| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| # pytype: skip-file |
| |
| import shutil |
| import tempfile |
| import unittest |
| from typing import Any |
| from typing import Dict |
| from typing import Iterable |
| from typing import Optional |
| from typing import Sequence |
| from typing import Union |
| |
| import pytest |
| |
| from apache_beam.ml.inference import utils |
| from apache_beam.ml.inference.base import PredictionResult |
| from apache_beam.ml.inference.tensorflow_inference_test import FakeTFTensorModel |
| from apache_beam.ml.inference.tensorflow_inference_test import _compare_tensor_prediction_result |
| |
| # pylint: disable=ungrouped-imports |
| try: |
| import tensorflow as tf |
| import torch |
| from transformers import AutoModel |
| from transformers import TFAutoModel |
| from apache_beam.ml.inference.huggingface_inference import HuggingFaceModelHandlerTensor |
| except ImportError: |
| raise unittest.SkipTest('Transformers dependencies are not installed.') |
| |
| |
| def fake_inference_fn_tensor( |
| batch: Sequence[Union[tf.Tensor, torch.Tensor]], |
| model: Union[AutoModel, TFAutoModel], |
| device, |
| inference_args: Dict[str, Any], |
| model_id: Optional[str] = None) -> Iterable[PredictionResult]: |
| predictions = model.predict(batch, **inference_args) |
| return utils._convert_to_result(batch, predictions, model_id) |
| |
| |
| class FakeTorchModel: |
| def predict(self, input: torch.Tensor): |
| return input |
| |
| |
| @pytest.mark.uses_transformers |
| class HuggingFaceInferenceTest(unittest.TestCase): |
| def setUp(self) -> None: |
| self.tmpdir = tempfile.mkdtemp() |
| |
| def tearDown(self) -> None: |
| shutil.rmtree(self.tmpdir) |
| |
| def test_predict_tensor(self): |
| fake_model = FakeTFTensorModel() |
| inference_runner = HuggingFaceModelHandlerTensor( |
| model_uri='unused', |
| model_class=TFAutoModel, |
| inference_fn=fake_inference_fn_tensor) |
| batched_examples = [tf.constant([1]), tf.constant([10]), tf.constant([100])] |
| expected_predictions = [ |
| PredictionResult(ex, pred) for ex, |
| pred in zip( |
| batched_examples, |
| [tf.math.multiply(n, 10) for n in batched_examples]) |
| ] |
| |
| inferences = inference_runner.run_inference(batched_examples, fake_model) |
| for actual, expected in zip(inferences, expected_predictions): |
| self.assertTrue(_compare_tensor_prediction_result(actual, expected)) |
| |
| def test_predict_tensor_with_inference_args(self): |
| fake_model = FakeTFTensorModel() |
| inference_runner = HuggingFaceModelHandlerTensor( |
| model_uri='unused', |
| model_class=TFAutoModel, |
| inference_fn=fake_inference_fn_tensor, |
| inference_args={"add": True}) |
| batched_examples = [tf.constant([1]), tf.constant([10]), tf.constant([100])] |
| expected_predictions = [ |
| PredictionResult(ex, pred) for ex, |
| pred in zip( |
| batched_examples, [ |
| tf.math.add(tf.math.multiply(n, 10), 10) |
| for n in batched_examples |
| ]) |
| ] |
| |
| inferences = inference_runner.run_inference( |
| batched_examples, fake_model, inference_args={"add": True}) |
| |
| for actual, expected in zip(inferences, expected_predictions): |
| self.assertTrue(_compare_tensor_prediction_result(actual, expected)) |
| |
| def test_framework_detection_torch(self): |
| fake_model = FakeTorchModel() |
| inference_runner = HuggingFaceModelHandlerTensor( |
| model_uri='unused', |
| model_class=TFAutoModel, |
| inference_fn=fake_inference_fn_tensor) |
| batched_examples = [torch.tensor(1), torch.tensor(10), torch.tensor(100)] |
| inference_runner.run_inference(batched_examples, fake_model) |
| self.assertEqual(inference_runner._framework, "torch") |
| |
| def test_framework_detection_tensorflow(self): |
| fake_model = FakeTFTensorModel() |
| inference_runner = HuggingFaceModelHandlerTensor( |
| model_uri='unused', |
| model_class=TFAutoModel, |
| inference_fn=fake_inference_fn_tensor, |
| inference_args={"add": True}) |
| batched_examples = [tf.constant([1]), tf.constant([10]), tf.constant([100])] |
| inference_runner.run_inference( |
| batched_examples, fake_model, inference_args={"add": True}) |
| self.assertEqual(inference_runner._framework, "tf") |
| |
| |
| if __name__ == '__main__': |
| unittest.main() |