| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| |
| import argparse |
| import logging |
| from typing import Callable |
| from typing import Iterable |
| from typing import List |
| from typing import Tuple |
| from typing import Union |
| |
| import numpy |
| import pandas |
| import scipy |
| from sklearn.datasets import load_iris |
| from sklearn.model_selection import train_test_split |
| |
| import apache_beam as beam |
| import datatable |
| import xgboost |
| from apache_beam.ml.inference.base import KeyedModelHandler |
| from apache_beam.ml.inference.base import PredictionResult |
| from apache_beam.ml.inference.base import RunInference |
| from apache_beam.ml.inference.xgboost_inference import XGBoostModelHandlerDatatable |
| from apache_beam.ml.inference.xgboost_inference import XGBoostModelHandlerNumpy |
| from apache_beam.ml.inference.xgboost_inference import XGBoostModelHandlerPandas |
| from apache_beam.ml.inference.xgboost_inference import XGBoostModelHandlerSciPy |
| from apache_beam.options.pipeline_options import PipelineOptions |
| from apache_beam.options.pipeline_options import SetupOptions |
| from apache_beam.runners.runner import PipelineResult |
| |
| |
| class PostProcessor(beam.DoFn): |
| """Process the PredictionResult to get the predicted label. |
| Returns a comma separated string with true label and predicted label. |
| """ |
| def process(self, element: Tuple[int, PredictionResult]) -> Iterable[str]: |
| label, prediction_result = element |
| prediction = prediction_result.inference |
| yield '{},{}'.format(label, prediction) |
| |
| |
| def parse_known_args(argv): |
| """Parses args for the workflow.""" |
| parser = argparse.ArgumentParser() |
| parser.add_argument( |
| '--input_type', |
| dest='input_type', |
| required=True, |
| choices=['numpy', 'pandas', 'scipy', 'datatable'], |
| help='Datatype of the input data.') |
| parser.add_argument( |
| '--output', |
| dest='output', |
| required=True, |
| help='Path to save output predictions.') |
| parser.add_argument( |
| '--model_state', |
| dest='model_state', |
| required=True, |
| help='Path to the state of the XGBoost model loaded for Inference.') |
| group = parser.add_mutually_exclusive_group(required=True) |
| group.add_argument('--split', action='store_true', dest='split') |
| group.add_argument('--no_split', action='store_false', dest='split') |
| return parser.parse_known_args(argv) |
| |
| |
| def load_sklearn_iris_test_data( |
| data_type: Callable, |
| split: bool = True, |
| seed: int = 999) -> List[Union[numpy.array, pandas.DataFrame]]: |
| """ |
| Loads test data from the sklearn Iris dataset in a given format, |
| either in a single or multiple batches. |
| Args: |
| data_type: Datatype of the iris test dataset. |
| split: Split the dataset in different batches or return single batch. |
| seed: Random state for splitting the train and test set. |
| """ |
| dataset = load_iris() |
| _, x_test, _, _ = train_test_split( |
| dataset['data'], dataset['target'], test_size=.2, random_state=seed) |
| |
| if split: |
| return [(index, data_type(sample.reshape(1, -1))) for index, |
| sample in enumerate(x_test)] |
| return [(0, data_type(x_test))] |
| |
| |
| def run( |
| argv=None, save_main_session=True, test_pipeline=None) -> PipelineResult: |
| """ |
| Args: |
| argv: Command line arguments defined for this example. |
| save_main_session: Used for internal testing. |
| test_pipeline: Used for internal testing. |
| """ |
| known_args, pipeline_args = parse_known_args(argv) |
| pipeline_options = PipelineOptions(pipeline_args) |
| pipeline_options.view_as(SetupOptions).save_main_session = save_main_session |
| |
| data_types = { |
| 'numpy': (numpy.array, XGBoostModelHandlerNumpy), |
| 'pandas': (pandas.DataFrame, XGBoostModelHandlerPandas), |
| 'scipy': (scipy.sparse.csr_matrix, XGBoostModelHandlerSciPy), |
| 'datatable': (datatable.Frame, XGBoostModelHandlerDatatable), |
| } |
| |
| input_data_type, model_handler = data_types[known_args.input_type] |
| |
| xgboost_model_handler = KeyedModelHandler( |
| model_handler( |
| model_class=xgboost.XGBClassifier, |
| model_state=known_args.model_state)) |
| |
| input_data = load_sklearn_iris_test_data( |
| data_type=input_data_type, split=known_args.split) |
| |
| pipeline = test_pipeline |
| if not test_pipeline: |
| pipeline = beam.Pipeline(options=pipeline_options) |
| |
| predictions = ( |
| pipeline |
| | "ReadInputData" >> beam.Create(input_data) |
| | "RunInference" >> RunInference(xgboost_model_handler) |
| | "PostProcessOutputs" >> beam.ParDo(PostProcessor())) |
| |
| _ = predictions | "WriteOutput" >> beam.io.WriteToText( |
| known_args.output, shard_name_template='', append_trailing_newlines=True) |
| |
| result = pipeline.run() |
| result.wait_until_finish() |
| return result |
| |
| |
| if __name__ == '__main__': |
| logging.getLogger().setLevel(logging.INFO) |
| run() |