |
| self.embedded_columns = embedded_columns |
| |
| def _create_client(self): |
| if self.client is None: |
| self.client = redis.Redis(host=self.host, |
| port=self.port) |
| |
| def write(self, elements): |
| self._create_client() |
| with self.client.pipeline() as pipe: |
| for element in elements: |
| doc_key = f"doc_{str(element['id'])}_section_{str(element['section_id'])}" |
| for k, v in element.items(): |
| if k in self.embedded_columns: |
| v = np.array(v, dtype=np.float32).tobytes() |
| pipe.hset(name=doc_key, key=f'{k}_vector', value=v) |
| pipe.execute() |
| |
| def execute_command(self, command, elements): |
| self._create_client() |
| with self.client.pipeline() as pipe: |
| for element in elements: |
| k, v = element |
| pipe.execute_command(command, k, v) |
| pipe.execute() |
| |
| def __enter__(self): |
| self._create_client() |
| return self |
| |
| def __exit__(self, exc_type, exc_val, exc_tb): |
| if self.client is not None: |
| self.client.close() |