blob: 3e92417f247c3179f09781fb37121db583180f18 [file] [log] [blame]
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""A word-counting workflow using the DataFrame API."""
# pytype: skip-file
import argparse
import logging
import apache_beam as beam
from apache_beam.dataframe.convert import to_dataframe
from apache_beam.dataframe.convert import to_pcollection
from apache_beam.io import ReadFromText
from apache_beam.options.pipeline_options import PipelineOptions
def run(argv=None):
"""Main entry point; defines and runs the wordcount pipeline."""
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input',
dest='input',
default='gs://dataflow-samples/shakespeare/kinglear.txt',
help='Input file to process.')
parser.add_argument(
'--output',
dest='output',
required=True,
help='Output file to write results to.')
known_args, pipeline_args = parser.parse_known_args(argv)
# Import this here to avoid pickling the main session.
import re
# The pipeline will be run on exiting the with block.
with beam.Pipeline(options=PipelineOptions(pipeline_args)) as p:
# [START DataFrame_wordcount]
# Read the text file[pattern] into a PCollection.
lines = p | 'Read' >> ReadFromText(known_args.input)
words = (
lines
| 'Split' >> beam.FlatMap(
lambda line: re.findall(r'[\w]+', line)).with_output_types(str)
# Map to Row objects to generate a schema suitable for conversion
# to a dataframe.
| 'ToRows' >> beam.Map(lambda word: beam.Row(word=word)))
df = to_dataframe(words)
df['count'] = 1
counted = df.groupby('word').sum()
counted.to_csv(known_args.output)
# Deferred DataFrames can also be converted back to schema'd PCollections
counted_pc = to_pcollection(counted, include_indexes=True)
# [END DataFrame_wordcount]
# Print out every word that occurred >50 times
_ = (
counted_pc
| beam.Filter(lambda row: row.count > 50)
| beam.Map(lambda row: f'{row.word}: {row.count}')
| beam.Map(print))
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()