| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| """End-to-End test for Hugging Face Inference""" |
| |
| import logging |
| import unittest |
| import uuid |
| |
| import pytest |
| |
| from apache_beam.io.filesystems import FileSystems |
| from apache_beam.testing.test_pipeline import TestPipeline |
| |
| try: |
| from apache_beam.examples.inference import huggingface_language_modeling |
| from apache_beam.examples.inference import huggingface_question_answering |
| from apache_beam.ml.inference import pytorch_inference_it_test |
| except ImportError: |
| raise unittest.SkipTest( |
| "transformers dependencies are not installed. " |
| "Check if transformers, torch, and tensorflow " |
| "is installed.") |
| |
| |
| @pytest.mark.uses_transformers |
| @pytest.mark.it_postcommit |
| @pytest.mark.timeout(1800) |
| class HuggingFaceInference(unittest.TestCase): |
| def test_hf_language_modeling(self): |
| test_pipeline = TestPipeline(is_integration_test=True) |
| # Path to text file containing some sentences |
| file_of_sentences = 'gs://apache-beam-ml/datasets/custom/hf_sentences.txt' |
| output_file_dir = 'gs://apache-beam-ml/testing/predictions' |
| output_file = '/'.join([output_file_dir, str(uuid.uuid4()), 'result.txt']) |
| |
| model_name = 'stevhliu/my_awesome_eli5_mlm_model' |
| |
| extra_opts = { |
| 'input': file_of_sentences, |
| 'output': output_file, |
| 'model_name': model_name, |
| } |
| huggingface_language_modeling.run( |
| test_pipeline.get_full_options_as_args(**extra_opts), |
| save_main_session=False) |
| |
| self.assertEqual(FileSystems().exists(output_file), True) |
| predictions = pytorch_inference_it_test.process_outputs( |
| filepath=output_file) |
| actuals_file = 'gs://apache-beam-ml/testing/expected_outputs/test_hf_run_inference_for_masked_lm_actuals.txt' # pylint: disable=line-too-long |
| actuals = pytorch_inference_it_test.process_outputs(filepath=actuals_file) |
| |
| predictions_dict = {} |
| for prediction in predictions: |
| text, predicted_text = prediction.split(';') |
| predictions_dict[text] = predicted_text.strip().lower() |
| |
| for actual in actuals: |
| text, actual_predicted_text = actual.split(';') |
| predicted_predicted_text = predictions_dict[text] |
| self.assertEqual(actual_predicted_text, predicted_predicted_text) |
| |
| def test_hf_language_modeling_large_model(self): |
| test_pipeline = TestPipeline(is_integration_test=True) |
| # Path to text file containing some sentences |
| file_of_sentences = 'gs://apache-beam-ml/datasets/custom/hf_sentences.txt' |
| output_file_dir = 'gs://apache-beam-ml/testing/predictions' |
| output_file = '/'.join([output_file_dir, str(uuid.uuid4()), 'result.txt']) |
| |
| model_name = 'stevhliu/my_awesome_eli5_mlm_model' |
| |
| extra_opts = { |
| 'input': file_of_sentences, |
| 'output': output_file, |
| 'model_name': model_name, |
| 'large_model': True, |
| } |
| huggingface_language_modeling.run( |
| test_pipeline.get_full_options_as_args(**extra_opts), |
| save_main_session=False) |
| |
| self.assertEqual(FileSystems().exists(output_file), True) |
| predictions = pytorch_inference_it_test.process_outputs( |
| filepath=output_file) |
| actuals_file = 'gs://apache-beam-ml/testing/expected_outputs/test_hf_run_inference_for_masked_lm_actuals.txt' # pylint: disable=line-too-long |
| actuals = pytorch_inference_it_test.process_outputs(filepath=actuals_file) |
| |
| predictions_dict = {} |
| for prediction in predictions: |
| text, predicted_text = prediction.split(';') |
| predictions_dict[text] = predicted_text.strip().lower() |
| |
| for actual in actuals: |
| text, actual_predicted_text = actual.split(';') |
| predicted_predicted_text = predictions_dict[text] |
| self.assertEqual(actual_predicted_text, predicted_predicted_text) |
| |
| def test_hf_pipeline(self): |
| test_pipeline = TestPipeline(is_integration_test=True) |
| # Path to text file containing some questions and context |
| input_file = 'gs://apache-beam-ml/datasets/custom/questions.txt' |
| output_file_dir = 'gs://apache-beam-ml/hf/testing/predictions' |
| output_file = '/'.join([output_file_dir, str(uuid.uuid4()), 'result.txt']) |
| extra_opts = { |
| 'input': input_file, |
| 'output': output_file, |
| 'revision': 'deedc3e42208524e0df3d9149d1f26aa6934f05f', |
| } |
| huggingface_question_answering.run( |
| test_pipeline.get_full_options_as_args(**extra_opts), |
| save_main_session=False) |
| self.assertEqual(FileSystems().exists(output_file), True) |
| predictions = pytorch_inference_it_test.process_outputs( |
| filepath=output_file) |
| actuals_file = ( |
| 'gs://apache-beam-ml/testing/expected_outputs/' |
| 'test_hf_pipeline_answers.txt') |
| actuals = pytorch_inference_it_test.process_outputs(filepath=actuals_file) |
| |
| predictions_dict = {} |
| for prediction in predictions: |
| text, predicted_text = prediction.split(';') |
| predictions_dict[text] = predicted_text.strip() |
| |
| for actual in actuals: |
| text, actual_predicted_text = actual.split(';') |
| predicted_predicted_text = predictions_dict[text] |
| self.assertEqual(actual_predicted_text, predicted_predicted_text) |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.DEBUG) |
| unittest.main() |