blob: bc0dd1a5ecbf9d3f322ab9d2820554adcfd38be8 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.beam.runners.dataflow.util;
import static org.apache.beam.vendor.guava.v20_0.com.google.common.base.Preconditions.checkArgument;
import static org.apache.beam.vendor.guava.v20_0.com.google.common.base.Preconditions.checkNotNull;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Objects;
import javax.annotation.concurrent.NotThreadSafe;
import org.apache.beam.sdk.coders.AtomicCoder;
import org.apache.beam.sdk.coders.ByteArrayCoder;
import org.apache.beam.sdk.coders.Coder;
import org.apache.beam.sdk.coders.CoderException;
import org.apache.beam.sdk.util.VarInt;
import org.apache.beam.vendor.guava.v20_0.com.google.common.base.MoreObjects;
import org.apache.beam.vendor.guava.v20_0.com.google.common.io.ByteStreams;
import org.apache.beam.vendor.guava.v20_0.com.google.common.primitives.UnsignedBytes;
/**
* An elastic-sized byte array which allows you to manipulate it as a stream, or access it directly.
* This allows for a quick succession of moving bytes from an {@link InputStream} to this wrapper to
* be used as an {@link OutputStream} and vice versa. This wrapper also provides random access to
* bytes stored within. This wrapper allows users to finely control the number of byte copies that
* occur.
*
* <p>Anything stored within the in-memory buffer from offset {@link #size()} is considered
* temporary unused storage.
*/
@NotThreadSafe
public class RandomAccessData {
/**
* A {@link Coder} which encodes the valid parts of this stream. This follows the same encoding
* scheme as {@link ByteArrayCoder}. This coder is deterministic and consistent with equals.
*
* <p>This coder does not support encoding positive infinity.
*/
public static class RandomAccessDataCoder extends AtomicCoder<RandomAccessData> {
private static final RandomAccessDataCoder INSTANCE = new RandomAccessDataCoder();
public static RandomAccessDataCoder of() {
return INSTANCE;
}
@Override
public void encode(RandomAccessData value, OutputStream outStream)
throws CoderException, IOException {
encode(value, outStream, Coder.Context.NESTED);
}
@Override
public void encode(RandomAccessData value, OutputStream outStream, Coder.Context context)
throws CoderException, IOException {
if (Objects.equals(value, POSITIVE_INFINITY)) {
throw new CoderException("Positive infinity can not be encoded.");
}
if (!context.isWholeStream) {
VarInt.encode(value.size, outStream);
}
value.writeTo(outStream, 0, value.size);
}
@Override
public RandomAccessData decode(InputStream inStream) throws CoderException, IOException {
return decode(inStream, Coder.Context.NESTED);
}
@Override
public RandomAccessData decode(InputStream inStream, Coder.Context context)
throws CoderException, IOException {
RandomAccessData rval = new RandomAccessData();
if (!context.isWholeStream) {
int length = VarInt.decodeInt(inStream);
rval.readFrom(inStream, 0, length);
} else {
ByteStreams.copy(inStream, rval.asOutputStream());
}
return rval;
}
@Override
public void verifyDeterministic() {}
@Override
public boolean consistentWithEquals() {
return true;
}
@Override
public boolean isRegisterByteSizeObserverCheap(RandomAccessData value) {
return true;
}
@Override
protected long getEncodedElementByteSize(RandomAccessData value) throws Exception {
if (value == null) {
throw new CoderException("cannot encode a null in memory stream");
}
return (long) VarInt.getLength(value.size) + value.size;
}
}
public static final UnsignedLexicographicalComparator UNSIGNED_LEXICOGRAPHICAL_COMPARATOR =
new UnsignedLexicographicalComparator();
/**
* A {@link Comparator} that compares two byte arrays lexicographically. It compares values as a
* list of unsigned bytes. The first pair of values that follow any common prefix, or when one
* array is a prefix of the other, treats the shorter array as the lesser. For example, {@code []
* < [0x01] < [0x01, 0x7F] < [0x01, 0x80] < [0x02] < POSITIVE INFINITY}.
*
* <p>Note that a token type of positive infinity is supported and is greater than all other
* {@link RandomAccessData}.
*/
public static final class UnsignedLexicographicalComparator
implements Comparator<RandomAccessData>, Serializable {
// Do not instantiate
private UnsignedLexicographicalComparator() {}
@Override
public int compare(RandomAccessData o1, RandomAccessData o2) {
return compare(o1, o2, 0 /* start from the beginning */);
}
/** Compare the two sets of bytes starting at the given offset. */
@SuppressWarnings("ReferenceEquality") // equals overload calls into this compare method
public int compare(RandomAccessData o1, RandomAccessData o2, int startOffset) {
if (o1 == o2) {
return 0;
}
if (o1 == POSITIVE_INFINITY) {
return 1;
}
if (o2 == POSITIVE_INFINITY) {
return -1;
}
int minBytesLen = Math.min(o1.size, o2.size);
for (int i = startOffset; i < minBytesLen; i++) {
// unsigned comparison
int b1 = o1.buffer[i] & 0xFF;
int b2 = o2.buffer[i] & 0xFF;
if (b1 == b2) {
continue;
}
// Return the stream with the smaller byte as the smaller value.
return b1 - b2;
}
// If one is a prefix of the other, return the shorter one as the smaller one.
// If both lengths are equal, then both streams are equal.
return o1.size - o2.size;
}
/** Compute the length of the common prefix of the two provided sets of bytes. */
public int commonPrefixLength(RandomAccessData o1, RandomAccessData o2) {
int minBytesLen = Math.min(o1.size, o2.size);
for (int i = 0; i < minBytesLen; i++) {
// unsigned comparison
int b1 = o1.buffer[i] & 0xFF;
int b2 = o2.buffer[i] & 0xFF;
if (b1 != b2) {
return i;
}
}
return minBytesLen;
}
}
/** A token type representing positive infinity. */
static final RandomAccessData POSITIVE_INFINITY = new RandomAccessData(0);
/**
* Returns a RandomAccessData that is the smallest value of same length which is strictly greater
* than this. Note that if this is empty or is all 0xFF then a token value of positive infinity is
* returned.
*
* <p>The {@link UnsignedLexicographicalComparator} supports comparing {@link RandomAccessData}
* with support for positive infinitiy.
*/
public RandomAccessData increment() throws IOException {
RandomAccessData copy = copy();
for (int i = copy.size - 1; i >= 0; --i) {
if (copy.buffer[i] != UnsignedBytes.MAX_VALUE) {
copy.buffer[i] = UnsignedBytes.checkedCast(UnsignedBytes.toInt(copy.buffer[i]) + 1L);
return copy;
}
}
return POSITIVE_INFINITY;
}
private static final int DEFAULT_INITIAL_BUFFER_SIZE = 128;
/** Constructs a RandomAccessData with a default buffer size. */
public RandomAccessData() {
this(DEFAULT_INITIAL_BUFFER_SIZE);
}
/** Constructs a RandomAccessData with the initial buffer. */
public RandomAccessData(byte[] initialBuffer) {
checkNotNull(initialBuffer);
this.buffer = initialBuffer;
this.size = initialBuffer.length;
}
/** Constructs a RandomAccessData with the given buffer size. */
public RandomAccessData(int initialBufferSize) {
checkArgument(initialBufferSize >= 0, "Expected initial buffer size to be greater than zero.");
this.buffer = new byte[initialBufferSize];
}
private byte[] buffer;
private int size;
/** Returns the backing array. */
public byte[] array() {
return buffer;
}
/** Returns the number of bytes in the backing array that are valid. */
public int size() {
return size;
}
/** Resets the end of the stream to the specified position. */
public void resetTo(int position) {
ensureCapacity(position);
size = position;
}
private final OutputStream outputStream =
new OutputStream() {
@Override
public void write(int b) throws IOException {
ensureCapacity(size + 1);
buffer[size] = (byte) b;
size += 1;
}
@Override
public void write(byte[] b, int offset, int length) throws IOException {
ensureCapacity(size + length);
System.arraycopy(b, offset, buffer, size, length);
size += length;
}
};
/**
* Returns an output stream which writes to the backing buffer from the current position. Note
* that the internal buffer will grow as required to accomodate all data written.
*/
public OutputStream asOutputStream() {
return outputStream;
}
/**
* Returns an {@link InputStream} wrapper which supplies the portion of this backing byte buffer
* starting at {@code offset} and up to {@code length} bytes. Note that the returned {@link
* InputStream} is only a wrapper and any modifications to the underlying {@link RandomAccessData}
* will be visible by the {@link InputStream}.
*/
public InputStream asInputStream(final int offset, final int length) {
return new ByteArrayInputStream(buffer, offset, length);
}
/**
* Writes {@code length} bytes starting at {@code offset} from the backing data store to the
* specified output stream.
*/
public void writeTo(OutputStream out, int offset, int length) throws IOException {
out.write(buffer, offset, length);
}
/**
* Reads {@code length} bytes from the specified input stream writing them into the backing data
* store starting at {@code offset}.
*
* <p>Note that the in memory stream will be grown to ensure there is enough capacity.
*/
public void readFrom(InputStream inStream, int offset, int length) throws IOException {
ensureCapacity(offset + length);
ByteStreams.readFully(inStream, buffer, offset, length);
size = offset + length;
}
/** Returns a copy of this RandomAccessData. */
public RandomAccessData copy() throws IOException {
RandomAccessData copy = new RandomAccessData(size);
writeTo(copy.asOutputStream(), 0, size);
return copy;
}
@Override
public boolean equals(Object other) {
if (other == this) {
return true;
}
if (!(other instanceof RandomAccessData)) {
return false;
}
return UNSIGNED_LEXICOGRAPHICAL_COMPARATOR.compare(this, (RandomAccessData) other) == 0;
}
@Override
public int hashCode() {
int result = 1;
for (int i = 0; i < size; ++i) {
result = 31 * result + buffer[i];
}
return result;
}
@Override
public String toString() {
return MoreObjects.toStringHelper(this)
.add("buffer", Arrays.copyOf(buffer, size))
.add("size", size)
.toString();
}
private void ensureCapacity(int minCapacity) {
// If we have enough space, don't grow the buffer.
if (minCapacity <= buffer.length) {
return;
}
// Try to double the size of the buffer, if thats not enough, just use the new capacity.
// Note that we use Math.min(long, long) to not cause overflow on the multiplication.
int newCapacity = (int) Math.min(Integer.MAX_VALUE - 8, buffer.length * 2L);
if (newCapacity < minCapacity) {
newCapacity = minCapacity;
}
buffer = Arrays.copyOf(buffer, newCapacity);
}
}